//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the X86 instruction set, defining the instructions, and // properties of the instructions which are needed for code generation, machine // code emission, and analysis. // //===----------------------------------------------------------------------===// // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<5> Value = val; } def Pseudo : Format<0>; def RawFrm : Format<1>; def AddRegFrm : Format<2>; def MRMDestReg : Format<3>; def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>; def MRMSrcMem : Format<6>; def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>; def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>; def MRM6r : Format<22>; def MRM7r : Format<23>; def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>; def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>; def MRM6m : Format<30>; def MRM7m : Format<31>; // ImmType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class ImmType val> { bits<2> Value = val; } def NoImm : ImmType<0>; def Imm8 : ImmType<1>; def Imm16 : ImmType<2>; def Imm32 : ImmType<3>; // MemType - This specifies the immediate type used by an instruction. This is // part of the ad-hoc solution used to emit machine instruction encodings by our // machine code emitter. class MemType val> { bits<3> Value = val; } def NoMem : MemType<0>; def Mem8 : MemType<1>; def Mem16 : MemType<2>; def Mem32 : MemType<3>; def Mem64 : MemType<4>; def Mem80 : MemType<4>; def Mem128 : MemType<6>; // FPFormat - This specifies what form this FP instruction has. This is used by // the Floating-Point stackifier pass. class FPFormat val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def SpecialFP : FPFormat<5>; class X86Inst opcod, Format f, MemType m, ImmType i> : Instruction { let Namespace = "X86"; let Name = nam; bits<8> Opcode = opcod; Format Form = f; bits<5> FormBits = Form.Value; MemType MemT = m; bits<3> MemTypeBits = MemT.Value; ImmType ImmT = i; bits<2> ImmTypeBits = ImmT.Value; // Attributes specific to X86 instructions... bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix? bit printImplicitUses = 0; // Should we print implicit uses of this inst? bits<4> Prefix = 0; // Which prefix byte does this inst have? FPFormat FPForm; // What flavor of FP instruction is this? bits<3> FPFormBits = 0; } class Imp uses, list defs> { list Uses = uses; list Defs = defs; } class Pattern { dag Pattern = P; } // Prefix byte classes which are used to indicate to the ad-hoc machine code // emitter that various prefix bytes are required. class OpSize { bit hasOpSizePrefix = 1; } class TB { bits<4> Prefix = 1; } class REP { bits<4> Prefix = 2; } class D8 { bits<4> Prefix = 3; } class D9 { bits<4> Prefix = 4; } class DA { bits<4> Prefix = 5; } class DB { bits<4> Prefix = 6; } class DC { bits<4> Prefix = 7; } class DD { bits<4> Prefix = 8; } class DE { bits<4> Prefix = 9; } class DF { bits<4> Prefix = 10; } //===----------------------------------------------------------------------===// // Instruction templates... class I o, Format f> : X86Inst; class Im o, Format f, MemType m> : X86Inst; class Im8 o, Format f> : Im; class Im16 o, Format f> : Im; class Im32 o, Format f> : Im; class Ii o, Format f, ImmType i> : X86Inst; class Ii8 o, Format f> : Ii; class Ii16 o, Format f> : Ii; class Ii32 o, Format f> : Ii; class Im8i8 o, Format f> : X86Inst; class Im16i16 o, Format f> : X86Inst; class Im32i32 o, Format f> : X86Inst; class Im16i8 o, Format f> : X86Inst; class Im32i8 o, Format f> : X86Inst; // Helper for shift instructions class UsesCL { list Uses = [CL]; bit printImplicitUses = 1; } //===----------------------------------------------------------------------===// // Instruction list... // def PHI : I<"PHI", 0, Pseudo>; // PHI node... def NOOP : I<"nop", 0x90, RawFrm>; // nop def ADJCALLSTACKDOWN : I<"ADJCALLSTACKDOWN", 0, Pseudo>; def ADJCALLSTACKUP : I<"ADJCALLSTACKUP", 0, Pseudo>; def IMPLICIT_USE : I<"IMPLICIT_USE", 0, Pseudo>; def IMPLICIT_DEF : I<"IMPLICIT_DEF", 0, Pseudo>; let isTerminator = 1 in let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in def FP_REG_KILL : I<"FP_REG_KILL", 0, Pseudo>; //===----------------------------------------------------------------------===// // Control Flow Instructions... // // Return instruction... let isTerminator = 1, isReturn = 1 in def RET : I<"ret", 0xC3, RawFrm>, Pattern<(retvoid)>; // All branches are RawFrm, Void, Branch, and Terminators let isBranch = 1, isTerminator = 1 in class IBr opcode> : I; def JMP : IBr<"jmp", 0xE9>, Pattern<(br basicblock)>; def JB : IBr<"jb" , 0x82>, TB; def JAE : IBr<"jae", 0x83>, TB; def JE : IBr<"je" , 0x84>, TB, Pattern<(isVoid (unspec1 basicblock))>; def JNE : IBr<"jne", 0x85>, TB; def JBE : IBr<"jbe", 0x86>, TB; def JA : IBr<"ja" , 0x87>, TB; def JS : IBr<"js" , 0x88>, TB; def JNS : IBr<"jns", 0x89>, TB; def JL : IBr<"jl" , 0x8C>, TB; def JGE : IBr<"jge", 0x8D>, TB; def JLE : IBr<"jle", 0x8E>, TB; def JG : IBr<"jg" , 0x8F>, TB; //===----------------------------------------------------------------------===// // Call Instructions... // let isCall = 1 in // All calls clobber the non-callee saved registers... let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in { def CALLpcrel32 : I <"call", 0xE8, RawFrm>; def CALLr32 : I <"call", 0xFF, MRM2r>; def CALLm32 : Im32<"call", 0xFF, MRM2m>; } //===----------------------------------------------------------------------===// // Miscellaneous Instructions... // def LEAVE : I<"leave", 0xC9, RawFrm>, Imp<[EBP,ESP],[EBP,ESP]>; def POPr32 : I<"pop", 0x58, AddRegFrm>, Imp<[ESP],[ESP]>; let isTwoAddress = 1 in // R32 = bswap R32 def BSWAPr32 : I<"bswap", 0xC8, AddRegFrm>, TB; def XCHGrr8 : I <"xchg", 0x86, MRMDestReg>; // xchg R8, R8 def XCHGrr16 : I <"xchg", 0x87, MRMDestReg>, OpSize; // xchg R16, R16 def XCHGrr32 : I <"xchg", 0x87, MRMDestReg>; // xchg R32, R32 def XCHGmr8 : Im8 <"xchg", 0x86, MRMDestMem>; // xchg [mem8], R8 def XCHGmr16 : Im16<"xchg", 0x87, MRMDestMem>, OpSize; // xchg [mem16], R16 def XCHGmr32 : Im32<"xchg", 0x87, MRMDestMem>; // xchg [mem32], R32 def XCHGrm8 : Im8 <"xchg", 0x86, MRMSrcMem >; // xchg R8, [mem8] def XCHGrm16 : Im16<"xchg", 0x87, MRMSrcMem >, OpSize; // xchg R16, [mem16] def XCHGrm32 : Im32<"xchg", 0x87, MRMSrcMem >; // xchg R32, [mem32] def LEAr16 : Im32<"lea", 0x8D, MRMSrcMem>, OpSize; // R16 = lea [mem] def LEAr32 : Im32<"lea", 0x8D, MRMSrcMem>; // R32 = lea [mem] def REP_MOVSB : I<"rep movsb", 0xA4, RawFrm>, REP, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>; def REP_MOVSW : I<"rep movsw", 0xA5, RawFrm>, REP, OpSize, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>; def REP_MOVSD : I<"rep movsd", 0xA5, RawFrm>, REP, Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>; def REP_STOSB : I<"rep stosb", 0xAA, RawFrm>, REP, Imp<[AL,ECX,EDI], [ECX,EDI]>; def REP_STOSW : I<"rep stosw", 0xAB, RawFrm>, REP, OpSize, Imp<[AX,ECX,EDI], [ECX,EDI]>; def REP_STOSD : I<"rep stosd", 0xAB, RawFrm>, REP, Imp<[EAX,ECX,EDI], [ECX,EDI]>; //===----------------------------------------------------------------------===// // Move Instructions... // def MOVrr8 : I <"mov", 0x88, MRMDestReg>, Pattern<(set R8 , R8 )>; def MOVrr16 : I <"mov", 0x89, MRMDestReg>, OpSize, Pattern<(set R16, R16)>; def MOVrr32 : I <"mov", 0x89, MRMDestReg>, Pattern<(set R32, R32)>; def MOVri8 : Ii8 <"mov", 0xB0, AddRegFrm >, Pattern<(set R8 , imm )>; def MOVri16 : Ii16 <"mov", 0xB8, AddRegFrm >, OpSize, Pattern<(set R16, imm)>; def MOVri32 : Ii32 <"mov", 0xB8, AddRegFrm >, Pattern<(set R32, imm)>; def MOVmi8 : Im8i8 <"mov", 0xC6, MRM0m >; // [mem8] = imm8 def MOVmi16 : Im16i16<"mov", 0xC7, MRM0m >, OpSize; // [mem16] = imm16 def MOVmi32 : Im32i32<"mov", 0xC7, MRM0m >; // [mem32] = imm32 def MOVrm8 : Im8 <"mov", 0x8A, MRMSrcMem>; // R8 = [mem8] def MOVrm16 : Im16 <"mov", 0x8B, MRMSrcMem>, OpSize, // R16 = [mem16] Pattern<(set R16, (load (plus R32, (plus (times imm, R32), imm))))>; def MOVrm32 : Im32 <"mov", 0x8B, MRMSrcMem>, // R32 = [mem32] Pattern<(set R32, (load (plus R32, (plus (times imm, R32), imm))))>; def MOVmr8 : Im8 <"mov", 0x88, MRMDestMem>; // [mem8] = R8 def MOVmr16 : Im16 <"mov", 0x89, MRMDestMem>, OpSize; // [mem16] = R16 def MOVmr32 : Im32 <"mov", 0x89, MRMDestMem>; // [mem32] = R32 //===----------------------------------------------------------------------===// // Fixed-Register Multiplication and Division Instructions... // // Extra precision multiplication def MULr8 : I <"mul", 0xF6, MRM4r>, Imp<[AL],[AX]>; // AL,AH = AL*R8 def MULr16 : I <"mul", 0xF7, MRM4r>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16 def MULr32 : I <"mul", 0xF7, MRM4r>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32 def MULm8 : Im8 <"mul", 0xF6, MRM4m>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8] def MULm16 : Im16<"mul", 0xF7, MRM4m>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16] def MULm32 : Im32<"mul", 0xF7, MRM4m>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32] // unsigned division/remainder def DIVr8 : I <"div", 0xF6, MRM6r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH def DIVr16 : I <"div", 0xF7, MRM6r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX def DIVr32 : I <"div", 0xF7, MRM6r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX def DIVm8 : Im8 <"div", 0xF6, MRM6m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH def DIVm16 : Im16<"div", 0xF7, MRM6m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX def DIVm32 : Im32<"div", 0xF7, MRM6m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX // signed division/remainder def IDIVr8 : I <"idiv",0xF6, MRM7r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH def IDIVr16: I <"idiv",0xF7, MRM7r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX def IDIVr32: I <"idiv",0xF7, MRM7r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX def IDIVm8 : Im8 <"idiv",0xF6, MRM7m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH def IDIVm16: Im16<"idiv",0xF7, MRM7m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX def IDIVm32: Im32<"idiv",0xF7, MRM7m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX // Sign-extenders for division def CBW : I<"cbw", 0x98, RawFrm >, Imp<[AL],[AH]>; // AX = signext(AL) def CWD : I<"cwd", 0x99, RawFrm >, Imp<[AX],[DX]>; // DX:AX = signext(AX) def CDQ : I<"cdq", 0x99, RawFrm >, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX) //===----------------------------------------------------------------------===// // Two address Instructions... // let isTwoAddress = 1 in { // Conditional moves. These are modelled as X = cmovXX Y, Z. Eventually // register allocated to cmovXX XY, Z def CMOVErr16 : I<"cmove", 0x44, MRMSrcReg>, TB, OpSize; // if ==, R16 = R16 def CMOVNErr32: I<"cmovne",0x45, MRMSrcReg>, TB; // if !=, R32 = R32 def CMOVSrr32 : I<"cmovs", 0x48, MRMSrcReg>, TB; // if signed, R32 = R32 // unary instructions def NEGr8 : I <"neg", 0xF6, MRM3r>; // R8 = -R8 = 0-R8 def NEGr16 : I <"neg", 0xF7, MRM3r>, OpSize; // R16 = -R16 = 0-R16 def NEGr32 : I <"neg", 0xF7, MRM3r>; // R32 = -R32 = 0-R32 def NEGm8 : Im8 <"neg", 0xF6, MRM3m>; // [mem8] = -[mem8] = 0-[mem8] def NEGm16 : Im16<"neg", 0xF7, MRM3m>, OpSize; // [mem16] = -[mem16] = 0-[mem16] def NEGm32 : Im32<"neg", 0xF7, MRM3m>; // [mem32] = -[mem32] = 0-[mem32] def NOTr8 : I <"not", 0xF6, MRM2r>; // R8 = ~R8 = R8^-1 def NOTr16 : I <"not", 0xF7, MRM2r>, OpSize; // R16 = ~R16 = R16^-1 def NOTr32 : I <"not", 0xF7, MRM2r>; // R32 = ~R32 = R32^-1 def NOTm8 : Im8 <"not", 0xF6, MRM2m>; // [mem8] = ~[mem8] = [mem8^-1] def NOTm16 : Im16<"not", 0xF7, MRM2m>, OpSize; // [mem16] = ~[mem16] = [mem16^-1] def NOTm32 : Im32<"not", 0xF7, MRM2m>; // [mem32] = ~[mem32] = [mem32^-1] def INCr8 : I <"inc", 0xFE, MRM0r>; // ++R8 def INCr16 : I <"inc", 0xFF, MRM0r>, OpSize; // ++R16 def INCr32 : I <"inc", 0xFF, MRM0r>; // ++R32 def INCm8 : Im8 <"inc", 0xFE, MRM0m>; // ++R8 def INCm16 : Im16<"inc", 0xFF, MRM0m>, OpSize; // ++R16 def INCm32 : Im32<"inc", 0xFF, MRM0m>; // ++R32 def DECr8 : I <"dec", 0xFE, MRM1r>; // --R8 def DECr16 : I <"dec", 0xFF, MRM1r>, OpSize; // --R16 def DECr32 : I <"dec", 0xFF, MRM1r>; // --R32 def DECm8 : Im8 <"dec", 0xFE, MRM1m>; // --[mem8] def DECm16 : Im16<"dec", 0xFF, MRM1m>, OpSize; // --[mem16] def DECm32 : Im32<"dec", 0xFF, MRM1m>; // --[mem32] // Logical operators... def ANDrr8 : I <"and", 0x20, MRMDestReg>, Pattern<(set R8 , (and R8 , R8 ))>; def ANDrr16 : I <"and", 0x21, MRMDestReg>, OpSize, Pattern<(set R16, (and R16, R16))>; def ANDrr32 : I <"and", 0x21, MRMDestReg>, Pattern<(set R32, (and R32, R32))>; def ANDmr8 : Im8 <"and", 0x20, MRMDestMem>; // [mem8] &= R8 def ANDmr16 : Im16 <"and", 0x21, MRMDestMem>, OpSize; // [mem16] &= R16 def ANDmr32 : Im32 <"and", 0x21, MRMDestMem>; // [mem32] &= R32 def ANDrm8 : Im8 <"and", 0x22, MRMSrcMem >; // R8 &= [mem8] def ANDrm16 : Im16 <"and", 0x23, MRMSrcMem >, OpSize; // R16 &= [mem16] def ANDrm32 : Im32 <"and", 0x23, MRMSrcMem >; // R32 &= [mem32] def ANDri8 : Ii8 <"and", 0x80, MRM4r >, Pattern<(set R8 , (and R8 , imm))>; def ANDri16 : Ii16 <"and", 0x81, MRM4r >, OpSize, Pattern<(set R16, (and R16, imm))>; def ANDri32 : Ii32 <"and", 0x81, MRM4r >, Pattern<(set R32, (and R32, imm))>; def ANDmi8 : Im8i8 <"and", 0x80, MRM4m >; // [mem8] &= imm8 def ANDmi16 : Im16i16 <"and", 0x81, MRM4m >, OpSize; // [mem16] &= imm16 def ANDmi32 : Im32i32 <"and", 0x81, MRM4m >; // [mem32] &= imm32 def ANDri16b : Ii8 <"and", 0x83, MRM4r >, OpSize; // R16 &= imm8 def ANDri32b : Ii8 <"and", 0x83, MRM4r >; // R32 &= imm8 def ANDmi16b : Im16i8<"and", 0x83, MRM4m >, OpSize; // [mem16] &= imm8 def ANDmi32b : Im32i8<"and", 0x83, MRM4m >; // [mem32] &= imm8 def ORrr8 : I <"or" , 0x08, MRMDestReg>, Pattern<(set R8 , (or R8 , R8 ))>; def ORrr16 : I <"or" , 0x09, MRMDestReg>, OpSize, Pattern<(set R16, (or R16, R16))>; def ORrr32 : I <"or" , 0x09, MRMDestReg>, Pattern<(set R32, (or R32, R32))>; def ORmr8 : Im8 <"or" , 0x08, MRMDestMem>; // [mem8] |= R8 def ORmr16 : Im16 <"or" , 0x09, MRMDestMem>, OpSize; // [mem16] |= R16 def ORmr32 : Im32 <"or" , 0x09, MRMDestMem>; // [mem32] |= R32 def ORrm8 : Im8 <"or" , 0x0A, MRMSrcMem >; // R8 |= [mem8] def ORrm16 : Im16 <"or" , 0x0B, MRMSrcMem >, OpSize; // R16 |= [mem16] def ORrm32 : Im32 <"or" , 0x0B, MRMSrcMem >; // R32 |= [mem32] def ORri8 : Ii8 <"or" , 0x80, MRM1r >, Pattern<(set R8 , (or R8 , imm))>; def ORri16 : Ii16 <"or" , 0x81, MRM1r >, OpSize, Pattern<(set R16, (or R16, imm))>; def ORri32 : Ii32 <"or" , 0x81, MRM1r >, Pattern<(set R32, (or R32, imm))>; def ORmi8 : Im8i8 <"or" , 0x80, MRM1m >; // [mem8] |= imm8 def ORmi16 : Im16i16 <"or" , 0x81, MRM1m >, OpSize; // [mem16] |= imm16 def ORmi32 : Im32i32 <"or" , 0x81, MRM1m >; // [mem32] |= imm32 def ORri16b : Ii8 <"or" , 0x83, MRM1r >, OpSize; // R16 |= imm8 def ORri32b : Ii8 <"or" , 0x83, MRM1r >; // R32 |= imm8 def ORmi16b : Im16i8<"or" , 0x83, MRM1m >, OpSize; // [mem16] |= imm8 def ORmi32b : Im32i8<"or" , 0x83, MRM1m >; // [mem32] |= imm8 def XORrr8 : I <"xor", 0x30, MRMDestReg>, Pattern<(set R8 , (xor R8 , R8 ))>; def XORrr16 : I <"xor", 0x31, MRMDestReg>, OpSize, Pattern<(set R16, (xor R16, R16))>; def XORrr32 : I <"xor", 0x31, MRMDestReg>, Pattern<(set R32, (xor R32, R32))>; def XORmr8 : Im8 <"xor", 0x30, MRMDestMem>; // [mem8] ^= R8 def XORmr16 : Im16 <"xor", 0x31, MRMDestMem>, OpSize; // [mem16] ^= R16 def XORmr32 : Im32 <"xor", 0x31, MRMDestMem>; // [mem32] ^= R32 def XORrm8 : Im8 <"xor", 0x32, MRMSrcMem >; // R8 ^= [mem8] def XORrm16 : Im16 <"xor", 0x33, MRMSrcMem >, OpSize; // R16 ^= [mem16] def XORrm32 : Im32 <"xor", 0x33, MRMSrcMem >; // R32 ^= [mem32] def XORri8 : Ii8 <"xor", 0x80, MRM6r >, Pattern<(set R8 , (xor R8 , imm))>; def XORri16 : Ii16 <"xor", 0x81, MRM6r >, OpSize, Pattern<(set R16, (xor R16, imm))>; def XORri32 : Ii32 <"xor", 0x81, MRM6r >, Pattern<(set R32, (xor R32, imm))>; def XORmi8 : Im8i8 <"xor", 0x80, MRM6m >; // [mem8] ^= R8 def XORmi16 : Im16i16 <"xor", 0x81, MRM6m >, OpSize; // [mem16] ^= R16 def XORmi32 : Im32i32 <"xor", 0x81, MRM6m >; // [mem32] ^= R32 def XORri16b : Ii8 <"xor", 0x83, MRM6r >, OpSize; // R16 ^= imm8 def XORri32b : Ii8 <"xor", 0x83, MRM6r >; // R32 ^= imm8 def XORmi16b : Im16i8<"xor", 0x83, MRM6m >, OpSize; // [mem16] ^= imm8 def XORmi32b : Im32i8<"xor", 0x83, MRM6m >; // [mem32] ^= imm8 // Shift instructions def SHLrCL8 : I <"shl", 0xD2, MRM4r > , UsesCL; // R8 <<= cl def SHLrCL16 : I <"shl", 0xD3, MRM4r >, OpSize, UsesCL; // R16 <<= cl def SHLrCL32 : I <"shl", 0xD3, MRM4r > , UsesCL; // R32 <<= cl def SHLmCL8 : Im8 <"shl", 0xD2, MRM4m > , UsesCL; // [mem8] <<= cl def SHLmCL16 : Im16 <"shl", 0xD3, MRM4m >, OpSize, UsesCL; // [mem16] <<= cl def SHLmCL32 : Im32 <"shl", 0xD3, MRM4m > , UsesCL; // [mem32] <<= cl def SHLri8 : Ii8 <"shl", 0xC0, MRM4r >; // R8 <<= imm8 def SHLri16 : Ii8 <"shl", 0xC1, MRM4r >, OpSize; // R16 <<= imm8 def SHLri32 : Ii8 <"shl", 0xC1, MRM4r >; // R32 <<= imm8 def SHLmi8 : Im8i8 <"shl", 0xC0, MRM4m >; // [mem8] <<= imm8 def SHLmi16 : Im16i8<"shl", 0xC1, MRM4m >, OpSize; // [mem16] <<= imm8 def SHLmi32 : Im32i8<"shl", 0xC1, MRM4m >; // [mem32] <<= imm8 def SHRrCL8 : I <"shr", 0xD2, MRM5r > , UsesCL; // R8 >>= cl def SHRrCL16 : I <"shr", 0xD3, MRM5r >, OpSize, UsesCL; // R16 >>= cl def SHRrCL32 : I <"shr", 0xD3, MRM5r > , UsesCL; // R32 >>= cl def SHRmCL8 : Im8 <"shr", 0xD2, MRM5m > , UsesCL; // [mem8] >>= cl def SHRmCL16 : Im16 <"shr", 0xD3, MRM5m >, OpSize, UsesCL; // [mem16] >>= cl def SHRmCL32 : Im32 <"shr", 0xD3, MRM5m > , UsesCL; // [mem32] >>= cl def SHRri8 : Ii8 <"shr", 0xC0, MRM5r >; // R8 >>= imm8 def SHRri16 : Ii8 <"shr", 0xC1, MRM5r >, OpSize; // R16 >>= imm8 def SHRri32 : Ii8 <"shr", 0xC1, MRM5r >; // R32 >>= imm8 def SHRmi8 : Im8i8 <"shr", 0xC0, MRM5m >; // [mem8] >>= imm8 def SHRmi16 : Im16i8<"shr", 0xC1, MRM5m >, OpSize; // [mem16] >>= imm8 def SHRmi32 : Im32i8<"shr", 0xC1, MRM5m >; // [mem32] >>= imm8 def SARrCL8 : I <"sar", 0xD2, MRM7r > , UsesCL; // R8 >>>= cl def SARrCL16 : I <"sar", 0xD3, MRM7r >, OpSize, UsesCL; // R16 >>>= cl def SARrCL32 : I <"sar", 0xD3, MRM7r > , UsesCL; // R32 >>>= cl def SARmCL8 : Im8 <"sar", 0xD2, MRM7m > , UsesCL; // [mem8] >>>= cl def SARmCL16 : Im16 <"sar", 0xD3, MRM7m >, OpSize, UsesCL; // [mem16] >>>= cl def SARmCL32 : Im32 <"sar", 0xD3, MRM7m > , UsesCL; // [mem32] >>>= cl def SARri8 : Ii8 <"sar", 0xC0, MRM7r >; // R8 >>>= imm8 def SARri16 : Ii8 <"sar", 0xC1, MRM7r >, OpSize; // R16 >>>= imm8 def SARri32 : Ii8 <"sar", 0xC1, MRM7r >; // R32 >>>= imm8 def SARmi8 : Im8i8 <"sar", 0xC0, MRM7m >; // [mem8] >>>= imm8 def SARmi16 : Im16i8<"sar", 0xC1, MRM7m >, OpSize; // [mem16] >>>= imm8 def SARmi32 : Im32i8<"sar", 0xC1, MRM7m >; // [mem32] >>>= imm8 def SHLDrrCL32 : I <"shld", 0xA5, MRMDestReg>, TB, UsesCL; // R32 <<= R32,R32 cl def SHLDmrCL32 : I <"shld", 0xA5, MRMDestMem>, TB, UsesCL; // [mem32] <<= [mem32],R32 cl def SHLDrr32i8 : Ii8 <"shld", 0xA4, MRMDestReg>, TB; // R32 <<= R32,R32 imm8 def SHLDmr32i8 : Ii8 <"shld", 0xA4, MRMDestMem>, TB; // [mem32] <<= [mem32],R32 imm8 def SHRDrrCL32 : I <"shrd", 0xAD, MRMDestReg>, TB, UsesCL; // R32 >>= R32,R32 cl def SHRDmrCL32 : I <"shrd", 0xAD, MRMDestMem>, TB, UsesCL; // [mem32] >>= [mem32],R32 cl def SHRDrr32i8 : Ii8 <"shrd", 0xAC, MRMDestReg>, TB; // R32 >>= R32,R32 imm8 def SHRDmr32i8 : Ii8 <"shrd", 0xAC, MRMDestMem>, TB; // [mem32] >>= [mem32],R32 imm8 // Arithmetic... def ADDrr8 : I <"add", 0x00, MRMDestReg>, Pattern<(set R8 , (plus R8 , R8 ))>; def ADDrr16 : I <"add", 0x01, MRMDestReg>, OpSize, Pattern<(set R16, (plus R16, R16))>; def ADDrr32 : I <"add", 0x01, MRMDestReg>, Pattern<(set R32, (plus R32, R32))>; def ADDmr8 : Im8 <"add", 0x00, MRMDestMem>; // [mem8] += R8 def ADDmr16 : Im16 <"add", 0x01, MRMDestMem>, OpSize; // [mem16] += R16 def ADDmr32 : Im32 <"add", 0x01, MRMDestMem>; // [mem32] += R32 def ADDrm8 : Im8 <"add", 0x02, MRMSrcMem >; // R8 += [mem8] def ADDrm16 : Im16 <"add", 0x03, MRMSrcMem >, OpSize; // R16 += [mem16] def ADDrm32 : Im32 <"add", 0x03, MRMSrcMem >; // R32 += [mem32] def ADDri8 : Ii8 <"add", 0x80, MRM0r >, Pattern<(set R8 , (plus R8 , imm))>; def ADDri16 : Ii16 <"add", 0x81, MRM0r >, OpSize, Pattern<(set R16, (plus R16, imm))>; def ADDri32 : Ii32 <"add", 0x81, MRM0r >, Pattern<(set R32, (plus R32, imm))>; def ADDmi8 : Im8i8 <"add", 0x80, MRM0m >; // [mem8] += I8 def ADDmi16 : Im16i16 <"add", 0x81, MRM0m >, OpSize; // [mem16] += I16 def ADDmi32 : Im32i32 <"add", 0x81, MRM0m >; // [mem32] += I32 def ADDri16b : Ii8 <"add", 0x83, MRM0r >, OpSize; // ADDri with sign extended 8 bit imm def ADDri32b : Ii8 <"add", 0x83, MRM0r >; def ADDmi16b : Im16i8<"add", 0x83, MRM0m >, OpSize; // [mem16] += I8 def ADDmi32b : Im32i8<"add", 0x83, MRM0m >; // [mem32] += I8 def ADCrr32 : I <"adc", 0x11, MRMDestReg>; // R32 += R32+Carry def ADCrm32 : Im32 <"adc", 0x11, MRMSrcMem >; // R32 += [mem32]+Carry def ADCmr32 : Im32 <"adc", 0x13, MRMDestMem>; // [mem32] += R32+Carry def SUBrr8 : I <"sub", 0x28, MRMDestReg>, Pattern<(set R8 , (minus R8 , R8 ))>; def SUBrr16 : I <"sub", 0x29, MRMDestReg>, OpSize, Pattern<(set R16, (minus R16, R16))>; def SUBrr32 : I <"sub", 0x29, MRMDestReg>, Pattern<(set R32, (minus R32, R32))>; def SUBmr8 : Im8 <"sub", 0x28, MRMDestMem>; // [mem8] -= R8 def SUBmr16 : Im16 <"sub", 0x29, MRMDestMem>, OpSize; // [mem16] -= R16 def SUBmr32 : Im32 <"sub", 0x29, MRMDestMem>; // [mem32] -= R32 def SUBrm8 : Im8 <"sub", 0x2A, MRMSrcMem >; // R8 -= [mem8] def SUBrm16 : Im16 <"sub", 0x2B, MRMSrcMem >, OpSize; // R16 -= [mem16] def SUBrm32 : Im32 <"sub", 0x2B, MRMSrcMem >; // R32 -= [mem32] def SUBri8 : Ii8 <"sub", 0x80, MRM5r >, Pattern<(set R8 , (minus R8 , imm))>; def SUBri16 : Ii16 <"sub", 0x81, MRM5r >, OpSize, Pattern<(set R16, (minus R16, imm))>; def SUBri32 : Ii32 <"sub", 0x81, MRM5r >, Pattern<(set R32, (minus R32, imm))>; def SUBmi8 : Im8i8 <"sub", 0x80, MRM5m >; // [mem8] -= I8 def SUBmi16 : Im16i16 <"sub", 0x81, MRM5m >, OpSize; // [mem16] -= I16 def SUBmi32 : Im32i32 <"sub", 0x81, MRM5m >; // [mem32] -= I32 def SUBri16b : Ii8 <"sub", 0x83, MRM5r >, OpSize; def SUBri32b : Ii8 <"sub", 0x83, MRM5r >; def SUBmi16b : Im16i8<"sub", 0x83, MRM5m >, OpSize; // [mem16] -= I8 def SUBmi32b : Im32i8<"sub", 0x83, MRM5m >; // [mem32] -= I8 def SBBrr32 : I <"sbb", 0x19, MRMDestReg>; // R32 -= R32+Borrow def SBBrm32 : Im32 <"sbb", 0x19, MRMSrcMem >; // R32 -= [mem32]+Borrow def SBBmr32 : Im32 <"sbb", 0x1B, MRMDestMem>; // [mem32] -= R32+Borrow def IMULrr16 : I <"imul", 0xAF, MRMSrcReg>, TB, OpSize, Pattern<(set R16, (times R16, R16))>; def IMULrr32 : I <"imul", 0xAF, MRMSrcReg>, TB , Pattern<(set R32, (times R32, R32))>; def IMULrm16 : Im16 <"imul", 0xAF, MRMSrcMem>, TB, OpSize; def IMULrm32 : Im32 <"imul", 0xAF, MRMSrcMem>, TB ; } // end Two Address instructions // These are suprisingly enough not two address instructions! def IMULrri16 : Ii16 <"imul", 0x69, MRMSrcReg>, OpSize; // R16 = R16*I16 def IMULrri32 : Ii32 <"imul", 0x69, MRMSrcReg>; // R32 = R32*I32 def IMULrri16b : Ii8 <"imul", 0x6B, MRMSrcReg>, OpSize; // R16 = R16*I8 def IMULrri32b : Ii8 <"imul", 0x6B, MRMSrcReg>; // R32 = R32*I8 def IMULrmi16 : Im16i16 <"imul", 0x69, MRMSrcMem>, OpSize; // R16 = [mem16]*I16 def IMULrmi32 : Im32i32 <"imul", 0x69, MRMSrcMem>; // R32 = [mem32]*I32 def IMULrmi16b : Im16i8<"imul", 0x6B, MRMSrcMem>, OpSize; // R16 = [mem16]*I8 def IMULrmi32b : Im32i8<"imul", 0x6B, MRMSrcMem>; // R32 = [mem32]*I8 //===----------------------------------------------------------------------===// // Test instructions are just like AND, except they don't generate a result. def TESTrr8 : I <"test", 0x84, MRMDestReg>; // flags = R8 & R8 def TESTrr16 : I <"test", 0x85, MRMDestReg>, OpSize; // flags = R16 & R16 def TESTrr32 : I <"test", 0x85, MRMDestReg>; // flags = R32 & R32 def TESTmr8 : Im8 <"test", 0x84, MRMDestMem>; // flags = [mem8] & R8 def TESTmr16 : Im16 <"test", 0x85, MRMDestMem>, OpSize; // flags = [mem16] & R16 def TESTmr32 : Im32 <"test", 0x85, MRMDestMem>; // flags = [mem32] & R32 def TESTrm8 : Im8 <"test", 0x84, MRMSrcMem >; // flags = R8 & [mem8] def TESTrm16 : Im16 <"test", 0x85, MRMSrcMem >, OpSize; // flags = R16 & [mem16] def TESTrm32 : Im32 <"test", 0x85, MRMSrcMem >; // flags = R32 & [mem32] def TESTri8 : Ii8 <"test", 0xF6, MRM0r >; // flags = R8 & imm8 def TESTri16 : Ii16 <"test", 0xF7, MRM0r >, OpSize; // flags = R16 & imm16 def TESTri32 : Ii32 <"test", 0xF7, MRM0r >; // flags = R32 & imm32 def TESTmi8 : Im8i8 <"test", 0xF6, MRM0m >; // flags = [mem8] & imm8 def TESTmi16 : Im16i16<"test", 0xF7, MRM0m >, OpSize; // flags = [mem16] & imm16 def TESTmi32 : Im32i32<"test", 0xF7, MRM0m >; // flags = [mem32] & imm32 // Condition code ops, incl. set if equal/not equal/... def SAHF : I <"sahf" , 0x9E, RawFrm>, Imp<[AH],[]>; // flags = AH def SETBr : I <"setb" , 0x92, MRM0r>, TB; // R8 = < unsign def SETBm : Im8<"setb" , 0x92, MRM0m>, TB; // [mem8] = < unsign def SETAEr : I <"setae", 0x93, MRM0r>, TB; // R8 = >= unsign def SETAEm : Im8<"setae", 0x93, MRM0m>, TB; // [mem8] = >= unsign def SETEr : I <"sete" , 0x94, MRM0r>, TB; // R8 = == def SETEm : Im8<"sete" , 0x94, MRM0m>, TB; // [mem8] = == def SETNEr : I <"setne", 0x95, MRM0r>, TB; // R8 = != def SETNEm : Im8<"setne", 0x95, MRM0m>, TB; // [mem8] = != def SETBEr : I <"setbe", 0x96, MRM0r>, TB; // R8 = <= unsign def SETBEm : Im8<"setbe", 0x96, MRM0m>, TB; // [mem8] = <= unsign def SETAr : I <"seta" , 0x97, MRM0r>, TB; // R8 = > signed def SETAm : Im8<"seta" , 0x97, MRM0m>, TB; // [mem8] = > signed def SETSr : I <"sets" , 0x98, MRM0r>, TB; // R8 = def SETSm : Im8<"sets" , 0x98, MRM0m>, TB; // [mem8] = def SETNSr : I <"setns", 0x99, MRM0r>, TB; // R8 = ! def SETNSm : Im8<"setns", 0x99, MRM0m>, TB; // [mem8] = ! def SETLr : I <"setl" , 0x9C, MRM0r>, TB; // R8 = < signed def SETLm : Im8<"setl" , 0x9C, MRM0m>, TB; // [mem8] = < signed def SETGEr : I <"setge", 0x9D, MRM0r>, TB; // R8 = >= signed def SETGEm : Im8<"setge", 0x9D, MRM0m>, TB; // [mem8] = >= signed def SETLEr : I <"setle", 0x9E, MRM0r>, TB; // R8 = <= signed def SETLEm : Im8<"setle", 0x9E, MRM0m>, TB; // [mem8] = <= signed def SETGr : I <"setg" , 0x9F, MRM0r>, TB; // R8 = < signed def SETGm : Im8<"setg" , 0x9F, MRM0m>, TB; // [mem8] = < signed // Integer comparisons def CMPrr8 : I <"cmp", 0x38, MRMDestReg>; // compare R8, R8 def CMPrr16 : I <"cmp", 0x39, MRMDestReg>, OpSize; // compare R16, R16 def CMPrr32 : I <"cmp", 0x39, MRMDestReg>, // compare R32, R32 Pattern<(isVoid (unspec2 R32, R32))>; def CMPmr8 : Im8 <"cmp", 0x38, MRMDestMem>; // compare [mem8], R8 def CMPmr16 : Im16 <"cmp", 0x39, MRMDestMem>, OpSize; // compare [mem16], R16 def CMPmr32 : Im32 <"cmp", 0x39, MRMDestMem>; // compare [mem32], R32 def CMPrm8 : Im8 <"cmp", 0x3A, MRMSrcMem >; // compare R8, [mem8] def CMPrm16 : Im16 <"cmp", 0x3B, MRMSrcMem >, OpSize; // compare R16, [mem16] def CMPrm32 : Im32 <"cmp", 0x3B, MRMSrcMem >; // compare R32, [mem32] def CMPri8 : Ii8 <"cmp", 0x80, MRM7r >; // compare R8, imm8 def CMPri16 : Ii16 <"cmp", 0x81, MRM7r >, OpSize; // compare R16, imm16 def CMPri32 : Ii32 <"cmp", 0x81, MRM7r >; // compare R32, imm32 def CMPmi8 : Im8i8 <"cmp", 0x80, MRM7m >; // compare [mem8], imm8 def CMPmi16 : Im16i16<"cmp", 0x81, MRM7m >, OpSize; // compare [mem16], imm16 def CMPmi32 : Im32i32<"cmp", 0x81, MRM7m >; // compare [mem32], imm32 // Sign/Zero extenders def MOVSXr16r8 : I <"movsx", 0xBE, MRMSrcReg>, TB, OpSize; // R16 = signext(R8) def MOVSXr32r8 : I <"movsx", 0xBE, MRMSrcReg>, TB; // R32 = signext(R8) def MOVSXr32r16: I <"movsx", 0xBF, MRMSrcReg>, TB; // R32 = signext(R16) def MOVSXr16m8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB, OpSize; // R16 = signext([mem8]) def MOVSXr32m8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB; // R32 = signext([mem8]) def MOVSXr32m16: Im16<"movsx", 0xBF, MRMSrcMem>, TB; // R32 = signext([mem16]) def MOVZXr16r8 : I <"movzx", 0xB6, MRMSrcReg>, TB, OpSize; // R16 = zeroext(R8) def MOVZXr32r8 : I <"movzx", 0xB6, MRMSrcReg>, TB; // R32 = zeroext(R8) def MOVZXr32r16: I <"movzx", 0xB7, MRMSrcReg>, TB; // R32 = zeroext(R16) def MOVZXr16m8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB, OpSize; // R16 = zeroext([mem8]) def MOVZXr32m8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB; // R32 = zeroext([mem8]) def MOVZXr32m16: Im16<"movzx", 0xB7, MRMSrcMem>, TB; // R32 = zeroext([mem16]) //===----------------------------------------------------------------------===// // Floating point support //===----------------------------------------------------------------------===// // FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP' // Floating point instruction templates class FPInst o, Format F, FPFormat fp, MemType m, ImmType i> : X86Inst { let FPForm = fp; let FPFormBits = FPForm.Value; } class FPI o, Format F, FPFormat fp> : FPInst; class FPIM o, Format F, FPFormat fp, MemType m> : FPInst; class FPIm16 o, Format F, FPFormat fp> : FPIM; class FPIm32 o, Format F, FPFormat fp> : FPIM; class FPIm64 o, Format F, FPFormat fp> : FPIM; class FPIm80 o, Format F, FPFormat fp> : FPIM; // Pseudo instructions for floating point. We use these pseudo instructions // because they can be expanded by the fp spackifier into one of many different // forms of instructions for doing these operations. Until the stackifier runs, // we prefer to be abstract. def FpMOV : FPI<"FMOV", 0, Pseudo, SpecialFP>; // f1 = fmov f2 def FpADD : FPI<"FADD", 0, Pseudo, TwoArgFP>; // f1 = fadd f2, f3 def FpSUB : FPI<"FSUB", 0, Pseudo, TwoArgFP>; // f1 = fsub f2, f3 def FpMUL : FPI<"FMUL", 0, Pseudo, TwoArgFP>; // f1 = fmul f2, f3 def FpDIV : FPI<"FDIV", 0, Pseudo, TwoArgFP>; // f1 = fdiv f2, f3 def FpUCOM : FPI<"FUCOM", 0, Pseudo, TwoArgFP>; // FPSW = fucom f1, f2 def FpGETRESULT : FPI<"FGETRESULT",0, Pseudo, SpecialFP>; // FPR = ST(0) def FpSETRESULT : FPI<"FSETRESULT",0, Pseudo, SpecialFP>; // ST(0) = FPR // Floating point loads & stores... def FLDrr : FPI <"fld" , 0xC0, AddRegFrm, NotFP>, D9; // push(ST(i)) def FLDm32 : FPIm32 <"fld" , 0xD9, MRM0m , ZeroArgFP>; // load float def FLDm64 : FPIm64 <"fld" , 0xDD, MRM0m , ZeroArgFP>; // load double def FLDm80 : FPIm80 <"fld" , 0xDB, MRM5m , ZeroArgFP>; // load extended def FILDm16 : FPIm16 <"fild" , 0xDF, MRM0m , ZeroArgFP>; // load signed short def FILDm32 : FPIm32 <"fild" , 0xDB, MRM0m , ZeroArgFP>; // load signed int def FILDm64 : FPIm64 <"fild" , 0xDF, MRM5m , ZeroArgFP>; // load signed long def FSTrr : FPI <"fst" , 0xD0, AddRegFrm, NotFP >, DD; // ST(i) = ST(0) def FSTPrr : FPI <"fstp", 0xD8, AddRegFrm, NotFP >, DD; // ST(i) = ST(0), pop def FSTm32 : FPIm32 <"fst" , 0xD9, MRM2m , OneArgFP>; // store float def FSTm64 : FPIm64 <"fst" , 0xDD, MRM2m , OneArgFP>; // store double def FSTPm32 : FPIm32 <"fstp", 0xD9, MRM3m , OneArgFP>; // store float, pop def FSTPm64 : FPIm64 <"fstp", 0xDD, MRM3m , OneArgFP>; // store double, pop def FSTPm80 : FPIm80 <"fstp", 0xDB, MRM7m , OneArgFP>; // store extended, pop def FISTm16 : FPIm16 <"fist", 0xDF, MRM2m , OneArgFP>; // store signed short def FISTm32 : FPIm32 <"fist", 0xDB, MRM2m , OneArgFP>; // store signed int def FISTPm16 : FPIm16 <"fistp", 0xDF, MRM3m , NotFP >; // store signed short, pop def FISTPm32 : FPIm32 <"fistp", 0xDB, MRM3m , NotFP >; // store signed int, pop def FISTPm64 : FPIm64 <"fistpll", 0xDF, MRM7m , OneArgFP>; // store signed long, pop def FXCH : FPI <"fxch", 0xC8, AddRegFrm, NotFP>, D9; // fxch ST(i), ST(0) // Floating point constant loads... def FLD0 : FPI<"fldz", 0xEE, RawFrm, ZeroArgFP>, D9; def FLD1 : FPI<"fld1", 0xE8, RawFrm, ZeroArgFP>, D9; // Unary operations... def FCHS : FPI<"fchs", 0xE0, RawFrm, OneArgFPRW>, D9; // f1 = fchs f2 def FTST : FPI<"ftst", 0xE4, RawFrm, OneArgFP>, D9; // ftst ST(0) // Binary arithmetic operations... class FPST0rInst o> : I, D8 { list Uses = [ST0]; list Defs = [ST0]; } class FPrST0Inst o> : I, DC { bit printImplicitUses = 1; list Uses = [ST0]; } class FPrST0PInst o> : I, DE { list Uses = [ST0]; } def FADDST0r : FPST0rInst <"fadd", 0xC0>; def FADDrST0 : FPrST0Inst <"fadd", 0xC0>; def FADDPrST0 : FPrST0PInst<"faddp", 0xC0>; def FSUBRST0r : FPST0rInst <"fsubr", 0xE8>; def FSUBrST0 : FPrST0Inst <"fsub", 0xE8>; def FSUBPrST0 : FPrST0PInst<"fsubp", 0xE8>; def FSUBST0r : FPST0rInst <"fsub", 0xE0>; def FSUBRrST0 : FPrST0Inst <"fsubr", 0xE0>; def FSUBRPrST0 : FPrST0PInst<"fsubrp", 0xE0>; def FMULST0r : FPST0rInst <"fmul", 0xC8>; def FMULrST0 : FPrST0Inst <"fmul", 0xC8>; def FMULPrST0 : FPrST0PInst<"fmulp", 0xC8>; def FDIVRST0r : FPST0rInst <"fdivr", 0xF8>; def FDIVrST0 : FPrST0Inst <"fdiv", 0xF8>; def FDIVPrST0 : FPrST0PInst<"fdivp", 0xF8>; def FDIVST0r : FPST0rInst <"fdiv", 0xF0>; // ST(0) = ST(0) / ST(i) def FDIVRrST0 : FPrST0Inst <"fdivr", 0xF0>; // ST(i) = ST(0) / ST(i) def FDIVRPrST0 : FPrST0PInst<"fdivrp", 0xF0>; // ST(i) = ST(0) / ST(i), pop // Floating point compares def FUCOMr : I<"fucom" , 0xE0, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i) def FUCOMPr : I<"fucomp" , 0xE8, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop def FUCOMPPr : I<"fucompp", 0xE9, RawFrm >, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop // Floating point flag ops def FNSTSWr8 : I <"fnstsw" , 0xE0, RawFrm>, DF, Imp<[],[AX]>; // AX = fp flags def FNSTCWm16 : Im16<"fnstcw" , 0xD9, MRM7m >; // [mem16] = X87 control world def FLDCWm16 : Im16<"fldcw" , 0xD9, MRM5m >; // X87 control world = [mem16] //===----------------------------------------------------------------------===// // Instruction Expanders // def RET_R32 : Expander<(ret R32:$reg), [(MOVrr32 EAX, R32:$reg), (RET)]>; // FIXME: This should eventually just be implemented by defining a frameidx as a // value address for a load. def LOAD_FI16 : Expander<(set R16:$dest, (load frameidx:$fi)), [(MOVrm16 R16:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>; def LOAD_FI32 : Expander<(set R32:$dest, (load frameidx:$fi)), [(MOVrm32 R32:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>; def LOAD_R16 : Expander<(set R16:$dest, (load R32:$src)), [(MOVrm16 R16:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>; def LOAD_R32 : Expander<(set R32:$dest, (load R32:$src)), [(MOVrm32 R32:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>; def BR_EQ : Expander<(brcond (seteq R32:$a1, R32:$a2), basicblock:$d1, basicblock:$d2), [(CMPrr32 R32:$a1, R32:$a2), (JE basicblock:$d1), (JMP basicblock:$d2)]>;