//===- PPCRegisterInfo.cpp - PowerPC Register Information -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetRegisterInfo // class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "reginfo" #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCRegisterInfo.h" #include "PPCFrameInfo.h" #include "PPCSubtarget.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; // FIXME This disables some code that aligns the stack to a boundary // bigger than the default (16 bytes on Darwin) when there is a stack local // of greater alignment. This does not currently work, because the delta // between old and new stack pointers is added to offsets that reference // incoming parameters after the prolog is generated, and the code that // does that doesn't handle a variable delta. You don't want to do that // anyway; a better approach is to reserve another register that retains // to the incoming stack pointer, and reference parameters relative to that. #define ALIGN_STACK 0 // FIXME (64-bit): Eventually enable by default. cl::opt EnablePPC32RS("enable-ppc32-regscavenger", cl::init(false), cl::desc("Enable PPC32 register scavenger"), cl::Hidden); cl::opt EnablePPC64RS("enable-ppc64-regscavenger", cl::init(false), cl::desc("Enable PPC64 register scavenger"), cl::Hidden); #define EnableRegisterScavenging \ ((EnablePPC32RS && !Subtarget.isPPC64()) || \ (EnablePPC64RS && Subtarget.isPPC64())) // FIXME (64-bit): Should be inlined. bool PPCRegisterInfo::requiresRegisterScavenging(const MachineFunction &) const { return EnableRegisterScavenging; } /// getRegisterNumbering - Given the enum value for some register, e.g. /// PPC::F14, return the number that it corresponds to (e.g. 14). unsigned PPCRegisterInfo::getRegisterNumbering(unsigned RegEnum) { using namespace PPC; switch (RegEnum) { case 0: return 0; case R0 : case X0 : case F0 : case V0 : case CR0: case CR0LT: return 0; case R1 : case X1 : case F1 : case V1 : case CR1: case CR0GT: return 1; case R2 : case X2 : case F2 : case V2 : case CR2: case CR0EQ: return 2; case R3 : case X3 : case F3 : case V3 : case CR3: case CR0UN: return 3; case R4 : case X4 : case F4 : case V4 : case CR4: case CR1LT: return 4; case R5 : case X5 : case F5 : case V5 : case CR5: case CR1GT: return 5; case R6 : case X6 : case F6 : case V6 : case CR6: case CR1EQ: return 6; case R7 : case X7 : case F7 : case V7 : case CR7: case CR1UN: return 7; case R8 : case X8 : case F8 : case V8 : case CR2LT: return 8; case R9 : case X9 : case F9 : case V9 : case CR2GT: return 9; case R10: case X10: case F10: case V10: case CR2EQ: return 10; case R11: case X11: case F11: case V11: case CR2UN: return 11; case R12: case X12: case F12: case V12: case CR3LT: return 12; case R13: case X13: case F13: case V13: case CR3GT: return 13; case R14: case X14: case F14: case V14: case CR3EQ: return 14; case R15: case X15: case F15: case V15: case CR3UN: return 15; case R16: case X16: case F16: case V16: case CR4LT: return 16; case R17: case X17: case F17: case V17: case CR4GT: return 17; case R18: case X18: case F18: case V18: case CR4EQ: return 18; case R19: case X19: case F19: case V19: case CR4UN: return 19; case R20: case X20: case F20: case V20: case CR5LT: return 20; case R21: case X21: case F21: case V21: case CR5GT: return 21; case R22: case X22: case F22: case V22: case CR5EQ: return 22; case R23: case X23: case F23: case V23: case CR5UN: return 23; case R24: case X24: case F24: case V24: case CR6LT: return 24; case R25: case X25: case F25: case V25: case CR6GT: return 25; case R26: case X26: case F26: case V26: case CR6EQ: return 26; case R27: case X27: case F27: case V27: case CR6UN: return 27; case R28: case X28: case F28: case V28: case CR7LT: return 28; case R29: case X29: case F29: case V29: case CR7GT: return 29; case R30: case X30: case F30: case V30: case CR7EQ: return 30; case R31: case X31: case F31: case V31: case CR7UN: return 31; default: cerr << "Unhandled reg in PPCRegisterInfo::getRegisterNumbering!\n"; abort(); } } PPCRegisterInfo::PPCRegisterInfo(const PPCSubtarget &ST, const TargetInstrInfo &tii) : PPCGenRegisterInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), Subtarget(ST), TII(tii) { ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX; ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX; ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX; ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX; ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX; ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX; ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX; ImmToIdxMap[PPC::ADDI] = PPC::ADD4; // 64-bit ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8; ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8; ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8; ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX; ImmToIdxMap[PPC::ADDI8] = PPC::ADD8; ImmToIdxMap[PPC::STD_32] = PPC::STDX_32; } const unsigned* PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { // 32-bit Darwin calling convention. static const unsigned Macho32_CalleeSavedRegs[] = { PPC::R13, PPC::R14, PPC::R15, PPC::R16, PPC::R17, PPC::R18, PPC::R19, PPC::R20, PPC::R21, PPC::R22, PPC::R23, PPC::R24, PPC::R25, PPC::R26, PPC::R27, PPC::R28, PPC::R29, PPC::R30, PPC::R31, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, PPC::LR, 0 }; static const unsigned ELF32_CalleeSavedRegs[] = { PPC::R13, PPC::R14, PPC::R15, PPC::R16, PPC::R17, PPC::R18, PPC::R19, PPC::R20, PPC::R21, PPC::R22, PPC::R23, PPC::R24, PPC::R25, PPC::R26, PPC::R27, PPC::R28, PPC::R29, PPC::R30, PPC::R31, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, PPC::LR, 0 }; // 64-bit Darwin calling convention. static const unsigned Macho64_CalleeSavedRegs[] = { PPC::X14, PPC::X15, PPC::X16, PPC::X17, PPC::X18, PPC::X19, PPC::X20, PPC::X21, PPC::X22, PPC::X23, PPC::X24, PPC::X25, PPC::X26, PPC::X27, PPC::X28, PPC::X29, PPC::X30, PPC::X31, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31, PPC::CR2, PPC::CR3, PPC::CR4, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, PPC::LR8, 0 }; if (Subtarget.isMachoABI()) return Subtarget.isPPC64() ? Macho64_CalleeSavedRegs : Macho32_CalleeSavedRegs; // ELF 32. return ELF32_CalleeSavedRegs; } const TargetRegisterClass* const* PPCRegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { // 32-bit Macho calling convention. static const TargetRegisterClass * const Macho32_CalleeSavedRegClasses[] = { &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::CRRCRegClass,&PPC::CRRCRegClass,&PPC::CRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::GPRCRegClass, 0 }; static const TargetRegisterClass * const ELF32_CalleeSavedRegClasses[] = { &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass,&PPC::GPRCRegClass, &PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::CRRCRegClass,&PPC::CRRCRegClass,&PPC::CRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::GPRCRegClass, 0 }; // 64-bit Macho calling convention. static const TargetRegisterClass * const Macho64_CalleeSavedRegClasses[] = { &PPC::G8RCRegClass,&PPC::G8RCRegClass, &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass, &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass, &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass, &PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass,&PPC::G8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::F8RCRegClass,&PPC::F8RCRegClass, &PPC::CRRCRegClass,&PPC::CRRCRegClass,&PPC::CRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass,&PPC::VRRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass,&PPC::CRBITRCRegClass, &PPC::CRBITRCRegClass, &PPC::G8RCRegClass, 0 }; if (Subtarget.isMachoABI()) return Subtarget.isPPC64() ? Macho64_CalleeSavedRegClasses : Macho32_CalleeSavedRegClasses; // ELF 32. return ELF32_CalleeSavedRegClasses; } // needsFP - Return true if the specified function should have a dedicated frame // pointer register. This is true if the function has variable sized allocas or // if frame pointer elimination is disabled. // static bool needsFP(const MachineFunction &MF) { const MachineFrameInfo *MFI = MF.getFrameInfo(); return NoFramePointerElim || MFI->hasVarSizedObjects() || (PerformTailCallOpt && MF.getInfo()->hasFastCall()); } static bool spillsCR(const MachineFunction &MF) { const PPCFunctionInfo *FuncInfo = MF.getInfo(); return FuncInfo->isCRSpilled(); } BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const { BitVector Reserved(getNumRegs()); Reserved.set(PPC::R0); Reserved.set(PPC::R1); Reserved.set(PPC::LR); Reserved.set(PPC::LR8); // In Linux, r2 is reserved for the OS. if (!Subtarget.isDarwin()) Reserved.set(PPC::R2); // On PPC64, r13 is the thread pointer. Never allocate this register. Note // that this is over conservative, as it also prevents allocation of R31 when // the FP is not needed. if (Subtarget.isPPC64()) { Reserved.set(PPC::R13); Reserved.set(PPC::R31); if (!EnableRegisterScavenging) Reserved.set(PPC::R0); // FIXME (64-bit): Remove Reserved.set(PPC::X0); Reserved.set(PPC::X1); Reserved.set(PPC::X13); Reserved.set(PPC::X31); } if (needsFP(MF)) Reserved.set(PPC::R31); return Reserved; } //===----------------------------------------------------------------------===// // Stack Frame Processing methods //===----------------------------------------------------------------------===// // hasFP - Return true if the specified function actually has a dedicated frame // pointer register. This is true if the function needs a frame pointer and has // a non-zero stack size. bool PPCRegisterInfo::hasFP(const MachineFunction &MF) const { const MachineFrameInfo *MFI = MF.getFrameInfo(); return MFI->getStackSize() && needsFP(MF); } /// MustSaveLR - Return true if this function requires that we save the LR /// register onto the stack in the prolog and restore it in the epilog of the /// function. static bool MustSaveLR(const MachineFunction &MF) { const PPCFunctionInfo *MFI = MF.getInfo(); // We need an save/restore of LR if there is any use/def of LR explicitly, or // if there is some use of the LR stack slot (e.g. for builtin_return_address. return MFI->usesLR() || MFI->isLRStoreRequired() || // FIXME: Anything that has a call should clobber the LR register, // isn't this redundant?? MF.getFrameInfo()->hasCalls(); } void PPCRegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (PerformTailCallOpt && I->getOpcode() == PPC::ADJCALLSTACKUP) { // Add (actually substract) back the amount the callee popped on return. if (int CalleeAmt = I->getOperand(1).getImm()) { MachineInstr * New = NULL; bool is64Bit = Subtarget.isPPC64(); CalleeAmt *= -1; unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1; unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0; unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI; unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4; unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS; unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI; if (isInt16(CalleeAmt)) { New = BuildMI(TII.get(ADDIInstr), StackReg).addReg(StackReg). addImm(CalleeAmt); MBB.insert(I, New); } else { MachineBasicBlock::iterator MBBI = I; BuildMI(MBB, MBBI, TII.get(LISInstr), TmpReg) .addImm(CalleeAmt >> 16); BuildMI(MBB, MBBI, TII.get(ORIInstr), TmpReg) .addReg(TmpReg, false, false, true) .addImm(CalleeAmt & 0xFFFF); BuildMI(MBB, MBBI, TII.get(ADDInstr)) .addReg(StackReg) .addReg(StackReg) .addReg(TmpReg); } } } // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions. MBB.erase(I); } /// findScratchRegister - Find a 'free' PPC register. Try for a call-clobbered /// register first and then a spilled callee-saved register if that fails. static unsigned findScratchRegister(MachineBasicBlock::iterator II, RegScavenger *RS, const TargetRegisterClass *RC, int SPAdj) { assert(RS && "Register scavenging must be on"); unsigned Reg = RS->FindUnusedReg(RC, true); // FIXME: move ARM callee-saved reg scan to target independent code, then // search for already spilled CS register here. if (Reg == 0) Reg = RS->scavengeRegister(RC, II, SPAdj); return Reg; } /// lowerDynamicAlloc - Generate the code for allocating an object in the /// current frame. The sequence of code with be in the general form /// /// addi R0, SP, #frameSize ; get the address of the previous frame /// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size /// addi Rnew, SP, #maxCalFrameSize ; get the top of the allocation /// void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II, int SPAdj, RegScavenger *RS) const { // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo *MFI = MF.getFrameInfo(); // Determine whether 64-bit pointers are used. bool LP64 = Subtarget.isPPC64(); // Get the maximum call stack size. unsigned maxCallFrameSize = MFI->getMaxCallFrameSize(); // Get the total frame size. unsigned FrameSize = MFI->getStackSize(); // Get stack alignments. unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned MaxAlign = MFI->getMaxAlignment(); assert(MaxAlign <= TargetAlign && "Dynamic alloca with large aligns not supported"); // Determine the previous frame's address. If FrameSize can't be // represented as 16 bits or we need special alignment, then we load the // previous frame's address from 0(SP). Why not do an addis of the hi? // Because R0 is our only safe tmp register and addi/addis treat R0 as zero. // Constructing the constant and adding would take 3 instructions. // Fortunately, a frame greater than 32K is rare. const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *RC = LP64 ? G8RC : GPRC; // FIXME (64-bit): Use "findScratchRegister" unsigned Reg; if (EnableRegisterScavenging) Reg = findScratchRegister(II, RS, RC, SPAdj); else Reg = PPC::R0; if (MaxAlign < TargetAlign && isInt16(FrameSize)) { BuildMI(MBB, II, TII.get(PPC::ADDI), Reg) .addReg(PPC::R31) .addImm(FrameSize); } else if (LP64) { if (EnableRegisterScavenging) // FIXME (64-bit): Use "true" part. BuildMI(MBB, II, TII.get(PPC::LD), Reg) .addImm(0) .addReg(PPC::X1); else BuildMI(MBB, II, TII.get(PPC::LD), PPC::X0) .addImm(0) .addReg(PPC::X1); } else { BuildMI(MBB, II, TII.get(PPC::LWZ), Reg) .addImm(0) .addReg(PPC::R1); } // Grow the stack and update the stack pointer link, then determine the // address of new allocated space. if (LP64) { if (EnableRegisterScavenging) // FIXME (64-bit): Use "true" part. BuildMI(MBB, II, TII.get(PPC::STDUX)) .addReg(Reg, false, false, true) .addReg(PPC::X1) .addReg(MI.getOperand(1).getReg()); else BuildMI(MBB, II, TII.get(PPC::STDUX)) .addReg(PPC::X0, false, false, true) .addReg(PPC::X1) .addReg(MI.getOperand(1).getReg()); if (!MI.getOperand(1).isKill()) BuildMI(MBB, II, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) .addReg(PPC::X1) .addImm(maxCallFrameSize); else // Implicitly kill the register. BuildMI(MBB, II, TII.get(PPC::ADDI8), MI.getOperand(0).getReg()) .addReg(PPC::X1) .addImm(maxCallFrameSize) .addReg(MI.getOperand(1).getReg(), false, true, true); } else { BuildMI(MBB, II, TII.get(PPC::STWUX)) .addReg(Reg, false, false, true) .addReg(PPC::R1) .addReg(MI.getOperand(1).getReg()); if (!MI.getOperand(1).isKill()) BuildMI(MBB, II, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) .addReg(PPC::R1) .addImm(maxCallFrameSize); else // Implicitly kill the register. BuildMI(MBB, II, TII.get(PPC::ADDI), MI.getOperand(0).getReg()) .addReg(PPC::R1) .addImm(maxCallFrameSize) .addReg(MI.getOperand(1).getReg(), false, true, true); } // Discard the DYNALLOC instruction. MBB.erase(II); } /// lowerCRSpilling - Generate the code for spilling a CR register. Instead of /// reserving a whole register (R0), we scrounge for one here. This generates /// code like this: /// /// mfcr rA ; Move the conditional register into GPR rA. /// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot. /// stw rA, FI ; Store rA to the frame. /// void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II, unsigned FrameIndex, int SPAdj, RegScavenger *RS) const { // Get the instruction. MachineInstr &MI = *II; // ; SPILL_CR , , // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *RC = Subtarget.isPPC64() ? G8RC : GPRC; unsigned Reg = findScratchRegister(II, RS, RC, SPAdj); // We need to store the CR in the low 4-bits of the saved value. First, issue // an MFCR to save all of the CRBits. Add an implicit kill of the CR. if (!MI.getOperand(0).isKill()) BuildMI(MBB, II, TII.get(PPC::MFCR), Reg); else // Implicitly kill the CR register. BuildMI(MBB, II, TII.get(PPC::MFCR), Reg) .addReg(MI.getOperand(0).getReg(), false, true, true); // If the saved register wasn't CR0, shift the bits left so that they are in // CR0's slot. unsigned SrcReg = MI.getOperand(0).getReg(); if (SrcReg != PPC::CR0) // rlwinm rA, rA, ShiftBits, 0, 31. BuildMI(MBB, II, TII.get(PPC::RLWINM), Reg) .addReg(Reg, false, false, true) .addImm(PPCRegisterInfo::getRegisterNumbering(SrcReg) * 4) .addImm(0) .addImm(31); addFrameReference(BuildMI(MBB, II, TII.get(PPC::STW)) .addReg(Reg, false, false, MI.getOperand(1).getImm()), FrameIndex); // Discard the pseudo instruction. MBB.erase(II); } void PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, int SPAdj, RegScavenger *RS) const { assert(SPAdj == 0 && "Unexpected"); // Get the instruction. MachineInstr &MI = *II; // Get the instruction's basic block. MachineBasicBlock &MBB = *MI.getParent(); // Get the basic block's function. MachineFunction &MF = *MBB.getParent(); // Get the frame info. MachineFrameInfo *MFI = MF.getFrameInfo(); // Find out which operand is the frame index. unsigned FIOperandNo = 0; while (!MI.getOperand(FIOperandNo).isFrameIndex()) { ++FIOperandNo; assert(FIOperandNo != MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } // Take into account whether it's an add or mem instruction unsigned OffsetOperandNo = (FIOperandNo == 2) ? 1 : 2; if (MI.getOpcode() == TargetInstrInfo::INLINEASM) OffsetOperandNo = FIOperandNo-1; // Get the frame index. int FrameIndex = MI.getOperand(FIOperandNo).getIndex(); // Get the frame pointer save index. Users of this index are primarily // DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int FPSI = FI->getFramePointerSaveIndex(); // Get the instruction opcode. unsigned OpC = MI.getOpcode(); // Special case for dynamic alloca. if (FPSI && FrameIndex == FPSI && (OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) { lowerDynamicAlloc(II, SPAdj, RS); return; } // Special case for pseudo-op SPILL_CR. if (EnableRegisterScavenging) // FIXME (64-bit): Enable by default. if (OpC == PPC::SPILL_CR) { lowerCRSpilling(II, FrameIndex, SPAdj, RS); return; } // Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP). MI.getOperand(FIOperandNo).ChangeToRegister(hasFP(MF) ? PPC::R31 : PPC::R1, false); // Figure out if the offset in the instruction is shifted right two bits. This // is true for instructions like "STD", which the machine implicitly adds two // low zeros to. bool isIXAddr = false; switch (OpC) { case PPC::LWA: case PPC::LD: case PPC::STD: case PPC::STD_32: isIXAddr = true; break; } // Now add the frame object offset to the offset from r1. int Offset = MFI->getObjectOffset(FrameIndex); if (!isIXAddr) Offset += MI.getOperand(OffsetOperandNo).getImm(); else Offset += MI.getOperand(OffsetOperandNo).getImm() << 2; // If we're not using a Frame Pointer that has been set to the value of the // SP before having the stack size subtracted from it, then add the stack size // to Offset to get the correct offset. Offset += MFI->getStackSize(); // If we can, encode the offset directly into the instruction. If this is a // normal PPC "ri" instruction, any 16-bit value can be safely encoded. If // this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits // clear can be encoded. This is extremely uncommon, because normally you // only "std" to a stack slot that is at least 4-byte aligned, but it can // happen in invalid code. if (isInt16(Offset) && (!isIXAddr || (Offset & 3) == 0)) { if (isIXAddr) Offset >>= 2; // The actual encoded value has the low two bits zero. MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset); return; } // The offset doesn't fit into a single register, scavenge one to build the // offset in. // FIXME: figure out what SPAdj is doing here. // FIXME (64-bit): Use "findScratchRegister". unsigned SReg; if (EnableRegisterScavenging) SReg = findScratchRegister(II, RS, &PPC::GPRCRegClass, SPAdj); else SReg = PPC::R0; // Insert a set of rA with the full offset value before the ld, st, or add BuildMI(MBB, II, TII.get(PPC::LIS), SReg) .addImm(Offset >> 16); BuildMI(MBB, II, TII.get(PPC::ORI), SReg) .addReg(SReg, false, false, true) .addImm(Offset); // Convert into indexed form of the instruction: // // sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0 // addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0 unsigned OperandBase; if (OpC != TargetInstrInfo::INLINEASM) { assert(ImmToIdxMap.count(OpC) && "No indexed form of load or store available!"); unsigned NewOpcode = ImmToIdxMap.find(OpC)->second; MI.setDesc(TII.get(NewOpcode)); OperandBase = 1; } else { OperandBase = OffsetOperandNo; } unsigned StackReg = MI.getOperand(FIOperandNo).getReg(); MI.getOperand(OperandBase).ChangeToRegister(StackReg, false); MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false); } /// VRRegNo - Map from a numbered VR register to its enum value. /// static const unsigned short VRRegNo[] = { PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 , PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 , PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15, PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31 }; /// RemoveVRSaveCode - We have found that this function does not need any code /// to manipulate the VRSAVE register, even though it uses vector registers. /// This can happen when the only registers used are known to be live in or out /// of the function. Remove all of the VRSAVE related code from the function. static void RemoveVRSaveCode(MachineInstr *MI) { MachineBasicBlock *Entry = MI->getParent(); MachineFunction *MF = Entry->getParent(); // We know that the MTVRSAVE instruction immediately follows MI. Remove it. MachineBasicBlock::iterator MBBI = MI; ++MBBI; assert(MBBI != Entry->end() && MBBI->getOpcode() == PPC::MTVRSAVE); MBBI->eraseFromParent(); bool RemovedAllMTVRSAVEs = true; // See if we can find and remove the MTVRSAVE instruction from all of the // epilog blocks. for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) { // If last instruction is a return instruction, add an epilogue if (!I->empty() && I->back().getDesc().isReturn()) { bool FoundIt = false; for (MBBI = I->end(); MBBI != I->begin(); ) { --MBBI; if (MBBI->getOpcode() == PPC::MTVRSAVE) { MBBI->eraseFromParent(); // remove it. FoundIt = true; break; } } RemovedAllMTVRSAVEs &= FoundIt; } } // If we found and removed all MTVRSAVE instructions, remove the read of // VRSAVE as well. if (RemovedAllMTVRSAVEs) { MBBI = MI; assert(MBBI != Entry->begin() && "UPDATE_VRSAVE is first instr in block?"); --MBBI; assert(MBBI->getOpcode() == PPC::MFVRSAVE && "VRSAVE instrs wandered?"); MBBI->eraseFromParent(); } // Finally, nuke the UPDATE_VRSAVE. MI->eraseFromParent(); } // HandleVRSaveUpdate - MI is the UPDATE_VRSAVE instruction introduced by the // instruction selector. Based on the vector registers that have been used, // transform this into the appropriate ORI instruction. static void HandleVRSaveUpdate(MachineInstr *MI, const TargetInstrInfo &TII) { MachineFunction *MF = MI->getParent()->getParent(); unsigned UsedRegMask = 0; for (unsigned i = 0; i != 32; ++i) if (MF->getRegInfo().isPhysRegUsed(VRRegNo[i])) UsedRegMask |= 1 << (31-i); // Live in and live out values already must be in the mask, so don't bother // marking them. for (MachineRegisterInfo::livein_iterator I = MF->getRegInfo().livein_begin(), E = MF->getRegInfo().livein_end(); I != E; ++I) { unsigned RegNo = PPCRegisterInfo::getRegisterNumbering(I->first); if (VRRegNo[RegNo] == I->first) // If this really is a vector reg. UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked. } for (MachineRegisterInfo::liveout_iterator I = MF->getRegInfo().liveout_begin(), E = MF->getRegInfo().liveout_end(); I != E; ++I) { unsigned RegNo = PPCRegisterInfo::getRegisterNumbering(*I); if (VRRegNo[RegNo] == *I) // If this really is a vector reg. UsedRegMask &= ~(1 << (31-RegNo)); // Doesn't need to be marked. } // If no registers are used, turn this into a copy. if (UsedRegMask == 0) { // Remove all VRSAVE code. RemoveVRSaveCode(MI); return; } unsigned SrcReg = MI->getOperand(1).getReg(); unsigned DstReg = MI->getOperand(0).getReg(); if ((UsedRegMask & 0xFFFF) == UsedRegMask) { if (DstReg != SrcReg) BuildMI(*MI->getParent(), MI, TII.get(PPC::ORI), DstReg) .addReg(SrcReg) .addImm(UsedRegMask); else BuildMI(*MI->getParent(), MI, TII.get(PPC::ORI), DstReg) .addReg(SrcReg, false, false, true) .addImm(UsedRegMask); } else if ((UsedRegMask & 0xFFFF0000) == UsedRegMask) { if (DstReg != SrcReg) BuildMI(*MI->getParent(), MI, TII.get(PPC::ORIS), DstReg) .addReg(SrcReg) .addImm(UsedRegMask >> 16); else BuildMI(*MI->getParent(), MI, TII.get(PPC::ORIS), DstReg) .addReg(SrcReg, false, false, true) .addImm(UsedRegMask >> 16); } else { if (DstReg != SrcReg) BuildMI(*MI->getParent(), MI, TII.get(PPC::ORIS), DstReg) .addReg(SrcReg) .addImm(UsedRegMask >> 16); else BuildMI(*MI->getParent(), MI, TII.get(PPC::ORIS), DstReg) .addReg(SrcReg, false, false, true) .addImm(UsedRegMask >> 16); BuildMI(*MI->getParent(), MI, TII.get(PPC::ORI), DstReg) .addReg(DstReg, false, false, true) .addImm(UsedRegMask & 0xFFFF); } // Remove the old UPDATE_VRSAVE instruction. MI->eraseFromParent(); } /// determineFrameLayout - Determine the size of the frame and maximum call /// frame size. void PPCRegisterInfo::determineFrameLayout(MachineFunction &MF) const { MachineFrameInfo *MFI = MF.getFrameInfo(); // Get the number of bytes to allocate from the FrameInfo unsigned FrameSize = MFI->getStackSize(); // Get the alignments provided by the target, and the maximum alignment // (if any) of the fixed frame objects. unsigned MaxAlign = MFI->getMaxAlignment(); unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned AlignMask = TargetAlign - 1; // // If we are a leaf function, and use up to 224 bytes of stack space, // don't have a frame pointer, calls, or dynamic alloca then we do not need // to adjust the stack pointer (we fit in the Red Zone). if (FrameSize <= 224 && // Fits in red zone. !MFI->hasVarSizedObjects() && // No dynamic alloca. !MFI->hasCalls() && // No calls. (!ALIGN_STACK || MaxAlign <= TargetAlign)) { // No special alignment. // No need for frame MFI->setStackSize(0); return; } // Get the maximum call frame size of all the calls. unsigned maxCallFrameSize = MFI->getMaxCallFrameSize(); // Maximum call frame needs to be at least big enough for linkage and 8 args. unsigned minCallFrameSize = PPCFrameInfo::getMinCallFrameSize(Subtarget.isPPC64(), Subtarget.isMachoABI()); maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize); // If we have dynamic alloca then maxCallFrameSize needs to be aligned so // that allocations will be aligned. if (MFI->hasVarSizedObjects()) maxCallFrameSize = (maxCallFrameSize + AlignMask) & ~AlignMask; // Update maximum call frame size. MFI->setMaxCallFrameSize(maxCallFrameSize); // Include call frame size in total. FrameSize += maxCallFrameSize; // Make sure the frame is aligned. FrameSize = (FrameSize + AlignMask) & ~AlignMask; // Update frame info. MFI->setStackSize(FrameSize); } void PPCRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { // Save and clear the LR state. PPCFunctionInfo *FI = MF.getInfo(); unsigned LR = getRARegister(); FI->setUsesLR(MF.getRegInfo().isPhysRegUsed(LR)); MF.getRegInfo().setPhysRegUnused(LR); // Save R31 if necessary int FPSI = FI->getFramePointerSaveIndex(); bool IsPPC64 = Subtarget.isPPC64(); bool IsELF32_ABI = Subtarget.isELF32_ABI(); bool IsMachoABI = Subtarget.isMachoABI(); MachineFrameInfo *MFI = MF.getFrameInfo(); // If the frame pointer save index hasn't been defined yet. if (!FPSI && (NoFramePointerElim || MFI->hasVarSizedObjects()) && IsELF32_ABI) { // Find out what the fix offset of the frame pointer save area. int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, IsMachoABI); // Allocate the frame index for frame pointer save area. FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset); // Save the result. FI->setFramePointerSaveIndex(FPSI); } // Reserve stack space to move the linkage area to in case of a tail call. int TCSPDelta = 0; if (PerformTailCallOpt && (TCSPDelta=FI->getTailCallSPDelta()) < 0) { int AddFPOffsetAmount = IsELF32_ABI ? -4 : 0; MF.getFrameInfo()->CreateFixedObject( -1 * TCSPDelta, AddFPOffsetAmount + TCSPDelta); } // Reserve a slot closest to SP or frame pointer if we have a dynalloc or // a large stack, which will require scavenging a register to materialize a // large offset. // FIXME: this doesn't actually check stack size, so is a bit pessimistic // FIXME: doesn't detect whether or not we need to spill vXX, which requires // r0 for now. if (EnableRegisterScavenging) // FIXME (64-bit): Enable. if (needsFP(MF) || spillsCR(MF)) { const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *RC = IsPPC64 ? G8RC : GPRC; RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(), RC->getAlignment())); } } void PPCRegisterInfo::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) || !MF.getFunction()->doesNotThrow() || UnwindTablesMandatory; // Prepare for frame info. unsigned FrameLabelId = 0; // Scan the prolog, looking for an UPDATE_VRSAVE instruction. If we find it, // process it. for (unsigned i = 0; MBBI != MBB.end(); ++i, ++MBBI) { if (MBBI->getOpcode() == PPC::UPDATE_VRSAVE) { HandleVRSaveUpdate(MBBI, TII); break; } } // Move MBBI back to the beginning of the function. MBBI = MBB.begin(); // Work out frame sizes. determineFrameLayout(MF); unsigned FrameSize = MFI->getStackSize(); int NegFrameSize = -FrameSize; // Get processor type. bool IsPPC64 = Subtarget.isPPC64(); // Get operating system bool IsMachoABI = Subtarget.isMachoABI(); // Check if the link register (LR) has been used. bool UsesLR = MustSaveLR(MF); // Do we have a frame pointer for this function? bool HasFP = hasFP(MF) && FrameSize; int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, IsMachoABI); int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, IsMachoABI); if (IsPPC64) { if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::MFLR8), PPC::X0); if (HasFP) BuildMI(MBB, MBBI, TII.get(PPC::STD)) .addReg(PPC::X31) .addImm(FPOffset/4) .addReg(PPC::X1); if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::STD)) .addReg(PPC::X0) .addImm(LROffset / 4) .addReg(PPC::X1); } else { if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::MFLR), PPC::R0); if (HasFP) BuildMI(MBB, MBBI, TII.get(PPC::STW)) .addReg(PPC::R31) .addImm(FPOffset) .addReg(PPC::R1); if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::STW)) .addReg(PPC::R0) .addImm(LROffset) .addReg(PPC::R1); } // Skip if a leaf routine. if (!FrameSize) return; // Get stack alignments. unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned MaxAlign = MFI->getMaxAlignment(); if (needsFrameMoves) { // Mark effective beginning of when frame pointer becomes valid. FrameLabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, TII.get(PPC::LABEL)).addImm(FrameLabelId).addImm(0); } // Adjust stack pointer: r1 += NegFrameSize. // If there is a preferred stack alignment, align R1 now if (!IsPPC64) { // PPC32. if (ALIGN_STACK && MaxAlign > TargetAlign) { assert(isPowerOf2_32(MaxAlign)&&isInt16(MaxAlign)&&"Invalid alignment!"); assert(isInt16(NegFrameSize) && "Unhandled stack size and alignment!"); BuildMI(MBB, MBBI, TII.get(PPC::RLWINM), PPC::R0) .addReg(PPC::R1) .addImm(0) .addImm(32 - Log2_32(MaxAlign)) .addImm(31); BuildMI(MBB, MBBI, TII.get(PPC::SUBFIC) ,PPC::R0) .addReg(PPC::R0, false, false, true) .addImm(NegFrameSize); BuildMI(MBB, MBBI, TII.get(PPC::STWUX)) .addReg(PPC::R1) .addReg(PPC::R1) .addReg(PPC::R0); } else if (isInt16(NegFrameSize)) { BuildMI(MBB, MBBI, TII.get(PPC::STWU), PPC::R1) .addReg(PPC::R1) .addImm(NegFrameSize) .addReg(PPC::R1); } else { BuildMI(MBB, MBBI, TII.get(PPC::LIS), PPC::R0) .addImm(NegFrameSize >> 16); BuildMI(MBB, MBBI, TII.get(PPC::ORI), PPC::R0) .addReg(PPC::R0, false, false, true) .addImm(NegFrameSize & 0xFFFF); BuildMI(MBB, MBBI, TII.get(PPC::STWUX)) .addReg(PPC::R1) .addReg(PPC::R1) .addReg(PPC::R0); } } else { // PPC64. if (ALIGN_STACK && MaxAlign > TargetAlign) { assert(isPowerOf2_32(MaxAlign)&&isInt16(MaxAlign)&&"Invalid alignment!"); assert(isInt16(NegFrameSize) && "Unhandled stack size and alignment!"); BuildMI(MBB, MBBI, TII.get(PPC::RLDICL), PPC::X0) .addReg(PPC::X1) .addImm(0) .addImm(64 - Log2_32(MaxAlign)); BuildMI(MBB, MBBI, TII.get(PPC::SUBFIC8), PPC::X0) .addReg(PPC::X0) .addImm(NegFrameSize); BuildMI(MBB, MBBI, TII.get(PPC::STDUX)) .addReg(PPC::X1) .addReg(PPC::X1) .addReg(PPC::X0); } else if (isInt16(NegFrameSize)) { BuildMI(MBB, MBBI, TII.get(PPC::STDU), PPC::X1) .addReg(PPC::X1) .addImm(NegFrameSize / 4) .addReg(PPC::X1); } else { BuildMI(MBB, MBBI, TII.get(PPC::LIS8), PPC::X0) .addImm(NegFrameSize >> 16); BuildMI(MBB, MBBI, TII.get(PPC::ORI8), PPC::X0) .addReg(PPC::X0, false, false, true) .addImm(NegFrameSize & 0xFFFF); BuildMI(MBB, MBBI, TII.get(PPC::STDUX)) .addReg(PPC::X1) .addReg(PPC::X1) .addReg(PPC::X0); } } if (needsFrameMoves) { std::vector &Moves = MMI->getFrameMoves(); if (NegFrameSize) { // Show update of SP. MachineLocation SPDst(MachineLocation::VirtualFP); MachineLocation SPSrc(MachineLocation::VirtualFP, NegFrameSize); Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); } else { MachineLocation SP(IsPPC64 ? PPC::X31 : PPC::R31); Moves.push_back(MachineMove(FrameLabelId, SP, SP)); } if (HasFP) { MachineLocation FPDst(MachineLocation::VirtualFP, FPOffset); MachineLocation FPSrc(IsPPC64 ? PPC::X31 : PPC::R31); Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc)); } // Add callee saved registers to move list. const std::vector &CSI = MFI->getCalleeSavedInfo(); for (unsigned I = 0, E = CSI.size(); I != E; ++I) { int Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); unsigned Reg = CSI[I].getReg(); if (Reg == PPC::LR || Reg == PPC::LR8) continue; MachineLocation CSDst(MachineLocation::VirtualFP, Offset); MachineLocation CSSrc(Reg); Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc)); } MachineLocation LRDst(MachineLocation::VirtualFP, LROffset); MachineLocation LRSrc(IsPPC64 ? PPC::LR8 : PPC::LR); Moves.push_back(MachineMove(FrameLabelId, LRDst, LRSrc)); // Mark effective beginning of when frame pointer is ready. unsigned ReadyLabelId = MMI->NextLabelID(); BuildMI(MBB, MBBI, TII.get(PPC::LABEL)).addImm(ReadyLabelId).addImm(0); MachineLocation FPDst(HasFP ? (IsPPC64 ? PPC::X31 : PPC::R31) : (IsPPC64 ? PPC::X1 : PPC::R1)); MachineLocation FPSrc(MachineLocation::VirtualFP); Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); } // If there is a frame pointer, copy R1 into R31 if (HasFP) { if (!IsPPC64) { BuildMI(MBB, MBBI, TII.get(PPC::OR), PPC::R31) .addReg(PPC::R1) .addReg(PPC::R1); } else { BuildMI(MBB, MBBI, TII.get(PPC::OR8), PPC::X31) .addReg(PPC::X1) .addReg(PPC::X1); } } } void PPCRegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = prior(MBB.end()); unsigned RetOpcode = MBBI->getOpcode(); assert( (RetOpcode == PPC::BLR || RetOpcode == PPC::TCRETURNri || RetOpcode == PPC::TCRETURNdi || RetOpcode == PPC::TCRETURNai || RetOpcode == PPC::TCRETURNri8 || RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNai8) && "Can only insert epilog into returning blocks"); // Get alignment info so we know how to restore r1 const MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned MaxAlign = MFI->getMaxAlignment(); // Get the number of bytes allocated from the FrameInfo. int FrameSize = MFI->getStackSize(); // Get processor type. bool IsPPC64 = Subtarget.isPPC64(); // Get operating system bool IsMachoABI = Subtarget.isMachoABI(); // Check if the link register (LR) has been used. bool UsesLR = MustSaveLR(MF); // Do we have a frame pointer for this function? bool HasFP = hasFP(MF) && FrameSize; int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, IsMachoABI); int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, IsMachoABI); bool UsesTCRet = RetOpcode == PPC::TCRETURNri || RetOpcode == PPC::TCRETURNdi || RetOpcode == PPC::TCRETURNai || RetOpcode == PPC::TCRETURNri8 || RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNai8; PPCFunctionInfo *FI = MF.getInfo(); if (UsesTCRet) { int MaxTCRetDelta = FI->getTailCallSPDelta(); MachineOperand &StackAdjust = MBBI->getOperand(1); assert( StackAdjust.isImmediate() && "Expecting immediate value."); // Adjust stack pointer. int StackAdj = StackAdjust.getImm(); int Delta = StackAdj - MaxTCRetDelta; assert((Delta >= 0) && "Delta must be positive"); if (MaxTCRetDelta>0) FrameSize += (StackAdj +Delta); else FrameSize += StackAdj; } if (FrameSize) { // The loaded (or persistent) stack pointer value is offset by the 'stwu' // on entry to the function. Add this offset back now. if (!IsPPC64) { // If this function contained a fastcc call and PerformTailCallOpt is // enabled (=> hasFastCall()==true) the fastcc call might contain a tail // call which invalidates the stack pointer value in SP(0). So we use the // value of R31 in this case. if (FI->hasFastCall() && isInt16(FrameSize)) { assert(hasFP(MF) && "Expecting a valid the frame pointer."); BuildMI(MBB, MBBI, TII.get(PPC::ADDI), PPC::R1) .addReg(PPC::R31).addImm(FrameSize); } else if(FI->hasFastCall()) { BuildMI(MBB, MBBI, TII.get(PPC::LIS), PPC::R0) .addImm(FrameSize >> 16); BuildMI(MBB, MBBI, TII.get(PPC::ORI), PPC::R0) .addReg(PPC::R0, false, false, true) .addImm(FrameSize & 0xFFFF); BuildMI(MBB, MBBI, TII.get(PPC::ADD4)) .addReg(PPC::R1) .addReg(PPC::R31) .addReg(PPC::R0); } else if (isInt16(FrameSize) && (!ALIGN_STACK || TargetAlign >= MaxAlign) && !MFI->hasVarSizedObjects()) { BuildMI(MBB, MBBI, TII.get(PPC::ADDI), PPC::R1) .addReg(PPC::R1).addImm(FrameSize); } else { BuildMI(MBB, MBBI, TII.get(PPC::LWZ),PPC::R1).addImm(0).addReg(PPC::R1); } } else { if (FI->hasFastCall() && isInt16(FrameSize)) { assert(hasFP(MF) && "Expecting a valid the frame pointer."); BuildMI(MBB, MBBI, TII.get(PPC::ADDI8), PPC::X1) .addReg(PPC::X31).addImm(FrameSize); } else if(FI->hasFastCall()) { BuildMI(MBB, MBBI, TII.get(PPC::LIS8), PPC::X0) .addImm(FrameSize >> 16); BuildMI(MBB, MBBI, TII.get(PPC::ORI8), PPC::X0) .addReg(PPC::X0, false, false, true) .addImm(FrameSize & 0xFFFF); BuildMI(MBB, MBBI, TII.get(PPC::ADD8)) .addReg(PPC::X1) .addReg(PPC::X31) .addReg(PPC::X0); } else if (isInt16(FrameSize) && TargetAlign >= MaxAlign && !MFI->hasVarSizedObjects()) { BuildMI(MBB, MBBI, TII.get(PPC::ADDI8), PPC::X1) .addReg(PPC::X1).addImm(FrameSize); } else { BuildMI(MBB, MBBI, TII.get(PPC::LD), PPC::X1).addImm(0).addReg(PPC::X1); } } } if (IsPPC64) { if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::LD), PPC::X0) .addImm(LROffset/4).addReg(PPC::X1); if (HasFP) BuildMI(MBB, MBBI, TII.get(PPC::LD), PPC::X31) .addImm(FPOffset/4).addReg(PPC::X1); if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::MTLR8)).addReg(PPC::X0); } else { if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::LWZ), PPC::R0) .addImm(LROffset).addReg(PPC::R1); if (HasFP) BuildMI(MBB, MBBI, TII.get(PPC::LWZ), PPC::R31) .addImm(FPOffset).addReg(PPC::R1); if (UsesLR) BuildMI(MBB, MBBI, TII.get(PPC::MTLR)).addReg(PPC::R0); } // Callee pop calling convention. Pop parameter/linkage area. Used for tail // call optimization if (PerformTailCallOpt && RetOpcode == PPC::BLR && MF.getFunction()->getCallingConv() == CallingConv::Fast) { PPCFunctionInfo *FI = MF.getInfo(); unsigned CallerAllocatedAmt = FI->getMinReservedArea(); unsigned StackReg = IsPPC64 ? PPC::X1 : PPC::R1; unsigned FPReg = IsPPC64 ? PPC::X31 : PPC::R31; unsigned TmpReg = IsPPC64 ? PPC::X0 : PPC::R0; unsigned ADDIInstr = IsPPC64 ? PPC::ADDI8 : PPC::ADDI; unsigned ADDInstr = IsPPC64 ? PPC::ADD8 : PPC::ADD4; unsigned LISInstr = IsPPC64 ? PPC::LIS8 : PPC::LIS; unsigned ORIInstr = IsPPC64 ? PPC::ORI8 : PPC::ORI; if (CallerAllocatedAmt && isInt16(CallerAllocatedAmt)) { BuildMI(MBB, MBBI, TII.get(ADDIInstr), StackReg) .addReg(StackReg).addImm(CallerAllocatedAmt); } else { BuildMI(MBB, MBBI, TII.get(LISInstr), TmpReg) .addImm(CallerAllocatedAmt >> 16); BuildMI(MBB, MBBI, TII.get(ORIInstr), TmpReg) .addReg(TmpReg, false, false, true) .addImm(CallerAllocatedAmt & 0xFFFF); BuildMI(MBB, MBBI, TII.get(ADDInstr)) .addReg(StackReg) .addReg(FPReg) .addReg(TmpReg); } } else if (RetOpcode == PPC::TCRETURNdi) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); BuildMI(MBB, MBBI, TII.get(PPC::TAILB)). addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); } else if (RetOpcode == PPC::TCRETURNri) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); assert(JumpTarget.isReg() && "Expecting register operand."); BuildMI(MBB, MBBI, TII.get(PPC::TAILBCTR)); } else if (RetOpcode == PPC::TCRETURNai) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); BuildMI(MBB, MBBI, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm()); } else if (RetOpcode == PPC::TCRETURNdi8) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); BuildMI(MBB, MBBI, TII.get(PPC::TAILB8)). addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); } else if (RetOpcode == PPC::TCRETURNri8) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); assert(JumpTarget.isReg() && "Expecting register operand."); BuildMI(MBB, MBBI, TII.get(PPC::TAILBCTR8)); } else if (RetOpcode == PPC::TCRETURNai8) { MBBI = prior(MBB.end()); MachineOperand &JumpTarget = MBBI->getOperand(0); BuildMI(MBB, MBBI, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm()); } } unsigned PPCRegisterInfo::getRARegister() const { return !Subtarget.isPPC64() ? PPC::LR : PPC::LR8; } unsigned PPCRegisterInfo::getFrameRegister(MachineFunction &MF) const { if (!Subtarget.isPPC64()) return hasFP(MF) ? PPC::R31 : PPC::R1; else return hasFP(MF) ? PPC::X31 : PPC::X1; } void PPCRegisterInfo::getInitialFrameState(std::vector &Moves) const { // Initial state of the frame pointer is R1. MachineLocation Dst(MachineLocation::VirtualFP); MachineLocation Src(PPC::R1, 0); Moves.push_back(MachineMove(0, Dst, Src)); } unsigned PPCRegisterInfo::getEHExceptionRegister() const { return !Subtarget.isPPC64() ? PPC::R3 : PPC::X3; } unsigned PPCRegisterInfo::getEHHandlerRegister() const { return !Subtarget.isPPC64() ? PPC::R4 : PPC::X4; } int PPCRegisterInfo::getDwarfRegNum(unsigned RegNum, bool isEH) const { // FIXME: Most probably dwarf numbers differs for Linux and Darwin return PPCGenRegisterInfo::getDwarfRegNumFull(RegNum, 0); } #include "PPCGenRegisterInfo.inc"