//===-- lib/CodeGen/ELFCodeEmitter.cpp ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "elfce" #include "ELFCodeEmitter.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/CodeGen/BinaryObject.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Debug.h" //===----------------------------------------------------------------------===// // ELFCodeEmitter Implementation //===----------------------------------------------------------------------===// namespace llvm { /// startFunction - This callback is invoked when a new machine function is /// about to be emitted. void ELFCodeEmitter::startFunction(MachineFunction &MF) { // Get the ELF Section that this function belongs in. ES = &EW.getTextSection(); DOUT << "processing function: " << MF.getFunction()->getName() << "\n"; // FIXME: better memory management, this will be replaced by BinaryObjects BinaryData &BD = ES->getData(); BD.reserve(4096); BufferBegin = &BD[0]; BufferEnd = BufferBegin + BD.capacity(); // Get the function alignment in bytes unsigned Align = (1 << MF.getAlignment()); // Align the section size with the function alignment, so the function can // start in a aligned offset, also update the section alignment if needed. if (ES->Align < Align) ES->Align = Align; ES->Size = (ES->Size + (Align-1)) & (-Align); // Snaity check on allocated space for text section assert( ES->Size < 4096 && "no more space in TextSection" ); // FIXME: Using ES->Size directly here instead of calculating it from the // output buffer size (impossible because the code emitter deals only in raw // bytes) forces us to manually synchronize size and write padding zero bytes // to the output buffer for all non-text sections. For text sections, we do // not synchonize the output buffer, and we just blow up if anyone tries to // write non-code to it. An assert should probably be added to // AddSymbolToSection to prevent calling it on the text section. CurBufferPtr = BufferBegin + ES->Size; // Record function start address relative to BufferBegin FnStartPtr = CurBufferPtr; } /// finishFunction - This callback is invoked after the function is completely /// finished. bool ELFCodeEmitter::finishFunction(MachineFunction &MF) { // Add a symbol to represent the function. ELFSym FnSym(MF.getFunction()); // Update Section Size ES->Size = CurBufferPtr - BufferBegin; // Set the symbol type as a function FnSym.setType(ELFSym::STT_FUNC); FnSym.SectionIdx = ES->SectionIdx; FnSym.Size = CurBufferPtr-FnStartPtr; // Offset from start of Section FnSym.Value = FnStartPtr-BufferBegin; // Figure out the binding (linkage) of the symbol. switch (MF.getFunction()->getLinkage()) { default: // appending linkage is illegal for functions. assert(0 && "Unknown linkage type!"); case GlobalValue::ExternalLinkage: FnSym.setBind(ELFSym::STB_GLOBAL); EW.SymbolList.push_back(FnSym); break; case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: FnSym.setBind(ELFSym::STB_WEAK); EW.SymbolList.push_back(FnSym); break; case GlobalValue::PrivateLinkage: assert (0 && "PrivateLinkage should not be in the symbol table."); case GlobalValue::InternalLinkage: FnSym.setBind(ELFSym::STB_LOCAL); EW.SymbolList.push_front(FnSym); break; } // Emit constant pool to appropriate section(s) emitConstantPool(MF.getConstantPool()); // Relocations // ----------- // If we have emitted any relocations to function-specific objects such as // basic blocks, constant pools entries, or jump tables, record their // addresses now so that we can rewrite them with the correct addresses // later. for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { MachineRelocation &MR = Relocations[i]; intptr_t Addr; if (MR.isGlobalValue()) { EW.PendingGlobals.insert(MR.getGlobalValue()); } else if (MR.isBasicBlock()) { Addr = getMachineBasicBlockAddress(MR.getBasicBlock()); MR.setConstantVal(ES->SectionIdx); MR.setResultPointer((void*)Addr); } else if (MR.isConstantPoolIndex()) { Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex()); MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]); MR.setResultPointer((void*)Addr); } else { assert(0 && "Unhandled relocation type"); } ES->addRelocation(MR); } Relocations.clear(); return false; } /// emitConstantPool - For each constant pool entry, figure out which section /// the constant should live in and emit the constant void ELFCodeEmitter::emitConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); if (CP.empty()) return; // TODO: handle PIC codegen assert(TM.getRelocationModel() != Reloc::PIC_ && "PIC codegen not yet handled for elf constant pools!"); const TargetAsmInfo *TAI = TM.getTargetAsmInfo(); for (unsigned i = 0, e = CP.size(); i != e; ++i) { MachineConstantPoolEntry CPE = CP[i]; // Get the right ELF Section for this constant pool entry std::string CstPoolName = TAI->SelectSectionForMachineConst(CPE.getType())->getName(); ELFSection &CstPoolSection = EW.getConstantPoolSection(CstPoolName, CPE.getAlignment()); // Record the constant pool location and the section index CPLocations.push_back(CstPoolSection.size()); CPSections.push_back(CstPoolSection.SectionIdx); if (CPE.isMachineConstantPoolEntry()) assert("CPE.isMachineConstantPoolEntry not supported yet"); // Emit the constant to constant pool section EW.EmitGlobalConstant(CPE.Val.ConstVal, CstPoolSection); } } } // end namespace llvm