//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the SmallVector class. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_SMALLVECTOR_H #define LLVM_ADT_SMALLVECTOR_H #include "llvm/ADT/iterator.h" #include "llvm/Support/type_traits.h" #include #include #include #include #ifdef _MSC_VER namespace std { #if _MSC_VER <= 1310 // Work around flawed VC++ implementation of std::uninitialized_copy. Define // additional overloads so that elements with pointer types are recognized as // scalars and not objects, causing bizarre type conversion errors. template inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) { _Scalar_ptr_iterator_tag _Cat; return _Cat; } template inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) { _Scalar_ptr_iterator_tag _Cat; return _Cat; } #else // FIXME: It is not clear if the problem is fixed in VS 2005. What is clear // is that the above hack won't work if it wasn't fixed. #endif } #endif namespace llvm { /// SmallVectorImpl - This class consists of common code factored out of the /// SmallVector class to reduce code duplication based on the SmallVector 'N' /// template parameter. template class SmallVectorImpl { protected: T *Begin, *End, *Capacity; // Allocate raw space for N elements of type T. If T has a ctor or dtor, we // don't want it to be automatically run, so we need to represent the space as // something else. An array of char would work great, but might not be // aligned sufficiently. Instead, we either use GCC extensions, or some // number of union instances for the space, which guarantee maximal alignment. protected: #ifdef __GNUC__ typedef char U; U FirstEl __attribute__((aligned)); #else union U { double D; long double LD; long long L; void *P; } FirstEl; #endif // Space after 'FirstEl' is clobbered, do not add any instance vars after it. public: // Default ctor - Initialize to empty. explicit SmallVectorImpl(unsigned N) : Begin(reinterpret_cast(&FirstEl)), End(reinterpret_cast(&FirstEl)), Capacity(reinterpret_cast(&FirstEl)+N) { } ~SmallVectorImpl() { // Destroy the constructed elements in the vector. destroy_range(Begin, End); // If this wasn't grown from the inline copy, deallocate the old space. if (!isSmall()) operator delete(Begin); } typedef size_t size_type; typedef ptrdiff_t difference_type; typedef T value_type; typedef T* iterator; typedef const T* const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; bool empty() const { return Begin == End; } size_type size() const { return End-Begin; } size_type max_size() const { return size_type(-1) / sizeof(T); } // forward iterator creation methods. iterator begin() { return Begin; } const_iterator begin() const { return Begin; } iterator end() { return End; } const_iterator end() const { return End; } // reverse iterator creation methods. reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin());} reference operator[](unsigned idx) { assert (Begin + idx < End); return Begin[idx]; } const_reference operator[](unsigned idx) const { assert (Begin + idx < End); return Begin[idx]; } reference front() { return begin()[0]; } const_reference front() const { return begin()[0]; } reference back() { return end()[-1]; } const_reference back() const { return end()[-1]; } void push_back(const_reference Elt) { if (End < Capacity) { Retry: new (End) T(Elt); ++End; return; } grow(); goto Retry; } void pop_back() { --End; End->~T(); } T pop_back_val() { T Result = back(); pop_back(); return Result; } void clear() { destroy_range(Begin, End); End = Begin; } void resize(unsigned N) { if (N < size()) { destroy_range(Begin+N, End); End = Begin+N; } else if (N > size()) { if (unsigned(Capacity-Begin) < N) grow(N); construct_range(End, Begin+N, T()); End = Begin+N; } } void resize(unsigned N, const T &NV) { if (N < size()) { destroy_range(Begin+N, End); End = Begin+N; } else if (N > size()) { if (unsigned(Capacity-Begin) < N) grow(N); construct_range(End, Begin+N, NV); End = Begin+N; } } void reserve(unsigned N) { if (unsigned(Capacity-Begin) < N) grow(N); } void swap(SmallVectorImpl &RHS); /// append - Add the specified range to the end of the SmallVector. /// template void append(in_iter in_start, in_iter in_end) { size_type NumInputs = std::distance(in_start, in_end); // Grow allocated space if needed. if (NumInputs > size_type(Capacity-End)) grow(size()+NumInputs); // Copy the new elements over. std::uninitialized_copy(in_start, in_end, End); End += NumInputs; } /// append - Add the specified range to the end of the SmallVector. /// void append(size_type NumInputs, const T &Elt) { // Grow allocated space if needed. if (NumInputs > size_type(Capacity-End)) grow(size()+NumInputs); // Copy the new elements over. std::uninitialized_fill_n(End, NumInputs, Elt); End += NumInputs; } void assign(unsigned NumElts, const T &Elt) { clear(); if (unsigned(Capacity-Begin) < NumElts) grow(NumElts); End = Begin+NumElts; construct_range(Begin, End, Elt); } iterator erase(iterator I) { iterator N = I; // Shift all elts down one. std::copy(I+1, End, I); // Drop the last elt. pop_back(); return(N); } iterator erase(iterator S, iterator E) { iterator N = S; // Shift all elts down. iterator I = std::copy(E, End, S); // Drop the last elts. destroy_range(I, End); End = I; return(N); } iterator insert(iterator I, const T &Elt) { if (I == End) { // Important special case for empty vector. push_back(Elt); return end()-1; } if (End < Capacity) { Retry: new (End) T(back()); ++End; // Push everything else over. std::copy_backward(I, End-1, End); *I = Elt; return I; } size_t EltNo = I-Begin; grow(); I = Begin+EltNo; goto Retry; } iterator insert(iterator I, size_type NumToInsert, const T &Elt) { if (I == End) { // Important special case for empty vector. append(NumToInsert, Elt); return end()-1; } // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I-begin(); // Ensure there is enough space. reserve(static_cast(size() + NumToInsert)); // Uninvalidate the iterator. I = begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(end()-I) >= NumToInsert) { T *OldEnd = End; append(End-NumToInsert, End); // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::fill_n(I, NumToInsert, Elt); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Copy over the elements that we're about to overwrite. T *OldEnd = End; End += NumToInsert; size_t NumOverwritten = OldEnd-I; std::uninitialized_copy(I, OldEnd, End-NumOverwritten); // Replace the overwritten part. std::fill_n(I, NumOverwritten, Elt); // Insert the non-overwritten middle part. std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); return I; } template iterator insert(iterator I, ItTy From, ItTy To) { if (I == End) { // Important special case for empty vector. append(From, To); return end()-1; } size_t NumToInsert = std::distance(From, To); // Convert iterator to elt# to avoid invalidating iterator when we reserve() size_t InsertElt = I-begin(); // Ensure there is enough space. reserve(static_cast(size() + NumToInsert)); // Uninvalidate the iterator. I = begin()+InsertElt; // If there are more elements between the insertion point and the end of the // range than there are being inserted, we can use a simple approach to // insertion. Since we already reserved space, we know that this won't // reallocate the vector. if (size_t(end()-I) >= NumToInsert) { T *OldEnd = End; append(End-NumToInsert, End); // Copy the existing elements that get replaced. std::copy_backward(I, OldEnd-NumToInsert, OldEnd); std::copy(From, To, I); return I; } // Otherwise, we're inserting more elements than exist already, and we're // not inserting at the end. // Copy over the elements that we're about to overwrite. T *OldEnd = End; End += NumToInsert; size_t NumOverwritten = OldEnd-I; std::uninitialized_copy(I, OldEnd, End-NumOverwritten); // Replace the overwritten part. std::copy(From, From+NumOverwritten, I); // Insert the non-overwritten middle part. std::uninitialized_copy(From+NumOverwritten, To, OldEnd); return I; } /// data - Return a pointer to the vector's buffer, even if empty(). pointer data() { return pointer(Begin); } /// data - Return a pointer to the vector's buffer, even if empty(). const_pointer data() const { return const_pointer(Begin); } const SmallVectorImpl &operator=(const SmallVectorImpl &RHS); bool operator==(const SmallVectorImpl &RHS) const { if (size() != RHS.size()) return false; for (T *This = Begin, *That = RHS.Begin, *E = Begin+size(); This != E; ++This, ++That) if (*This != *That) return false; return true; } bool operator!=(const SmallVectorImpl &RHS) const { return !(*this == RHS); } bool operator<(const SmallVectorImpl &RHS) const { return std::lexicographical_compare(begin(), end(), RHS.begin(), RHS.end()); } private: /// isSmall - Return true if this is a smallvector which has not had dynamic /// memory allocated for it. bool isSmall() const { return static_cast(Begin) == static_cast(&FirstEl); } /// grow - double the size of the allocated memory, guaranteeing space for at /// least one more element or MinSize if specified. void grow(size_type MinSize = 0); void construct_range(T *S, T *E, const T &Elt) { for (; S != E; ++S) new (S) T(Elt); } void destroy_range(T *S, T *E) { while (S != E) { --E; E->~T(); } } }; // Define this out-of-line to dissuade the C++ compiler from inlining it. template void SmallVectorImpl::grow(size_t MinSize) { size_t CurCapacity = Capacity-Begin; size_t CurSize = size(); size_t NewCapacity = 2*CurCapacity; if (NewCapacity < MinSize) NewCapacity = MinSize; T *NewElts = static_cast(operator new(NewCapacity*sizeof(T))); // Copy the elements over. if (is_class::value) std::uninitialized_copy(Begin, End, NewElts); else // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove). memcpy(NewElts, Begin, CurSize * sizeof(T)); // Destroy the original elements. destroy_range(Begin, End); // If this wasn't grown from the inline copy, deallocate the old space. if (!isSmall()) operator delete(Begin); Begin = NewElts; End = NewElts+CurSize; Capacity = Begin+NewCapacity; } template void SmallVectorImpl::swap(SmallVectorImpl &RHS) { if (this == &RHS) return; // We can only avoid copying elements if neither vector is small. if (!isSmall() && !RHS.isSmall()) { std::swap(Begin, RHS.Begin); std::swap(End, RHS.End); std::swap(Capacity, RHS.Capacity); return; } if (RHS.size() > size_type(Capacity-Begin)) grow(RHS.size()); if (size() > size_type(RHS.Capacity-RHS.begin())) RHS.grow(size()); // Swap the shared elements. size_t NumShared = size(); if (NumShared > RHS.size()) NumShared = RHS.size(); for (unsigned i = 0; i != static_cast(NumShared); ++i) std::swap(Begin[i], RHS[i]); // Copy over the extra elts. if (size() > RHS.size()) { size_t EltDiff = size() - RHS.size(); std::uninitialized_copy(Begin+NumShared, End, RHS.End); RHS.End += EltDiff; destroy_range(Begin+NumShared, End); End = Begin+NumShared; } else if (RHS.size() > size()) { size_t EltDiff = RHS.size() - size(); std::uninitialized_copy(RHS.Begin+NumShared, RHS.End, End); End += EltDiff; destroy_range(RHS.Begin+NumShared, RHS.End); RHS.End = RHS.Begin+NumShared; } } template const SmallVectorImpl & SmallVectorImpl::operator=(const SmallVectorImpl &RHS) { // Avoid self-assignment. if (this == &RHS) return *this; // If we already have sufficient space, assign the common elements, then // destroy any excess. unsigned RHSSize = unsigned(RHS.size()); unsigned CurSize = unsigned(size()); if (CurSize >= RHSSize) { // Assign common elements. iterator NewEnd; if (RHSSize) NewEnd = std::copy(RHS.Begin, RHS.Begin+RHSSize, Begin); else NewEnd = Begin; // Destroy excess elements. destroy_range(NewEnd, End); // Trim. End = NewEnd; return *this; } // If we have to grow to have enough elements, destroy the current elements. // This allows us to avoid copying them during the grow. if (unsigned(Capacity-Begin) < RHSSize) { // Destroy current elements. destroy_range(Begin, End); End = Begin; CurSize = 0; grow(RHSSize); } else if (CurSize) { // Otherwise, use assignment for the already-constructed elements. std::copy(RHS.Begin, RHS.Begin+CurSize, Begin); } // Copy construct the new elements in place. std::uninitialized_copy(RHS.Begin+CurSize, RHS.End, Begin+CurSize); // Set end. End = Begin+RHSSize; return *this; } /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized /// for the case when the array is small. It contains some number of elements /// in-place, which allows it to avoid heap allocation when the actual number of /// elements is below that threshold. This allows normal "small" cases to be /// fast without losing generality for large inputs. /// /// Note that this does not attempt to be exception safe. /// template class SmallVector : public SmallVectorImpl { /// InlineElts - These are 'N-1' elements that are stored inline in the body /// of the vector. The extra '1' element is stored in SmallVectorImpl. typedef typename SmallVectorImpl::U U; enum { // MinUs - The number of U's require to cover N T's. MinUs = (static_cast(sizeof(T))*N + static_cast(sizeof(U)) - 1) / static_cast(sizeof(U)), // NumInlineEltsElts - The number of elements actually in this array. There // is already one in the parent class, and we have to round up to avoid // having a zero-element array. NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1, // NumTsAvailable - The number of T's we actually have space for, which may // be more than N due to rounding. NumTsAvailable = (NumInlineEltsElts+1)*static_cast(sizeof(U))/ static_cast(sizeof(T)) }; U InlineElts[NumInlineEltsElts]; public: SmallVector() : SmallVectorImpl(NumTsAvailable) { } explicit SmallVector(unsigned Size, const T &Value = T()) : SmallVectorImpl(NumTsAvailable) { this->reserve(Size); while (Size--) this->push_back(Value); } template SmallVector(ItTy S, ItTy E) : SmallVectorImpl(NumTsAvailable) { this->append(S, E); } SmallVector(const SmallVector &RHS) : SmallVectorImpl(NumTsAvailable) { if (!RHS.empty()) SmallVectorImpl::operator=(RHS); } const SmallVector &operator=(const SmallVector &RHS) { SmallVectorImpl::operator=(RHS); return *this; } }; } // End llvm namespace namespace std { /// Implement std::swap in terms of SmallVector swap. template inline void swap(llvm::SmallVectorImpl &LHS, llvm::SmallVectorImpl &RHS) { LHS.swap(RHS); } /// Implement std::swap in terms of SmallVector swap. template inline void swap(llvm::SmallVector &LHS, llvm::SmallVector &RHS) { LHS.swap(RHS); } } #endif