//===-- Printer.cpp - Convert LLVM code to PowerPC assembly ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PowerPC assembly language. This printer is // the output mechanism used by `llc' and `lli -print-machineinstrs'. // // Documentation at http://developer.apple.com/documentation/DeveloperTools/ // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asmprinter" #include "PowerPC.h" #include "PowerPCInstrInfo.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/StringExtras.h" #include namespace llvm { namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); struct Printer : public MachineFunctionPass { /// Output stream on which we're printing assembly code. /// std::ostream &O; /// Target machine description which we query for reg. names, data /// layout, etc. /// TargetMachine &TM; /// Name-mangler for global names. /// Mangler *Mang; std::set FnStubs, GVStubs; std::set Strings; Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm), labelNumber(0) { } /// Cache of mangled name for current function. This is /// recalculated at the beginning of each call to /// runOnMachineFunction(). /// std::string CurrentFnName; /// Unique incrementer for label values for referencing /// Global values. /// unsigned int labelNumber; virtual const char *getPassName() const { return "PowerPC Assembly Printer"; } void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false); void printConstantPool(MachineConstantPool *MCP); bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); void emitGlobalConstant(const Constant* CV); void emitConstantValueOnly(const Constant *CV); }; } // end of anonymous namespace /// createPPCCodePrinterPass - Returns a pass that prints the PPC /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form. /// FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm) { return new Printer(o, tm); } /// isStringCompatible - Can we treat the specified array as a string? /// Only if it is an array of ubytes or non-negative sbytes. /// static bool isStringCompatible(const ConstantArray *CVA) { const Type *ETy = cast(CVA->getType())->getElementType(); if (ETy == Type::UByteTy) return true; if (ETy != Type::SByteTy) return false; for (unsigned i = 0; i < CVA->getNumOperands(); ++i) if (cast(CVA->getOperand(i))->getValue() < 0) return false; return true; } /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// getAsCString - Return the specified array as a C compatible /// string, only if the predicate isStringCompatible is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA) { assert(isStringCompatible(CVA) && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i < CVA->getNumOperands(); ++i) { unsigned char C = cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } // Print out the specified constant, without a storage class. Only the // constants valid in constant expressions can occur here. void Printer::emitConstantValueOnly(const Constant *CV) { if (CV->isNullValue()) O << "0"; else if (const ConstantBool *CB = dyn_cast(CV)) { assert(CB == ConstantBool::True); O << "1"; } else if (const ConstantSInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const ConstantUInt *CI = dyn_cast(CV)) O << CI->getValue(); else if (const ConstantPointerRef *CPR = dyn_cast(CV)) // This is a constant address for a global variable or function. Use the // name of the variable or function as the address value. O << Mang->getValueName(CPR->getValue()); else if (const ConstantExpr *CE = dyn_cast(CV)) { const TargetData &TD = TM.getTargetData(); switch(CE->getOpcode()) { case Instruction::GetElementPtr: { // generate a symbolic expression for the byte address const Constant *ptrVal = CE->getOperand(0); std::vector idxVec(CE->op_begin()+1, CE->op_end()); if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) { O << "("; emitConstantValueOnly(ptrVal); O << ") + " << Offset; } else { emitConstantValueOnly(ptrVal); } break; } case Instruction::Cast: { // Support only non-converting or widening casts for now, that is, ones // that do not involve a change in value. This assertion is really gross, // and may not even be a complete check. Constant *Op = CE->getOperand(0); const Type *OpTy = Op->getType(), *Ty = CE->getType(); // Remember, kids, pointers on x86 can be losslessly converted back and // forth into 32-bit or wider integers, regardless of signedness. :-P assert(((isa(OpTy) && (Ty == Type::LongTy || Ty == Type::ULongTy || Ty == Type::IntTy || Ty == Type::UIntTy)) || (isa(Ty) && (OpTy == Type::LongTy || OpTy == Type::ULongTy || OpTy == Type::IntTy || OpTy == Type::UIntTy)) || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy)) && OpTy->isLosslesslyConvertibleTo(Ty)))) && "FIXME: Don't yet support this kind of constant cast expr"); O << "("; emitConstantValueOnly(Op); O << ")"; break; } case Instruction::Add: O << "("; emitConstantValueOnly(CE->getOperand(0)); O << ") + ("; emitConstantValueOnly(CE->getOperand(1)); O << ")"; break; default: assert(0 && "Unsupported operator!"); } } else { assert(0 && "Unknown constant value!"); } } // Print a constant value or values, with the appropriate storage class as a // prefix. void Printer::emitGlobalConstant(const Constant *CV) { const TargetData &TD = TM.getTargetData(); if (CV->isNullValue()) { O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n"; return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (isStringCompatible(CVA)) { O << "\t.ascii "; printAsCString(O, CVA); O << "\n"; } else { // Not a string. Print the values in successive locations const std::vector &constValues = CVA->getValues(); for (unsigned i=0; i < constValues.size(); i++) emitGlobalConstant(cast(constValues[i].get())); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); const std::vector& constValues = CVS->getValues(); unsigned sizeSoFar = 0; for (unsigned i=0, N = constValues.size(); i < N; i++) { const Constant* field = cast(constValues[i].get()); // Check if padding is needed and insert one or more 0s. unsigned fieldSize = TD.getTypeSize(field->getType()); unsigned padSize = ((i == N-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value emitGlobalConstant(field); // Insert the field padding unless it's zero bytes... if (padSize) O << "\t.space\t " << padSize << "\n"; } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); switch (CFP->getType()->getTypeID()) { default: assert(0 && "Unknown floating point type!"); case Type::FloatTyID: { union FU { // Abide by C TBAA rules float FVal; unsigned UVal; } U; U.FVal = Val; O << ".long\t" << U.UVal << "\t; float " << Val << "\n"; return; } case Type::DoubleTyID: { union DU { // Abide by C TBAA rules double FVal; uint64_t UVal; struct { uint32_t MSWord; uint32_t LSWord; } T; } U; U.FVal = Val; O << ".long\t" << U.T.MSWord << "\t; double most significant word " << Val << "\n"; O << ".long\t" << U.T.LSWord << "\t; double least significant word " << Val << "\n"; return; } } } else if (CV->getType()->getPrimitiveSize() == 64) { if (const ConstantInt *CI = dyn_cast(CV)) { union DU { // Abide by C TBAA rules int64_t UVal; struct { uint32_t MSWord; uint32_t LSWord; } T; } U; U.UVal = CI->getRawValue(); O << ".long\t" << U.T.MSWord << "\t; Double-word most significant word " << U.UVal << "\n"; O << ".long\t" << U.T.LSWord << "\t; Double-word least significant word " << U.UVal << "\n"; return; } } const Type *type = CV->getType(); O << "\t"; switch (type->getTypeID()) { case Type::UByteTyID: case Type::SByteTyID: O << ".byte"; break; case Type::UShortTyID: case Type::ShortTyID: O << ".short"; break; case Type::BoolTyID: case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: O << ".long"; break; case Type::ULongTyID: case Type::LongTyID: assert (0 && "Should have already output double-word constant."); case Type::FloatTyID: case Type::DoubleTyID: assert (0 && "Should have already output floating point constant."); default: assert (0 && "Can't handle printing this type of thing"); break; } O << "\t"; emitConstantValueOnly(CV); O << "\n"; } /// printConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void Printer::printConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); const TargetData &TD = TM.getTargetData(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.const\n"; O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n"; O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;" << *CP[i] << "\n"; emitGlobalConstant(CP[i]); } } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool Printer::runOnMachineFunction(MachineFunction &MF) { O << "\n\n"; // What's my mangled name? CurrentFnName = Mang->getValueName(MF.getFunction()); // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.align 2\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t; " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } // We didn't modify anything. return false; } void Printer::printOp(const MachineOperand &MO, bool elideOffsetKeyword /* = false */) { const MRegisterInfo &RI = *TM.getRegisterInfo(); int new_symbol; switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: case MachineOperand::MO_CCRegister: O << LowercaseString(RI.get(MO.getReg()).Name); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: O << (int)MO.getImmedValue(); return; case MachineOperand::MO_PCRelativeDisp: std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs"; abort(); return; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber() << "\t; " << MBBOp->getBasicBlock()->getName(); return; } case MachineOperand::MO_ConstantPoolIndex: O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex(); return; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); return; case MachineOperand::MO_GlobalAddress: if (!elideOffsetKeyword) { GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); // Dynamically-resolved functions need a stub for the function Function *F = dyn_cast(GV); if (F && F->isExternal()) { FnStubs.insert(Name); O << "L" << Name << "$stub"; } else { GlobalVariable *GVar = dyn_cast(GV); // External global variables need a non-lazily-resolved stub if (GVar && GVar->isExternal()) { GVStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; } else O << Mang->getValueName(GV); } } return; default: O << ""; return; } } /// printMachineInstruction -- Print out a single PPC32 LLVM instruction /// MI in Darwin syntax to the current output stream. /// void Printer::printMachineInstruction(const MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); const TargetInstrInfo &TII = *TM.getInstrInfo(); const TargetInstrDescriptor &Desc = TII.get(Opcode); unsigned int i; unsigned int ArgCount = MI->getNumOperands(); //Desc.TSFlags & PPC32II::ArgCountMask; unsigned int ArgType[] = { (Desc.TSFlags >> PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask, (Desc.TSFlags >> PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask, (Desc.TSFlags >> PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask, (Desc.TSFlags >> PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask, (Desc.TSFlags >> PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask }; assert(((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support"); assert(((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support"); ++EmittedInsts; if (Opcode == PPC32::IMPLICIT_DEF) { O << "; IMPLICIT DEF "; printOp(MI->getOperand(0)); O << "\n"; return; } // FIXME: should probably be converted to cout.width and cout.fill if (Opcode == PPC32::MovePCtoLR) { O << "bl \"L0000" << labelNumber << "$pb\"\n"; O << "\"L0000" << labelNumber << "$pb\":\n"; O << "\tmflr "; printOp(MI->getOperand(0)); O << "\n"; return; } O << TII.getName(MI->getOpcode()) << " "; DEBUG(std::cerr << TII.getName(MI->getOpcode()) << " expects " << ArgCount << " args\n"); if (Opcode == PPC32::LOADLoAddr) { printOp(MI->getOperand(0)); O << ", lo16("; printOp(MI->getOperand(2)); O << "-\"L0000" << labelNumber << "$pb\")"; labelNumber++; O << "("; if (MI->getOperand(1).getReg() == PPC32::R0) O << "0"; else printOp(MI->getOperand(1)); O << ")\n"; } else if (Opcode == PPC32::LOADHiAddr) { printOp(MI->getOperand(0)); O << ", "; if (MI->getOperand(1).getReg() == PPC32::R0) O << "0"; else printOp(MI->getOperand(1)); O << ", ha16(" ; printOp(MI->getOperand(2)); O << "-\"L0000" << labelNumber << "$pb\")\n"; } else if (ArgCount == 3 && ArgType[1] == PPC32II::Disimm16) { printOp(MI->getOperand(0)); O << ", "; printOp(MI->getOperand(1)); O << "("; if (MI->getOperand(2).hasAllocatedReg() && MI->getOperand(2).getReg() == PPC32::R0) O << "0"; else printOp(MI->getOperand(2)); O << ")\n"; } else { for (i = 0; i < ArgCount; ++i) { if (i == 1 && ArgCount == 3 && ArgType[2] == PPC32II::Simm16 && MI->getOperand(1).hasAllocatedReg() && MI->getOperand(1).getReg() == PPC32::R0) { O << "0"; } else { printOp(MI->getOperand(i)); } if (ArgCount - 1 == i) O << "\n"; else O << ", "; } } } bool Printer::doInitialization(Module &M) { Mang = new Mangler(M, true); return false; // success } // SwitchSection - Switch to the specified section of the executable if we are // not already in it! // static void SwitchSection(std::ostream &OS, std::string &CurSection, const char *NewSection) { if (CurSection != NewSection) { CurSection = NewSection; if (!CurSection.empty()) OS << "\t" << NewSection << "\n"; } } bool Printer::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); std::string CurSection; // Print out module-level global variables here. for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) if (I->hasInitializer()) { // External global require no code O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = TD.getTypeAlignment(C->getType()); if (C->isNullValue() && (I->hasLinkOnceLinkage() || I->hasInternalLinkage() || I->hasWeakLinkage() /* FIXME: Verify correct */)) { SwitchSection(O, CurSection, ".data"); if (I->hasInternalLinkage()) O << "\t.lcomm " << name << "," << TD.getTypeSize(C->getType()) << "," << (unsigned)TD.getTypeAlignment(C->getType()); else O << "\t.comm " << name << "," << TD.getTypeSize(C->getType()); O << "\t\t; "; WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchSection(O, CurSection, ""); O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: SwitchSection(O, CurSection, ".data"); break; } O << "\t.align " << Align << "\n"; O << name << ":\t\t\t\t; "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; emitGlobalConstant(C); } } // Output stubs for dynamically-linked functions for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { O << "\t.picsymbol_stub\n"; O << "L" << *i << "$stub:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\tmflr r0\n"; O << "\tbl L0$" << *i << "\n"; O << "L0$" << *i << ":\n"; O << "\tmflr r11\n"; O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n"; O << "\tmtlr r0\n"; O << "\tlwz r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\taddi r11,r11,lo16(L" << *i << "$lazy_ptr - L0$" << *i << ")\n"; O << "\tbctr\n"; O << ".data\n"; O << ".lazy_symbol_pointer\n"; O << "L" << *i << "$lazy_ptr:\n"; O << ".indirect_symbol " << *i << "\n"; O << ".long dyld_stub_binding_helper\n"; } O << "\n"; // Output stubs for external global variables if (GVStubs.begin() != GVStubs.end()) O << "\t.non_lazy_symbol_pointer\n"; for (std::set::iterator i = GVStubs.begin(), e = GVStubs.end(); i != e; ++i) { O << "L" << *i << "$non_lazy_ptr:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\t.long\t0\n"; } delete Mang; return false; // success } } // End llvm namespace