//===- Pass.cpp - LLVM Pass Infrastructure Implementation -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVM Pass infrastructure. It is primarily // responsible with ensuring that passes are executed and batched together // optimally. // //===----------------------------------------------------------------------===// #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/PassNameParser.h" #include "llvm/Support/raw_ostream.h" #include "llvm/System/Atomic.h" #include "llvm/System/Mutex.h" #include "llvm/System/Threading.h" #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Pass Implementation // // Force out-of-line virtual method. Pass::~Pass() { delete Resolver; } // Force out-of-line virtual method. ModulePass::~ModulePass() { } PassManagerType ModulePass::getPotentialPassManagerType() const { return PMT_ModulePassManager; } bool Pass::mustPreserveAnalysisID(const PassInfo *AnalysisID) const { return Resolver->getAnalysisIfAvailable(AnalysisID, true) != 0; } // dumpPassStructure - Implement the -debug-passes=Structure option void Pass::dumpPassStructure(unsigned Offset) { dbgs().indent(Offset*2) << getPassName() << "\n"; } /// getPassName - Return a nice clean name for a pass. This usually /// implemented in terms of the name that is registered by one of the /// Registration templates, but can be overloaded directly. /// const char *Pass::getPassName() const { if (const PassInfo *PI = getPassInfo()) return PI->getPassName(); return "Unnamed pass: implement Pass::getPassName()"; } void Pass::preparePassManager(PMStack &) { // By default, don't do anything. } PassManagerType Pass::getPotentialPassManagerType() const { // Default implementation. return PMT_Unknown; } void Pass::getAnalysisUsage(AnalysisUsage &) const { // By default, no analysis results are used, all are invalidated. } void Pass::releaseMemory() { // By default, don't do anything. } void Pass::verifyAnalysis() const { // By default, don't do anything. } // print - Print out the internal state of the pass. This is called by Analyze // to print out the contents of an analysis. Otherwise it is not necessary to // implement this method. // void Pass::print(raw_ostream &O,const Module*) const { O << "Pass::print not implemented for pass: '" << getPassName() << "'!\n"; } // dump - call print(cerr); void Pass::dump() const { print(dbgs(), 0); } //===----------------------------------------------------------------------===// // ImmutablePass Implementation // // Force out-of-line virtual method. ImmutablePass::~ImmutablePass() { } void ImmutablePass::initializePass() { // By default, don't do anything. } //===----------------------------------------------------------------------===// // FunctionPass Implementation // // run - On a module, we run this pass by initializing, runOnFunction'ing once // for every function in the module, then by finalizing. // bool FunctionPass::runOnModule(Module &M) { bool Changed = doInitialization(M); for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isDeclaration()) // Passes are not run on external functions! Changed |= runOnFunction(*I); return Changed | doFinalization(M); } // run - On a function, we simply initialize, run the function, then finalize. // bool FunctionPass::run(Function &F) { // Passes are not run on external functions! if (F.isDeclaration()) return false; bool Changed = doInitialization(*F.getParent()); Changed |= runOnFunction(F); return Changed | doFinalization(*F.getParent()); } bool FunctionPass::doInitialization(Module &) { // By default, don't do anything. return false; } bool FunctionPass::doFinalization(Module &) { // By default, don't do anything. return false; } PassManagerType FunctionPass::getPotentialPassManagerType() const { return PMT_FunctionPassManager; } //===----------------------------------------------------------------------===// // BasicBlockPass Implementation // // To run this pass on a function, we simply call runOnBasicBlock once for each // function. // bool BasicBlockPass::runOnFunction(Function &F) { bool Changed = doInitialization(F); for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed | doFinalization(F); } bool BasicBlockPass::doInitialization(Module &) { // By default, don't do anything. return false; } bool BasicBlockPass::doInitialization(Function &) { // By default, don't do anything. return false; } bool BasicBlockPass::doFinalization(Function &) { // By default, don't do anything. return false; } bool BasicBlockPass::doFinalization(Module &) { // By default, don't do anything. return false; } PassManagerType BasicBlockPass::getPotentialPassManagerType() const { return PMT_BasicBlockPassManager; } //===----------------------------------------------------------------------===// // Pass Registration mechanism // namespace { class PassRegistrar { /// PassInfoMap - Keep track of the passinfo object for each registered llvm /// pass. typedef std::map MapType; MapType PassInfoMap; typedef StringMap StringMapType; StringMapType PassInfoStringMap; /// AnalysisGroupInfo - Keep track of information for each analysis group. struct AnalysisGroupInfo { std::set Implementations; }; /// AnalysisGroupInfoMap - Information for each analysis group. std::map AnalysisGroupInfoMap; public: const PassInfo *GetPassInfo(intptr_t TI) const { MapType::const_iterator I = PassInfoMap.find(TI); return I != PassInfoMap.end() ? I->second : 0; } const PassInfo *GetPassInfo(StringRef Arg) const { StringMapType::const_iterator I = PassInfoStringMap.find(Arg); return I != PassInfoStringMap.end() ? I->second : 0; } void RegisterPass(const PassInfo &PI) { bool Inserted = PassInfoMap.insert(std::make_pair(PI.getTypeInfo(),&PI)).second; assert(Inserted && "Pass registered multiple times!"); Inserted=Inserted; PassInfoStringMap[PI.getPassArgument()] = &PI; } void UnregisterPass(const PassInfo &PI) { MapType::iterator I = PassInfoMap.find(PI.getTypeInfo()); assert(I != PassInfoMap.end() && "Pass registered but not in map!"); // Remove pass from the map. PassInfoMap.erase(I); PassInfoStringMap.erase(PI.getPassArgument()); } void EnumerateWith(PassRegistrationListener *L) { for (MapType::const_iterator I = PassInfoMap.begin(), E = PassInfoMap.end(); I != E; ++I) L->passEnumerate(I->second); } /// Analysis Group Mechanisms. void RegisterAnalysisGroup(PassInfo *InterfaceInfo, const PassInfo *ImplementationInfo, bool isDefault) { AnalysisGroupInfo &AGI = AnalysisGroupInfoMap[InterfaceInfo]; assert(AGI.Implementations.count(ImplementationInfo) == 0 && "Cannot add a pass to the same analysis group more than once!"); AGI.Implementations.insert(ImplementationInfo); if (isDefault) { assert(InterfaceInfo->getNormalCtor() == 0 && "Default implementation for analysis group already specified!"); assert(ImplementationInfo->getNormalCtor() && "Cannot specify pass as default if it does not have a default ctor"); InterfaceInfo->setNormalCtor(ImplementationInfo->getNormalCtor()); } } }; } static std::vector *Listeners = 0; static sys::SmartMutex ListenersLock; // FIXME: This should use ManagedStatic to manage the pass registrar. // Unfortunately, we can't do this, because passes are registered with static // ctors, and having llvm_shutdown clear this map prevents successful // ressurection after llvm_shutdown is run. static PassRegistrar *getPassRegistrar() { static PassRegistrar *PassRegistrarObj = 0; // Use double-checked locking to safely initialize the registrar when // we're running in multithreaded mode. PassRegistrar* tmp = PassRegistrarObj; if (llvm_is_multithreaded()) { sys::MemoryFence(); if (!tmp) { llvm_acquire_global_lock(); tmp = PassRegistrarObj; if (!tmp) { tmp = new PassRegistrar(); sys::MemoryFence(); PassRegistrarObj = tmp; } llvm_release_global_lock(); } } else if (!tmp) { PassRegistrarObj = new PassRegistrar(); } return PassRegistrarObj; } // getPassInfo - Return the PassInfo data structure that corresponds to this // pass... const PassInfo *Pass::getPassInfo() const { return lookupPassInfo(PassID); } const PassInfo *Pass::lookupPassInfo(intptr_t TI) { return getPassRegistrar()->GetPassInfo(TI); } const PassInfo *Pass::lookupPassInfo(StringRef Arg) { return getPassRegistrar()->GetPassInfo(Arg); } void PassInfo::registerPass() { getPassRegistrar()->RegisterPass(*this); // Notify any listeners. sys::SmartScopedLock Lock(ListenersLock); if (Listeners) for (std::vector::iterator I = Listeners->begin(), E = Listeners->end(); I != E; ++I) (*I)->passRegistered(this); } void PassInfo::unregisterPass() { getPassRegistrar()->UnregisterPass(*this); } //===----------------------------------------------------------------------===// // Analysis Group Implementation Code //===----------------------------------------------------------------------===// // RegisterAGBase implementation // RegisterAGBase::RegisterAGBase(const char *Name, intptr_t InterfaceID, intptr_t PassID, bool isDefault) : PassInfo(Name, InterfaceID) { PassInfo *InterfaceInfo = const_cast(Pass::lookupPassInfo(InterfaceID)); if (InterfaceInfo == 0) { // First reference to Interface, register it now. registerPass(); InterfaceInfo = this; } assert(isAnalysisGroup() && "Trying to join an analysis group that is a normal pass!"); if (PassID) { const PassInfo *ImplementationInfo = Pass::lookupPassInfo(PassID); assert(ImplementationInfo && "Must register pass before adding to AnalysisGroup!"); // Make sure we keep track of the fact that the implementation implements // the interface. PassInfo *IIPI = const_cast(ImplementationInfo); IIPI->addInterfaceImplemented(InterfaceInfo); getPassRegistrar()->RegisterAnalysisGroup(InterfaceInfo, IIPI, isDefault); } } //===----------------------------------------------------------------------===// // PassRegistrationListener implementation // // PassRegistrationListener ctor - Add the current object to the list of // PassRegistrationListeners... PassRegistrationListener::PassRegistrationListener() { sys::SmartScopedLock Lock(ListenersLock); if (!Listeners) Listeners = new std::vector(); Listeners->push_back(this); } // dtor - Remove object from list of listeners... PassRegistrationListener::~PassRegistrationListener() { sys::SmartScopedLock Lock(ListenersLock); std::vector::iterator I = std::find(Listeners->begin(), Listeners->end(), this); assert(Listeners && I != Listeners->end() && "PassRegistrationListener not registered!"); Listeners->erase(I); if (Listeners->empty()) { delete Listeners; Listeners = 0; } } // enumeratePasses - Iterate over the registered passes, calling the // passEnumerate callback on each PassInfo object. // void PassRegistrationListener::enumeratePasses() { getPassRegistrar()->EnumerateWith(this); } PassNameParser::~PassNameParser() {} //===----------------------------------------------------------------------===// // AnalysisUsage Class Implementation // namespace { struct GetCFGOnlyPasses : public PassRegistrationListener { typedef AnalysisUsage::VectorType VectorType; VectorType &CFGOnlyList; GetCFGOnlyPasses(VectorType &L) : CFGOnlyList(L) {} void passEnumerate(const PassInfo *P) { if (P->isCFGOnlyPass()) CFGOnlyList.push_back(P); } }; } // setPreservesCFG - This function should be called to by the pass, iff they do // not: // // 1. Add or remove basic blocks from the function // 2. Modify terminator instructions in any way. // // This function annotates the AnalysisUsage info object to say that analyses // that only depend on the CFG are preserved by this pass. // void AnalysisUsage::setPreservesCFG() { // Since this transformation doesn't modify the CFG, it preserves all analyses // that only depend on the CFG (like dominators, loop info, etc...) GetCFGOnlyPasses(Preserved).enumeratePasses(); }