//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some functions that are useful for math stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_MATHEXTRAS_H #define LLVM_SUPPORT_MATHEXTRAS_H #include "llvm/Support/DataTypes.h" namespace llvm { // NOTE: The following support functions use the _32/_64 extensions instead of type // overloading so that signed and unsigned integers can be used without ambiguity. // Hi_32 - This function returns the high 32 bits of a 64 bit value. inline unsigned Hi_32(uint64_t Value) { return (unsigned)(Value >> 32); } // Lo_32 - This function returns the low 32 bits of a 64 bit value. inline unsigned Lo_32(uint64_t Value) { return (unsigned)Value; } // is?Type - these functions produce optimal testing for integer data types. inline bool isInt8 (int Value) { return ( signed char )Value == Value; } inline bool isUInt8 (int Value) { return (unsigned char )Value == Value; } inline bool isInt16 (int Value) { return ( signed short)Value == Value; } inline bool isUInt16(int Value) { return (unsigned short)Value == Value; } inline bool isInt32 (int64_t Value) { return ( signed int )Value == Value; } inline bool isUInt32(int64_t Value) { return (unsigned int )Value == Value; } // isMask_32 - This function returns true if the argument is a sequence of ones starting // at the least significant bit with the remainder zero (32 bit version.) // Ex. isMask_32(0x0000FFFFU) == true. inline const bool isMask_32(unsigned Value) { return Value && ((Value + 1) & Value) == 0; } // isMask_64 - This function returns true if the argument is a sequence of ones starting // at the least significant bit with the remainder zero (64 bit version.) inline const bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; } // isShiftedMask_32 - This function returns true if the argument contains a sequence of ones // with the remainder zero (32 bit version.) // Ex. isShiftedMask_32(0x0000FF00U) == true. inline const bool isShiftedMask_32(unsigned Value) { return isMask_32((Value - 1) | Value); } // isShiftedMask_64 - This function returns true if the argument contains a sequence of ones // with the remainder zero (64 bit version.) inline const bool isShiftedMask_64(uint64_t Value) { return isMask_64((Value - 1) | Value); } // isPowerOf2_32 - This function returns true if the argument is a power of two > 0. // Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) inline bool isPowerOf2_32(unsigned Value) { return Value && !(Value & (Value - 1)); } // isPowerOf2_64 - This function returns true if the argument is a power of two > 0 // (64 bit edition.) inline bool isPowerOf2_64(uint64_t Value) { return Value && !(Value & (Value - 1LL)); } // CountLeadingZeros_32 - this function performs the platform optimal form // of counting the number of zeros from the most significant bit to the first one bit. // Ex. CountLeadingZeros_32(0x00F000FF) == 8. // Returns 32 if the word is zero. inline unsigned CountLeadingZeros_32(unsigned Value) { unsigned Count; // result #if __GNUC__ >= 4 // PowerPC is defined for __builtin_clz(0) #if defined(__ppc__) || defined(__ppc64__) if (!Value) return 32; #endif Count = __builtin_clz(Value); #else if (!Value) return 32; Count = 0; // bisecton method for count leading zeros for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) { unsigned Tmp = Value >> Shift; if (Tmp) { Count |= Shift; Value = Tmp; } } #endif return Count; } // CountLeadingZeros_64 - This function performs the platform optimal form // of counting the number of zeros from the most significant bit to the first one bit // (64 bit edition.) // Returns 64 if the word is zero. inline unsigned CountLeadingZeros_64(uint64_t Value) { unsigned Count; // result #if __GNUC__ >= 4 // PowerPC is defined for __builtin_clzll(0) #if defined(__ppc__) || defined(__ppc64__) if (!Value) return 64; #endif Count = __builtin_clzll(Value); #elif sizeof(long) == sizeof(int64_t) if (!Value) return 64; Count = 0; // bisecton method for count leading zeros for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) { uint64_t Tmp = Value >> Shift; if (Tmp) { Count |= Shift; Value = Tmp; } } #else // get hi portion unsigned Hi = Hi_32(Value); // if some bits in hi portion if (Hi) { // leading zeros in hi portion plus all bits in lo portion Count = CountLeadingZeros_32(Hi) + 32; } else { // get lo portion unsigned Lo = Lo_32(Value); // same as 32 bit value Count = CountLeadingZeros_32(Lo); } #endif return Count; } // Log2_32 - This function returns the floor log base 2 of the specified value, -1 if the value is zero. // (32 bit edition.) // Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1 inline unsigned Log2_32(unsigned Value) { return 31 - CountLeadingZeros_32(Value); } // Log2_64 - This function returns the floor log base 2 of the specified value, -1 if the value is zero. // (64 bit edition.) inline unsigned Log2_64(unsigned Value) { return 63 - CountLeadingZeros_64(Value); } // Platform-independent wrappers for the C99 isnan() function. int IsNAN (float f); int IsNAN (double d); // Platform-independent wrappers for the C99 isinf() function. int IsInf (float f); int IsInf (double d); } // End llvm namespace #endif