//===-- PhyRegAlloc.cpp ---------------------------------------------------===// // // Register allocation for LLVM. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegisterAllocation.h" #include "RegAllocCommon.h" #include "RegClass.h" #include "llvm/CodeGen/IGNode.h" #include "llvm/CodeGen/PhyRegAlloc.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineInstrAnnot.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/FunctionLiveVarInfo.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegInfo.h" #include "llvm/Function.h" #include "llvm/Type.h" #include "llvm/iOther.h" #include "Support/STLExtras.h" #include "Support/CommandLine.h" #include using std::cerr; using std::vector; RegAllocDebugLevel_t DEBUG_RA; static cl::opt DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA), cl::desc("enable register allocation debugging information"), cl::values( clEnumValN(RA_DEBUG_None , "n", "disable debug output"), clEnumValN(RA_DEBUG_Results, "y", "debug output for allocation results"), clEnumValN(RA_DEBUG_Coloring, "c", "debug output for graph coloring step"), clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"), clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"), clEnumValN(RA_DEBUG_Verbose, "v", "extra debug output"), 0)); //---------------------------------------------------------------------------- // RegisterAllocation pass front end... //---------------------------------------------------------------------------- namespace { class RegisterAllocator : public FunctionPass { TargetMachine &Target; public: inline RegisterAllocator(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "Register Allocation"; } bool runOnFunction(Function &F) { if (DEBUG_RA) cerr << "\n********* Function "<< F.getName() << " ***********\n"; PhyRegAlloc PRA(&F, Target, &getAnalysis(), &getAnalysis()); PRA.allocateRegisters(); if (DEBUG_RA) cerr << "\nRegister allocation complete!\n"; return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequired(); } }; } Pass *getRegisterAllocator(TargetMachine &T) { return new RegisterAllocator(T); } //---------------------------------------------------------------------------- // Constructor: Init local composite objects and create register classes. //---------------------------------------------------------------------------- PhyRegAlloc::PhyRegAlloc(Function *F, const TargetMachine& tm, FunctionLiveVarInfo *Lvi, LoopInfo *LDC) : TM(tm), Fn(F), MF(MachineFunction::get(F)), LVI(Lvi), LRI(F, tm, RegClassList), MRI(tm.getRegInfo()), NumOfRegClasses(MRI.getNumOfRegClasses()), LoopDepthCalc(LDC) { // create each RegisterClass and put in RegClassList // for (unsigned rc=0; rc != NumOfRegClasses; rc++) RegClassList.push_back(new RegClass(F, &tm.getRegInfo(), MRI.getMachineRegClass(rc))); } //---------------------------------------------------------------------------- // Destructor: Deletes register classes //---------------------------------------------------------------------------- PhyRegAlloc::~PhyRegAlloc() { for ( unsigned rc=0; rc < NumOfRegClasses; rc++) delete RegClassList[rc]; AddedInstrMap.clear(); } //---------------------------------------------------------------------------- // This method initally creates interference graphs (one in each reg class) // and IGNodeList (one in each IG). The actual nodes will be pushed later. //---------------------------------------------------------------------------- void PhyRegAlloc::createIGNodeListsAndIGs() { if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "Creating LR lists ...\n"; // hash map iterator LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); // hash map end LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); for (; HMI != HMIEnd ; ++HMI ) { if (HMI->first) { LiveRange *L = HMI->second; // get the LiveRange if (!L) { if (DEBUG_RA) cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: " << RAV(HMI->first) << "****\n"; continue; } // if the Value * is not null, and LR is not yet written to the IGNodeList if (!(L->getUserIGNode()) ) { RegClass *const RC = // RegClass of first value in the LR RegClassList[ L->getRegClass()->getID() ]; RC->addLRToIG(L); // add this LR to an IG } } } // init RegClassList for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->createInterferenceGraph(); if (DEBUG_RA >= RA_DEBUG_LiveRanges) cerr << "LRLists Created!\n"; } //---------------------------------------------------------------------------- // This method will add all interferences at for a given instruction. // Interence occurs only if the LR of Def (Inst or Arg) is of the same reg // class as that of live var. The live var passed to this function is the // LVset AFTER the instruction //---------------------------------------------------------------------------- void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet, bool isCallInst) { ValueSet::const_iterator LIt = LVSet->begin(); // get the live range of instruction // const LiveRange *const LROfDef = LRI.getLiveRangeForValue( Def ); IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); assert( IGNodeOfDef ); RegClass *const RCOfDef = LROfDef->getRegClass(); // for each live var in live variable set // for ( ; LIt != LVSet->end(); ++LIt) { if (DEBUG_RA >= RA_DEBUG_Verbose) cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> "; // get the live range corresponding to live var // LiveRange *LROfVar = LRI.getLiveRangeForValue(*LIt); // LROfVar can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above // if (LROfVar) if (LROfDef != LROfVar) // do not set interf for same LR if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same RCOfDef->setInterference( LROfDef, LROfVar); } } //---------------------------------------------------------------------------- // For a call instruction, this method sets the CallInterference flag in // the LR of each variable live int the Live Variable Set live after the // call instruction (except the return value of the call instruction - since // the return value does not interfere with that call itself). //---------------------------------------------------------------------------- void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, const ValueSet *LVSetAft) { if (DEBUG_RA >= RA_DEBUG_Interference) cerr << "\n For call inst: " << *MInst; // for each live var in live variable set after machine inst // for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end(); LIt != LEnd; ++LIt) { // get the live range corresponding to live var // LiveRange *const LR = LRI.getLiveRangeForValue(*LIt ); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above // if (LR ) { if (DEBUG_RA >= RA_DEBUG_Interference) { cerr << "\n\tLR after Call: "; printSet(*LR); } LR->setCallInterference(); if (DEBUG_RA >= RA_DEBUG_Interference) { cerr << "\n ++After adding call interference for LR: " ; printSet(*LR); } } } // Now find the LR of the return value of the call // We do this because, we look at the LV set *after* the instruction // to determine, which LRs must be saved across calls. The return value // of the call is live in this set - but it does not interfere with call // (i.e., we can allocate a volatile register to the return value) // CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst); if (const Value *RetVal = argDesc->getReturnValue()) { LiveRange *RetValLR = LRI.getLiveRangeForValue( RetVal ); assert( RetValLR && "No LR for RetValue of call"); RetValLR->clearCallInterference(); } // If the CALL is an indirect call, find the LR of the function pointer. // That has a call interference because it conflicts with outgoing args. if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) { LiveRange *AddrValLR = LRI.getLiveRangeForValue( AddrVal ); assert( AddrValLR && "No LR for indirect addr val of call"); AddrValLR->setCallInterference(); } } //---------------------------------------------------------------------------- // This method will walk thru code and create interferences in the IG of // each RegClass. Also, this method calculates the spill cost of each // Live Range (it is done in this method to save another pass over the code). //---------------------------------------------------------------------------- void PhyRegAlloc::buildInterferenceGraphs() { if (DEBUG_RA >= RA_DEBUG_Interference) cerr << "Creating interference graphs ...\n"; unsigned BBLoopDepthCost; for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end(); BBI != BBE; ++BBI) { const MachineBasicBlock &MBB = *BBI; const BasicBlock *BB = MBB.getBasicBlock(); // find the 10^(loop_depth) of this BB // BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB)); // get the iterator for machine instructions // MachineBasicBlock::const_iterator MII = MBB.begin(); // iterate over all the machine instructions in BB // for ( ; MII != MBB.end(); ++MII) { const MachineInstr *MInst = *MII; // get the LV set after the instruction // const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB); bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); if (isCallInst ) { // set the isCallInterference flag of each live range wich extends // accross this call instruction. This information is used by graph // coloring algo to avoid allocating volatile colors to live ranges // that span across calls (since they have to be saved/restored) // setCallInterferences(MInst, &LVSetAI); } // iterate over all MI operands to find defs // for (MachineInstr::const_val_op_iterator OpI = MInst->begin(), OpE = MInst->end(); OpI != OpE; ++OpI) { if (OpI.isDefOnly() || OpI.isDefAndUse()) // create a new LR since def addInterference(*OpI, &LVSetAI, isCallInst); // Calculate the spill cost of each live range // LiveRange *LR = LRI.getLiveRangeForValue(*OpI); if (LR) LR->addSpillCost(BBLoopDepthCost); } // if there are multiple defs in this instruction e.g. in SETX // if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode())) addInterf4PseudoInstr(MInst); // Also add interference for any implicit definitions in a machine // instr (currently, only calls have this). // unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); for (unsigned z=0; z < NumOfImpRefs; z++) if (MInst->getImplicitOp(z).opIsDefOnly() || MInst->getImplicitOp(z).opIsDefAndUse()) addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst ); } // for all machine instructions in BB } // for all BBs in function // add interferences for function arguments. Since there are no explict // defs in the function for args, we have to add them manually // addInterferencesForArgs(); if (DEBUG_RA >= RA_DEBUG_Interference) cerr << "Interference graphs calculated!\n"; } //-------------------------------------------------------------------------- // Pseudo instructions will be exapnded to multiple instructions by the // assembler. Consequently, all the opernds must get distinct registers. // Therefore, we mark all operands of a pseudo instruction as they interfere // with one another. //-------------------------------------------------------------------------- void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { bool setInterf = false; // iterate over MI operands to find defs // for (MachineInstr::const_val_op_iterator It1 = MInst->begin(), ItE = MInst->end(); It1 != ItE; ++It1) { const LiveRange *LROfOp1 = LRI.getLiveRangeForValue(*It1); assert((LROfOp1 || !It1.isUseOnly())&& "No LR for Def in PSEUDO insruction"); MachineInstr::const_val_op_iterator It2 = It1; for (++It2; It2 != ItE; ++It2) { const LiveRange *LROfOp2 = LRI.getLiveRangeForValue(*It2); if (LROfOp2) { RegClass *RCOfOp1 = LROfOp1->getRegClass(); RegClass *RCOfOp2 = LROfOp2->getRegClass(); if (RCOfOp1 == RCOfOp2 ){ RCOfOp1->setInterference( LROfOp1, LROfOp2 ); setInterf = true; } } // if Op2 has a LR } // for all other defs in machine instr } // for all operands in an instruction if (!setInterf && MInst->getNumOperands() > 2) { cerr << "\nInterf not set for any operand in pseudo instr:\n"; cerr << *MInst; assert(0 && "Interf not set for pseudo instr with > 2 operands" ); } } //---------------------------------------------------------------------------- // This method will add interferences for incoming arguments to a function. //---------------------------------------------------------------------------- void PhyRegAlloc::addInterferencesForArgs() { // get the InSet of root BB const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front()); for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) { // add interferences between args and LVars at start addInterference(AI, &InSet, false); if (DEBUG_RA >= RA_DEBUG_Interference) cerr << " - %% adding interference for argument " << RAV(AI) << "\n"; } } //---------------------------------------------------------------------------- // This method is called after register allocation is complete to set the // allocated reisters in the machine code. This code will add register numbers // to MachineOperands that contain a Value. Also it calls target specific // methods to produce caller saving instructions. At the end, it adds all // additional instructions produced by the register allocator to the // instruction stream. //---------------------------------------------------------------------------- //----------------------------- // Utility functions used below //----------------------------- inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { MII = MBB.insert(MII, newMI); ++MII; } inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { ++MII; // insert before the next instruction MII = MBB.insert(MII, newMI); } inline void DeleteInstruction(MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII) { MII = MBB.erase(MII); } inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB, MachineBasicBlock::iterator MII) { *MII = newMI; } inline void PrependInstructions(vector &IBef, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII, const std::string& msg) { if (!IBef.empty()) { MachineInstr* OrigMI = *MII; std::vector::iterator AdIt; for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) { if (DEBUG_RA) { if (OrigMI) cerr << "For MInst:\n " << *OrigMI; cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n"; } InsertBefore(*AdIt, MBB, MII); } } } inline void AppendInstructions(std::vector &IAft, MachineBasicBlock& MBB, MachineBasicBlock::iterator& MII, const std::string& msg) { if (!IAft.empty()) { MachineInstr* OrigMI = *MII; std::vector::iterator AdIt; for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { if (DEBUG_RA) { if (OrigMI) cerr << "For MInst:\n " << *OrigMI; cerr << msg << "APPENDed instr:\n " << **AdIt << "\n"; } InsertAfter(*AdIt, MBB, MII); } } } static bool MarkAllocatedRegs(MachineInstr* MInst, LiveRangeInfo& LRI, const TargetRegInfo& MRI) { bool instrNeedsSpills = false; // First, set the registers for operands in the machine instruction // if a register was successfully allocated. Do this first because we // will need to know which registers are already used by this instr'n. // for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister) { const Value *const Val = Op.getVRegValue(); if (const LiveRange* LR = LRI.getLiveRangeForValue(Val)) { // Remember if any operand needs spilling instrNeedsSpills |= LR->isMarkedForSpill(); // An operand may have a color whether or not it needs spilling if (LR->hasColor()) MInst->SetRegForOperand(OpNum, MRI.getUnifiedRegNum(LR->getRegClass()->getID(), LR->getColor())); } } } // for each operand return instrNeedsSpills; } void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII, MachineBasicBlock &MBB) { MachineInstr* MInst = *MII; unsigned Opcode = MInst->getOpCode(); // Reset tmp stack positions so they can be reused for each machine instr. MF.getInfo()->popAllTempValues(); // Mark the operands for which regs have been allocated. bool instrNeedsSpills = MarkAllocatedRegs(*MII, LRI, MRI); #ifndef NDEBUG // Mark that the operands have been updated. Later, // setRelRegsUsedByThisInst() is called to find registers used by each // MachineInst, and it should not be used for an instruction until // this is done. This flag just serves as a sanity check. OperandsColoredMap[MInst] = true; #endif // Now insert caller-saving code before/after the call. // Do this before inserting spill code since some registers must be // used by save/restore and spill code should not use those registers. // if (TM.getInstrInfo().isCall(Opcode)) { AddedInstrns &AI = AddedInstrMap[MInst]; insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst, MBB.getBasicBlock()); } // Now insert spill code for remaining operands not allocated to // registers. This must be done even for call return instructions // since those are not handled by the special code above. if (instrNeedsSpills) for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister) { const Value* Val = Op.getVRegValue(); if (const LiveRange *LR = LRI.getLiveRangeForValue(Val)) if (LR->isMarkedForSpill()) insertCode4SpilledLR(LR, MII, MBB, OpNum); } } // for each operand } void PhyRegAlloc::updateMachineCode() { // Insert any instructions needed at method entry MachineBasicBlock::iterator MII = MF.front().begin(); PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF.front(), MII, "At function entry: \n"); assert(AddedInstrAtEntry.InstrnsAfter.empty() && "InstrsAfter should be unnecessary since we are just inserting at " "the function entry point here."); for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end(); BBI != BBE; ++BBI) { MachineBasicBlock &MBB = *BBI; // Iterate over all machine instructions in BB and mark operands with // their assigned registers or insert spill code, as appropriate. // Also, fix operands of call/return instructions. for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpCode())) updateInstruction(MII, MBB); // Now, move code out of delay slots of branches and returns if needed. // (Also, move "after" code from calls to the last delay slot instruction.) // Moving code out of delay slots is needed in 2 situations: // (1) If this is a branch and it needs instructions inserted after it, // move any existing instructions out of the delay slot so that the // instructions can go into the delay slot. This only supports the // case that #instrsAfter <= #delay slots. // // (2) If any instruction in the delay slot needs // instructions inserted, move it out of the delay slot and before the // branch because putting code before or after it would be VERY BAD! // // If the annul bit of the branch is set, neither of these is legal! // If so, we need to handle spill differently but annulling is not yet used. // for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) if (unsigned delaySlots = TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) { MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1); // Check the 2 conditions above: // (1) Does a branch need instructions added after it? // (2) O/w does delay slot instr. need instrns before or after? bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) || TM.getInstrInfo().isReturn(MInst->getOpCode())); bool cond1 = (isBranch && AddedInstrMap.count(MInst) && AddedInstrMap[MInst].InstrnsAfter.size() > 0); bool cond2 = (AddedInstrMap.count(DelaySlotMI) && (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 || AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0)); if (cond1 || cond2) { assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 && "FIXME: Moving an annulled delay slot instruction!"); assert(delaySlots==1 && "InsertBefore does not yet handle >1 delay slots!"); InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch // In case (1), delete it and don't replace with anything! // Otherwise (i.e., case (2) only) replace it with a NOP. if (cond1) { DeleteInstruction(MBB, ++MII); // MII now points to next inst. --MII; // reset MII for ++MII of loop } else SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1), MBB, MII+1); // replace with NOP if (DEBUG_RA) { cerr << "\nRegAlloc: Moved instr. with added code: " << *DelaySlotMI << " out of delay slots of instr: " << *MInst; } } else // For non-branch instr with delay slots (probably a call), move // InstrAfter to the instr. in the last delay slot. move2DelayedInstr(*MII, *(MII+delaySlots)); } // Finally iterate over all instructions in BB and insert before/after // for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) { MachineInstr *MInst = *MII; // do not process Phis if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpCode())) continue; // if there are any added instructions... if (AddedInstrMap.count(MInst)) { AddedInstrns &CallAI = AddedInstrMap[MInst]; #ifndef NDEBUG bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) || TM.getInstrInfo().isReturn(MInst->getOpCode())); assert((!isBranch || AddedInstrMap[MInst].InstrnsAfter.size() <= TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) && "Cannot put more than #delaySlots instrns after " "branch or return! Need to handle temps differently."); #endif #ifndef NDEBUG // Temporary sanity checking code to detect whether the same machine // instruction is ever inserted twice before/after a call. // I suspect this is happening but am not sure. --Vikram, 7/1/03. // std::set instrsSeen; for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) { assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 && "Duplicate machine instruction in InstrnsBefore!"); instrsSeen.insert(CallAI.InstrnsBefore[i]); } for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) { assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 && "Duplicate machine instruction in InstrnsBefore/After!"); instrsSeen.insert(CallAI.InstrnsAfter[i]); } #endif // Now add the instructions before/after this MI. // We do this here to ensure that spill for an instruction is inserted // as close as possible to an instruction (see above insertCode4Spill) // if (! CallAI.InstrnsBefore.empty()) PrependInstructions(CallAI.InstrnsBefore, MBB, MII,""); if (! CallAI.InstrnsAfter.empty()) AppendInstructions(CallAI.InstrnsAfter, MBB, MII,""); } // if there are any added instructions } // for each machine instruction } } //---------------------------------------------------------------------------- // This method inserts spill code for AN operand whose LR was spilled. // This method may be called several times for a single machine instruction // if it contains many spilled operands. Each time it is called, it finds // a register which is not live at that instruction and also which is not // used by other spilled operands of the same instruction. Then it uses // this register temporarily to accomodate the spilled value. //---------------------------------------------------------------------------- void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, MachineBasicBlock::iterator& MII, MachineBasicBlock &MBB, const unsigned OpNum) { MachineInstr *MInst = *MII; const BasicBlock *BB = MBB.getBasicBlock(); assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) && "Outgoing arg of a call must be handled elsewhere (func arg ok)"); assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) && "Return value of a ret must be handled elsewhere"); MachineOperand& Op = MInst->getOperand(OpNum); bool isDef = Op.opIsDefOnly(); bool isDefAndUse = Op.opIsDefAndUse(); unsigned RegType = MRI.getRegTypeForLR(LR); int SpillOff = LR->getSpillOffFromFP(); RegClass *RC = LR->getRegClass(); // Get the live-variable set to find registers free before this instr. // If this instr. is in the delay slot of a branch or return, use the live // var set before that branch or return -- we don't want to trample those! // MachineInstr *LiveBeforeThisMI = MInst; if (MII != MBB.begin()) { MachineInstr *PredMI = *(MII-1); if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpCode())) { assert(DS == 1 && "Only checking immediate pred. for delay slots!"); LiveBeforeThisMI = PredMI; } } const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(LiveBeforeThisMI,BB); MF.getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType) ); vector MIBef, MIAft; vector AdIMid; // Choose a register to hold the spilled value, if one was not preallocated. // This may insert code before and after MInst to free up the value. If so, // this code should be first/last in the spill sequence before/after MInst. int TmpRegU=(LR->hasColor() ? MRI.getUnifiedRegNum(LR->getRegClass()->getID(),LR->getColor()) : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft)); // Set the operand first so that it this register does not get used // as a scratch register for later calls to getUsableUniRegAtMI below MInst->SetRegForOperand(OpNum, TmpRegU); // get the added instructions for this instruction AddedInstrns &AI = AddedInstrMap[MInst]; // We may need a scratch register to copy the spilled value to/from memory. // This may itself have to insert code to free up a scratch register. // Any such code should go before (after) the spill code for a load (store). // The scratch reg is not marked as used because it is only used // for the copy and not used across MInst. int scratchRegType = -1; int scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, MInst, MIBef, MIAft); assert(scratchReg != MRI.getInvalidRegNum()); } if (!isDef || isDefAndUse) { // for a USE, we have to load the value of LR from stack to a TmpReg // and use the TmpReg as one operand of instruction // actual loading instruction(s) MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, RegType, scratchReg); // the actual load should be after the instructions to free up TmpRegU MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end()); AdIMid.clear(); } if (isDef || isDefAndUse) { // if this is a Def // for a DEF, we have to store the value produced by this instruction // on the stack position allocated for this LR // actual storing instruction(s) MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, RegType, scratchReg); MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end()); } // if !DEF // Finally, insert the entire spill code sequences before/after MInst AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end()); AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end()); if (DEBUG_RA) { cerr << "\nFor Inst:\n " << *MInst; cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex(); cerr << "; added Instructions:"; for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump)); for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump)); } } //---------------------------------------------------------------------------- // This method inserts caller saving/restoring instructons before/after // a call machine instruction. The caller saving/restoring instructions are // inserted like: // ** caller saving instructions // other instructions inserted for the call by ColorCallArg // CALL instruction // other instructions inserted for the call ColorCallArg // ** caller restoring instructions //---------------------------------------------------------------------------- void PhyRegAlloc::insertCallerSavingCode(std::vector &instrnsBefore, std::vector &instrnsAfter, MachineInstr *CallMI, const BasicBlock *BB) { assert(TM.getInstrInfo().isCall(CallMI->getOpCode())); // has set to record which registers were saved/restored // hash_set PushedRegSet; CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); // if the call is to a instrumentation function, do not insert save and // restore instructions the instrumentation function takes care of save // restore for volatile regs. // // FIXME: this should be made general, not specific to the reoptimizer! // const Function *Callee = argDesc->getCallInst()->getCalledFunction(); bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger"; // Now check if the call has a return value (using argDesc) and if so, // find the LR of the TmpInstruction representing the return value register. // (using the last or second-last *implicit operand* of the call MI). // Insert it to to the PushedRegSet since we must not save that register // and restore it after the call. // We do this because, we look at the LV set *after* the instruction // to determine, which LRs must be saved across calls. The return value // of the call is live in this set - but we must not save/restore it. // if (const Value *origRetVal = argDesc->getReturnValue()) { unsigned retValRefNum = (CallMI->getNumImplicitRefs() - (argDesc->getIndirectFuncPtr()? 1 : 2)); const TmpInstruction* tmpRetVal = cast(CallMI->getImplicitRef(retValRefNum)); assert(tmpRetVal->getOperand(0) == origRetVal && tmpRetVal->getType() == origRetVal->getType() && "Wrong implicit ref?"); LiveRange *RetValLR = LRI.getLiveRangeForValue(tmpRetVal); assert(RetValLR && "No LR for RetValue of call"); if (! RetValLR->isMarkedForSpill()) PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(), RetValLR->getColor())); } const ValueSet &LVSetAft = LVI->getLiveVarSetAfterMInst(CallMI, BB); ValueSet::const_iterator LIt = LVSetAft.begin(); // for each live var in live variable set after machine inst for( ; LIt != LVSetAft.end(); ++LIt) { // get the live range corresponding to live var LiveRange *const LR = LRI.getLiveRangeForValue(*LIt); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if( LR ) { if(! LR->isMarkedForSpill()) { assert(LR->hasColor() && "LR is neither spilled nor colored?"); unsigned RCID = LR->getRegClassID(); unsigned Color = LR->getColor(); if (MRI.isRegVolatile(RCID, Color) ) { //if the function is special LLVM function, //And the register is not modified by call, don't save and restore if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color)) continue; // if the value is in both LV sets (i.e., live before and after // the call machine instruction) unsigned Reg = MRI.getUnifiedRegNum(RCID, Color); if( PushedRegSet.find(Reg) == PushedRegSet.end() ) { // if we haven't already pushed that register unsigned RegType = MRI.getRegTypeForLR(LR); // Now get two instructions - to push on stack and pop from stack // and add them to InstrnsBefore and InstrnsAfter of the // call instruction // int StackOff = MF.getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); //---- Insert code for pushing the reg on stack ---------- std::vector AdIBef, AdIAft; // We may need a scratch register to copy the saved value // to/from memory. This may itself have to insert code to // free up a scratch register. Any such code should go before // the save code. The scratch register, if any, is by default // temporary and not "used" by the instruction unless the // copy code itself decides to keep the value in the scratch reg. int scratchRegType = -1; int scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { // Find a register not live in the LVSet before CallMI const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(CallMI, BB); scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, CallMI, AdIBef, AdIAft); assert(scratchReg != MRI.getInvalidRegNum()); } if (AdIBef.size() > 0) instrnsBefore.insert(instrnsBefore.end(), AdIBef.begin(), AdIBef.end()); MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(), StackOff, RegType, scratchReg); if (AdIAft.size() > 0) instrnsBefore.insert(instrnsBefore.end(), AdIAft.begin(), AdIAft.end()); //---- Insert code for popping the reg from the stack ---------- AdIBef.clear(); AdIAft.clear(); // We may need a scratch register to copy the saved value // from memory. This may itself have to insert code to // free up a scratch register. Any such code should go // after the save code. As above, scratch is not marked "used". // scratchRegType = -1; scratchReg = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { // Find a register not live in the LVSet after CallMI scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft, CallMI, AdIBef, AdIAft); assert(scratchReg != MRI.getInvalidRegNum()); } if (AdIBef.size() > 0) instrnsAfter.insert(instrnsAfter.end(), AdIBef.begin(), AdIBef.end()); MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff, Reg, RegType, scratchReg); if (AdIAft.size() > 0) instrnsAfter.insert(instrnsAfter.end(), AdIAft.begin(), AdIAft.end()); PushedRegSet.insert(Reg); if(DEBUG_RA) { std::cerr << "\nFor call inst:" << *CallMI; std::cerr << " -inserted caller saving instrs: Before:\n\t "; for_each(instrnsBefore.begin(), instrnsBefore.end(), std::mem_fun(&MachineInstr::dump)); std::cerr << " -and After:\n\t "; for_each(instrnsAfter.begin(), instrnsAfter.end(), std::mem_fun(&MachineInstr::dump)); } } // if not already pushed } // if LR has a volatile color } // if LR has color } // if there is a LR for Var } // for each value in the LV set after instruction } //---------------------------------------------------------------------------- // We can use the following method to get a temporary register to be used // BEFORE any given machine instruction. If there is a register available, // this method will simply return that register and set MIBef = MIAft = NULL. // Otherwise, it will return a register and MIAft and MIBef will contain // two instructions used to free up this returned register. // Returned register number is the UNIFIED register number //---------------------------------------------------------------------------- int PhyRegAlloc::getUsableUniRegAtMI(const int RegType, const ValueSet *LVSetBef, MachineInstr *MInst, std::vector& MIBef, std::vector& MIAft) { RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType)); int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef); if (RegU == -1) { // we couldn't find an unused register. Generate code to free up a reg by // saving it on stack and restoring after the instruction int TmpOff = MF.getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst); // Check if we need a scratch register to copy this register to memory. int scratchRegType = -1; if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef, MInst, MIBef, MIAft); assert(scratchReg != MRI.getInvalidRegNum()); // We may as well hold the value in the scratch register instead // of copying it to memory and back. But we have to mark the // register as used by this instruction, so it does not get used // as a scratch reg. by another operand or anyone else. ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg)); MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType); MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType); } else { // the register can be copied directly to/from memory so do it. MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType); MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType); } } return RegU; } //---------------------------------------------------------------------------- // This method is called to get a new unused register that can be used // to accomodate a temporary value. This method may be called several times // for a single machine instruction. Each time it is called, it finds a // register which is not live at that instruction and also which is not used // by other spilled operands of the same instruction. Return register number // is relative to the register class, NOT the unified number. //---------------------------------------------------------------------------- int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType, const MachineInstr *MInst, const ValueSet* LVSetBef) { RC->clearColorsUsed(); // Reset array if (LVSetBef == NULL) { LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst); assert(LVSetBef != NULL && "Unable to get live-var set before MInst?"); } ValueSet::const_iterator LIt = LVSetBef->begin(); // for each live var in live variable set after machine inst for ( ; LIt != LVSetBef->end(); ++LIt) { // get the live range corresponding to live var, and its RegClass LiveRange *const LRofLV = LRI.getLiveRangeForValue(*LIt ); // LR can be null if it is a const since a const // doesn't have a dominating def - see Assumptions above if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor()) RC->markColorsUsed(LRofLV->getColor(), MRI.getRegTypeForLR(LRofLV), RegType); } // It is possible that one operand of this MInst was already spilled // and it received some register temporarily. If that's the case, // it is recorded in machine operand. We must skip such registers. // setRelRegsUsedByThisInst(RC, RegType, MInst); int unusedReg = RC->getUnusedColor(RegType); // find first unused color if (unusedReg >= 0) return MRI.getUnifiedRegNum(RC->getID(), unusedReg); return -1; } //---------------------------------------------------------------------------- // Get any other register in a register class, other than what is used // by operands of a machine instruction. Returns the unified reg number. //---------------------------------------------------------------------------- int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, const int RegType, const MachineInstr *MInst) { RC->clearColorsUsed(); setRelRegsUsedByThisInst(RC, RegType, MInst); // find the first unused color int unusedReg = RC->getUnusedColor(RegType); assert(unusedReg >= 0 && "FATAL: No free register could be found in reg class!!"); return MRI.getUnifiedRegNum(RC->getID(), unusedReg); } //---------------------------------------------------------------------------- // This method modifies the IsColorUsedArr of the register class passed to it. // It sets the bits corresponding to the registers used by this machine // instructions. Both explicit and implicit operands are set. //---------------------------------------------------------------------------- static void markRegisterUsed(int RegNo, RegClass *RC, int RegType, const TargetRegInfo &TRI) { unsigned classId = 0; int classRegNum = TRI.getClassRegNum(RegNo, classId); if (RC->getID() == classId) RC->markColorsUsed(classRegNum, RegType, RegType); } void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType, const MachineInstr *MI) { assert(OperandsColoredMap[MI] == true && "Illegal to call setRelRegsUsedByThisInst() until colored operands " "are marked for an instruction."); // Add the registers already marked as used by the instruction. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).hasAllocatedReg()) markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI); for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i) if (MI->getImplicitOp(i).hasAllocatedReg()) markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC, RegType,MRI); // Add all of the scratch registers that are used to save values across the // instruction (e.g., for saving state register values). std::pair IR = ScratchRegsUsed.equal_range(MI); for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I) markRegisterUsed(I->second, RC, RegType, MRI); // If there are implicit references, mark their allocated regs as well // for (unsigned z=0; z < MI->getNumImplicitRefs(); z++) if (const LiveRange* LRofImpRef = LRI.getLiveRangeForValue(MI->getImplicitRef(z))) if (LRofImpRef->hasColor()) // this implicit reference is in a LR that received a color RC->markColorsUsed(LRofImpRef->getColor(), MRI.getRegTypeForLR(LRofImpRef), RegType); } //---------------------------------------------------------------------------- // If there are delay slots for an instruction, the instructions // added after it must really go after the delayed instruction(s). // So, we move the InstrAfter of that instruction to the // corresponding delayed instruction using the following method. //---------------------------------------------------------------------------- void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI, const MachineInstr *DelayedMI) { if (DEBUG_RA) { cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI; cerr << " to last delay slot instrn: " << *DelayedMI; } // "added after" instructions of the original instr std::vector &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter; // "added after" instructions of the delayed instr std::vector &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter; // go thru all the "added after instructions" of the original instruction // and append them to the "added after instructions" of the delayed // instructions DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); // empty the "added after instructions" of the original instruction OrigAft.clear(); } //---------------------------------------------------------------------------- // This method prints the code with registers after register allocation is // complete. //---------------------------------------------------------------------------- void PhyRegAlloc::printMachineCode() { cerr << "\n;************** Function " << Fn->getName() << " *****************\n"; for (MachineFunction::iterator BBI = MF.begin(), BBE = MF.end(); BBI != BBE; ++BBI) { cerr << "\n"; printLabel(BBI->getBasicBlock()); cerr << ": "; // get the iterator for machine instructions MachineBasicBlock& MBB = *BBI; MachineBasicBlock::iterator MII = MBB.begin(); // iterate over all the machine instructions in BB for ( ; MII != MBB.end(); ++MII) { MachineInstr *MInst = *MII; cerr << "\n\t"; cerr << TM.getInstrInfo().getName(MInst->getOpCode()); for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { MachineOperand& Op = MInst->getOperand(OpNum); if (Op.getType() == MachineOperand::MO_VirtualRegister || Op.getType() == MachineOperand::MO_CCRegister /*|| Op.getType() == MachineOperand::MO_PCRelativeDisp*/ ) { const Value *const Val = Op.getVRegValue () ; // ****this code is temporary till NULL Values are fixed if (! Val ) { cerr << "\t<*NULL*>"; continue; } // if a label or a constant if (isa(Val)) { cerr << "\t"; printLabel( Op.getVRegValue () ); } else { // else it must be a register value const int RegNum = Op.getAllocatedRegNum(); cerr << "\t" << "%" << MRI.getUnifiedRegName( RegNum ); if (Val->hasName() ) cerr << "(" << Val->getName() << ")"; else cerr << "(" << Val << ")"; if (Op.opIsDefOnly() || Op.opIsDefAndUse()) cerr << "*"; const LiveRange *LROfVal = LRI.getLiveRangeForValue(Val); if (LROfVal ) if (LROfVal->hasSpillOffset() ) cerr << "$"; } } else if (Op.getType() == MachineOperand::MO_MachineRegister) { cerr << "\t" << "%" << MRI.getUnifiedRegName(Op.getMachineRegNum()); } else cerr << "\t" << Op; // use dump field } unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); if (NumOfImpRefs > 0) { cerr << "\tImplicit:"; for (unsigned z=0; z < NumOfImpRefs; z++) cerr << RAV(MInst->getImplicitRef(z)) << "\t"; } } // for all machine instructions cerr << "\n"; } // for all BBs cerr << "\n"; } //---------------------------------------------------------------------------- //---------------------------------------------------------------------------- void PhyRegAlloc::colorIncomingArgs() { MRI.colorMethodArgs(Fn, LRI, AddedInstrAtEntry.InstrnsBefore, AddedInstrAtEntry.InstrnsAfter); } //---------------------------------------------------------------------------- // Used to generate a label for a basic block //---------------------------------------------------------------------------- void PhyRegAlloc::printLabel(const Value *Val) { if (Val->hasName()) cerr << Val->getName(); else cerr << "Label" << Val; } //---------------------------------------------------------------------------- // This method calls setSugColorUsable method of each live range. This // will determine whether the suggested color of LR is really usable. // A suggested color is not usable when the suggested color is volatile // AND when there are call interferences //---------------------------------------------------------------------------- void PhyRegAlloc::markUnusableSugColors() { // hash map iterator LiveRangeMapType::const_iterator HMI = (LRI.getLiveRangeMap())->begin(); LiveRangeMapType::const_iterator HMIEnd = (LRI.getLiveRangeMap())->end(); for (; HMI != HMIEnd ; ++HMI ) { if (HMI->first) { LiveRange *L = HMI->second; // get the LiveRange if (L) { if (L->hasSuggestedColor()) { int RCID = L->getRegClass()->getID(); if (MRI.isRegVolatile( RCID, L->getSuggestedColor()) && L->isCallInterference() ) L->setSuggestedColorUsable( false ); else L->setSuggestedColorUsable( true ); } } // if L->hasSuggestedColor() } } // for all LR's in hash map } //---------------------------------------------------------------------------- // The following method will set the stack offsets of the live ranges that // are decided to be spillled. This must be called just after coloring the // LRs using the graph coloring algo. For each live range that is spilled, // this method allocate a new spill position on the stack. //---------------------------------------------------------------------------- void PhyRegAlloc::allocateStackSpace4SpilledLRs() { if (DEBUG_RA) cerr << "\nSetting LR stack offsets for spills...\n"; LiveRangeMapType::const_iterator HMI = LRI.getLiveRangeMap()->begin(); LiveRangeMapType::const_iterator HMIEnd = LRI.getLiveRangeMap()->end(); for ( ; HMI != HMIEnd ; ++HMI) { if (HMI->first && HMI->second) { LiveRange *L = HMI->second; // get the LiveRange if (L->isMarkedForSpill()) { // NOTE: allocating size of long Type ** int stackOffset = MF.getInfo()->allocateSpilledValue(Type::LongTy); L->setSpillOffFromFP(stackOffset); if (DEBUG_RA) cerr << " LR# " << L->getUserIGNode()->getIndex() << ": stack-offset = " << stackOffset << "\n"; } } } // for all LR's in hash map } //---------------------------------------------------------------------------- // The entry pont to Register Allocation //---------------------------------------------------------------------------- void PhyRegAlloc::allocateRegisters() { // make sure that we put all register classes into the RegClassList // before we call constructLiveRanges (now done in the constructor of // PhyRegAlloc class). // LRI.constructLiveRanges(); // create LR info if (DEBUG_RA >= RA_DEBUG_LiveRanges) LRI.printLiveRanges(); createIGNodeListsAndIGs(); // create IGNode list and IGs buildInterferenceGraphs(); // build IGs in all reg classes if (DEBUG_RA >= RA_DEBUG_LiveRanges) { // print all LRs in all reg classes for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->printIGNodeList(); // print IGs in all register classes for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->printIG(); } LRI.coalesceLRs(); // coalesce all live ranges if (DEBUG_RA >= RA_DEBUG_LiveRanges) { // print all LRs in all reg classes for (unsigned rc=0; rc < NumOfRegClasses; rc++) RegClassList[rc]->printIGNodeList(); // print IGs in all register classes for (unsigned rc=0; rc < NumOfRegClasses; rc++) RegClassList[rc]->printIG(); } // mark un-usable suggested color before graph coloring algorithm. // When this is done, the graph coloring algo will not reserve // suggested color unnecessarily - they can be used by another LR // markUnusableSugColors(); // color all register classes using the graph coloring algo for (unsigned rc=0; rc < NumOfRegClasses ; rc++) RegClassList[rc]->colorAllRegs(); // Atter graph coloring, if some LRs did not receive a color (i.e, spilled) // a poistion for such spilled LRs // allocateStackSpace4SpilledLRs(); // Reset the temp. area on the stack before use by the first instruction. // This will also happen after updating each instruction. MF.getInfo()->popAllTempValues(); // color incoming args - if the correct color was not received // insert code to copy to the correct register // colorIncomingArgs(); // Now update the machine code with register names and add any // additional code inserted by the register allocator to the instruction // stream // updateMachineCode(); if (DEBUG_RA) { cerr << "\n**** Machine Code After Register Allocation:\n\n"; MF.dump(); } }