//===- GVNPRE.cpp - Eliminate redundant values and expressions ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the Owen Anderson and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a hybrid of global value numbering and partial redundancy // elimination, known as GVN-PRE. It performs partial redundancy elimination on // values, rather than lexical expressions, allowing a more comprehensive view // the optimization. It replaces redundant values with uses of earlier // occurences of the same value. While this is beneficial in that it eliminates // unneeded computation, it also increases register pressure by creating large // live ranges, and should be used with caution on platforms that are very // sensitive to register pressure. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "gvnpre" #include "llvm/Value.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/Analysis/Dominators.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // ValueTable Class //===----------------------------------------------------------------------===// /// This class holds the mapping between values and value numbers. It is used /// as an efficient mechanism to determine the expression-wise equivalence of /// two values. namespace { class VISIBILITY_HIDDEN ValueTable { public: struct Expression { enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM, FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE, ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ, FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE, FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE, FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT, SHUFFLE, SELECT }; ExpressionOpcode opcode; uint32_t firstVN; uint32_t secondVN; uint32_t thirdVN; bool operator< (const Expression& other) const { if (opcode < other.opcode) return true; else if (opcode > other.opcode) return false; else if (firstVN < other.firstVN) return true; else if (firstVN > other.firstVN) return false; else if (secondVN < other.secondVN) return true; else if (secondVN > other.secondVN) return false; else if (thirdVN < other.thirdVN) return true; else if (thirdVN > other.thirdVN) return false; else return false; } }; private: DenseMap valueNumbering; std::map expressionNumbering; uint32_t nextValueNumber; Expression::ExpressionOpcode getOpcode(BinaryOperator* BO); Expression::ExpressionOpcode getOpcode(CmpInst* C); Expression create_expression(BinaryOperator* BO); Expression create_expression(CmpInst* C); Expression create_expression(ShuffleVectorInst* V); Expression create_expression(ExtractElementInst* C); Expression create_expression(InsertElementInst* V); Expression create_expression(SelectInst* V); public: ValueTable() { nextValueNumber = 1; } uint32_t lookup_or_add(Value* V); uint32_t lookup(Value* V) const; void add(Value* V, uint32_t num); void clear(); void erase(Value* v); unsigned size(); }; } //===----------------------------------------------------------------------===// // ValueTable Internal Functions //===----------------------------------------------------------------------===// ValueTable::Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) { switch(BO->getOpcode()) { case Instruction::Add: return Expression::ADD; case Instruction::Sub: return Expression::SUB; case Instruction::Mul: return Expression::MUL; case Instruction::UDiv: return Expression::UDIV; case Instruction::SDiv: return Expression::SDIV; case Instruction::FDiv: return Expression::FDIV; case Instruction::URem: return Expression::UREM; case Instruction::SRem: return Expression::SREM; case Instruction::FRem: return Expression::FREM; case Instruction::Shl: return Expression::SHL; case Instruction::LShr: return Expression::LSHR; case Instruction::AShr: return Expression::ASHR; case Instruction::And: return Expression::AND; case Instruction::Or: return Expression::OR; case Instruction::Xor: return Expression::XOR; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Binary operator with unknown opcode?"); return Expression::ADD; } } ValueTable::Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) { if (C->getOpcode() == Instruction::ICmp) { switch (C->getPredicate()) { case ICmpInst::ICMP_EQ: return Expression::ICMPEQ; case ICmpInst::ICMP_NE: return Expression::ICMPNE; case ICmpInst::ICMP_UGT: return Expression::ICMPUGT; case ICmpInst::ICMP_UGE: return Expression::ICMPUGE; case ICmpInst::ICMP_ULT: return Expression::ICMPULT; case ICmpInst::ICMP_ULE: return Expression::ICMPULE; case ICmpInst::ICMP_SGT: return Expression::ICMPSGT; case ICmpInst::ICMP_SGE: return Expression::ICMPSGE; case ICmpInst::ICMP_SLT: return Expression::ICMPSLT; case ICmpInst::ICMP_SLE: return Expression::ICMPSLE; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Comparison with unknown predicate?"); return Expression::ICMPEQ; } } else { switch (C->getPredicate()) { case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ; case FCmpInst::FCMP_OGT: return Expression::FCMPOGT; case FCmpInst::FCMP_OGE: return Expression::FCMPOGE; case FCmpInst::FCMP_OLT: return Expression::FCMPOLT; case FCmpInst::FCMP_OLE: return Expression::FCMPOLE; case FCmpInst::FCMP_ONE: return Expression::FCMPONE; case FCmpInst::FCMP_ORD: return Expression::FCMPORD; case FCmpInst::FCMP_UNO: return Expression::FCMPUNO; case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ; case FCmpInst::FCMP_UGT: return Expression::FCMPUGT; case FCmpInst::FCMP_UGE: return Expression::FCMPUGE; case FCmpInst::FCMP_ULT: return Expression::FCMPULT; case FCmpInst::FCMP_ULE: return Expression::FCMPULE; case FCmpInst::FCMP_UNE: return Expression::FCMPUNE; // THIS SHOULD NEVER HAPPEN default: assert(0 && "Comparison with unknown predicate?"); return Expression::FCMPOEQ; } } } ValueTable::Expression ValueTable::create_expression(BinaryOperator* BO) { Expression e; e.firstVN = lookup_or_add(BO->getOperand(0)); e.secondVN = lookup_or_add(BO->getOperand(1)); e.thirdVN = 0; e.opcode = getOpcode(BO); return e; } ValueTable::Expression ValueTable::create_expression(CmpInst* C) { Expression e; e.firstVN = lookup_or_add(C->getOperand(0)); e.secondVN = lookup_or_add(C->getOperand(1)); e.thirdVN = 0; e.opcode = getOpcode(C); return e; } ValueTable::Expression ValueTable::create_expression(ShuffleVectorInst* S) { Expression e; e.firstVN = lookup_or_add(S->getOperand(0)); e.secondVN = lookup_or_add(S->getOperand(1)); e.thirdVN = lookup_or_add(S->getOperand(2)); e.opcode = Expression::SHUFFLE; return e; } ValueTable::Expression ValueTable::create_expression(ExtractElementInst* E) { Expression e; e.firstVN = lookup_or_add(E->getOperand(0)); e.secondVN = lookup_or_add(E->getOperand(1)); e.thirdVN = 0; e.opcode = Expression::EXTRACT; return e; } ValueTable::Expression ValueTable::create_expression(InsertElementInst* I) { Expression e; e.firstVN = lookup_or_add(I->getOperand(0)); e.secondVN = lookup_or_add(I->getOperand(1)); e.thirdVN = lookup_or_add(I->getOperand(2)); e.opcode = Expression::INSERT; return e; } ValueTable::Expression ValueTable::create_expression(SelectInst* I) { Expression e; e.firstVN = lookup_or_add(I->getCondition()); e.secondVN = lookup_or_add(I->getTrueValue()); e.thirdVN = lookup_or_add(I->getFalseValue()); e.opcode = Expression::SELECT; return e; } //===----------------------------------------------------------------------===// // ValueTable External Functions //===----------------------------------------------------------------------===// /// lookup_or_add - Returns the value number for the specified value, assigning /// it a new number if it did not have one before. uint32_t ValueTable::lookup_or_add(Value* V) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; if (BinaryOperator* BO = dyn_cast(V)) { Expression e = create_expression(BO); std::map::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (CmpInst* C = dyn_cast(V)) { Expression e = create_expression(C); std::map::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ShuffleVectorInst* U = dyn_cast(V)) { Expression e = create_expression(U); std::map::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (ExtractElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); std::map::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (InsertElementInst* U = dyn_cast(V)) { Expression e = create_expression(U); std::map::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else if (SelectInst* U = dyn_cast(V)) { Expression e = create_expression(U); std::map::iterator EI = expressionNumbering.find(e); if (EI != expressionNumbering.end()) { valueNumbering.insert(std::make_pair(V, EI->second)); return EI->second; } else { expressionNumbering.insert(std::make_pair(e, nextValueNumber)); valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } else { valueNumbering.insert(std::make_pair(V, nextValueNumber)); return nextValueNumber++; } } /// lookup - Returns the value number of the specified value. Fails if /// the value has not yet been numbered. uint32_t ValueTable::lookup(Value* V) const { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) return VI->second; else assert(0 && "Value not numbered?"); return 0; } /// add - Add the specified value with the given value number, removing /// its old number, if any void ValueTable::add(Value* V, uint32_t num) { DenseMap::iterator VI = valueNumbering.find(V); if (VI != valueNumbering.end()) valueNumbering.erase(VI); valueNumbering.insert(std::make_pair(V, num)); } /// clear - Remove all entries from the ValueTable void ValueTable::clear() { valueNumbering.clear(); expressionNumbering.clear(); nextValueNumber = 1; } /// erase - Remove a value from the value numbering void ValueTable::erase(Value* V) { valueNumbering.erase(V); } /// size - Return the number of assigned value numbers unsigned ValueTable::size() { // NOTE: zero is never assigned return nextValueNumber; } //===----------------------------------------------------------------------===// // GVNPRE Pass //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN GVNPRE : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid GVNPRE() : FunctionPass((intptr_t)&ID) { } private: ValueTable VN; std::vector createdExpressions; std::map > availableOut; std::map > anticipatedIn; // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); } // Helper fuctions // FIXME: eliminate or document these better void dump(const SmallPtrSet& s) const; void clean(SmallPtrSet& set, BitVector& presentInSet); Value* find_leader(SmallPtrSet& vals, uint32_t v); Value* phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ); void phi_translate_set(SmallPtrSet& anticIn, BasicBlock* pred, BasicBlock* succ, SmallPtrSet& out); void topo_sort(SmallPtrSet& set, std::vector& vec); void cleanup(); bool elimination(); void val_insert(SmallPtrSet& s, Value* v); void val_replace(SmallPtrSet& s, Value* v); bool dependsOnInvoke(Value* V); void buildsets_availout(BasicBlock::iterator I, SmallPtrSet& currAvail, SmallPtrSet& currPhis, SmallPtrSet& currExps, SmallPtrSet& currTemps, BitVector& availNumbers, BitVector& expNumbers); bool buildsets_anticout(BasicBlock* BB, SmallPtrSet& anticOut, std::set& visited); unsigned buildsets_anticin(BasicBlock* BB, SmallPtrSet& anticOut, SmallPtrSet& currExps, SmallPtrSet& currTemps, std::set& visited); void buildsets(Function& F); void insertion_pre(Value* e, BasicBlock* BB, std::map& avail, SmallPtrSet& new_set); unsigned insertion_mergepoint(std::vector& workList, df_iterator& D, SmallPtrSet& new_set); bool insertion(Function& F); }; char GVNPRE::ID = 0; } // createGVNPREPass - The public interface to this file... FunctionPass *llvm::createGVNPREPass() { return new GVNPRE(); } RegisterPass X("gvnpre", "Global Value Numbering/Partial Redundancy Elimination"); STATISTIC(NumInsertedVals, "Number of values inserted"); STATISTIC(NumInsertedPhis, "Number of PHI nodes inserted"); STATISTIC(NumEliminated, "Number of redundant instructions eliminated"); /// find_leader - Given a set and a value number, return the first /// element of the set with that value number, or 0 if no such element /// is present Value* GVNPRE::find_leader(SmallPtrSet& vals, uint32_t v) { for (SmallPtrSet::iterator I = vals.begin(), E = vals.end(); I != E; ++I) if (v == VN.lookup(*I)) return *I; return 0; } /// val_insert - Insert a value into a set only if there is not a value /// with the same value number already in the set void GVNPRE::val_insert(SmallPtrSet& s, Value* v) { uint32_t num = VN.lookup(v); Value* leader = find_leader(s, num); if (leader == 0) s.insert(v); } /// val_replace - Insert a value into a set, replacing any values already in /// the set that have the same value number void GVNPRE::val_replace(SmallPtrSet& s, Value* v) { uint32_t num = VN.lookup(v); Value* leader = find_leader(s, num); while (leader != 0) { s.erase(leader); leader = find_leader(s, num); } s.insert(v); } /// phi_translate - Given a value, its parent block, and a predecessor of its /// parent, translate the value into legal for the predecessor block. This /// means translating its operands (and recursively, their operands) through /// any phi nodes in the parent into values available in the predecessor Value* GVNPRE::phi_translate(Value* V, BasicBlock* pred, BasicBlock* succ) { if (V == 0) return 0; // Binary Operations if (isa(V) || isa(V) || isa(V)) { User* U = cast(V); Value* newOp1 = 0; if (isa(U->getOperand(0))) newOp1 = phi_translate(U->getOperand(0), pred, succ); else newOp1 = U->getOperand(0); if (newOp1 == 0) return 0; Value* newOp2 = 0; if (isa(U->getOperand(1))) newOp2 = phi_translate(U->getOperand(1), pred, succ); else newOp2 = U->getOperand(1); if (newOp2 == 0) return 0; if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1)) { Instruction* newVal = 0; if (BinaryOperator* BO = dyn_cast(U)) newVal = BinaryOperator::create(BO->getOpcode(), newOp1, newOp2, BO->getName()+".expr"); else if (CmpInst* C = dyn_cast(U)) newVal = CmpInst::create(C->getOpcode(), C->getPredicate(), newOp1, newOp2, C->getName()+".expr"); else if (ExtractElementInst* E = dyn_cast(U)) newVal = new ExtractElementInst(newOp1, newOp2, E->getName()+".expr"); uint32_t v = VN.lookup_or_add(newVal); Value* leader = find_leader(availableOut[pred], v); if (leader == 0) { createdExpressions.push_back(newVal); return newVal; } else { VN.erase(newVal); delete newVal; return leader; } } // Ternary Operations } else if (isa(V) || isa(V) || isa(V)) { User* U = cast(V); Value* newOp1 = 0; if (isa(U->getOperand(0))) newOp1 = phi_translate(U->getOperand(0), pred, succ); else newOp1 = U->getOperand(0); if (newOp1 == 0) return 0; Value* newOp2 = 0; if (isa(U->getOperand(1))) newOp2 = phi_translate(U->getOperand(1), pred, succ); else newOp2 = U->getOperand(1); if (newOp2 == 0) return 0; Value* newOp3 = 0; if (isa(U->getOperand(2))) newOp3 = phi_translate(U->getOperand(2), pred, succ); else newOp3 = U->getOperand(2); if (newOp3 == 0) return 0; if (newOp1 != U->getOperand(0) || newOp2 != U->getOperand(1) || newOp3 != U->getOperand(2)) { Instruction* newVal = 0; if (ShuffleVectorInst* S = dyn_cast(U)) newVal = new ShuffleVectorInst(newOp1, newOp2, newOp3, S->getName()+".expr"); else if (InsertElementInst* I = dyn_cast(U)) newVal = new InsertElementInst(newOp1, newOp2, newOp3, I->getName()+".expr"); else if (SelectInst* I = dyn_cast(U)) newVal = new SelectInst(newOp1, newOp2, newOp3, I->getName()+".expr"); uint32_t v = VN.lookup_or_add(newVal); Value* leader = find_leader(availableOut[pred], v); if (leader == 0) { createdExpressions.push_back(newVal); return newVal; } else { VN.erase(newVal); delete newVal; return leader; } } // PHI Nodes } else if (PHINode* P = dyn_cast(V)) { if (P->getParent() == succ) return P->getIncomingValueForBlock(pred); } return V; } /// phi_translate_set - Perform phi translation on every element of a set void GVNPRE::phi_translate_set(SmallPtrSet& anticIn, BasicBlock* pred, BasicBlock* succ, SmallPtrSet& out) { for (SmallPtrSet::iterator I = anticIn.begin(), E = anticIn.end(); I != E; ++I) { Value* V = phi_translate(*I, pred, succ); if (V != 0) out.insert(V); } } /// dependsOnInvoke - Test if a value has an phi node as an operand, any of /// whose inputs is an invoke instruction. If this is true, we cannot safely /// PRE the instruction or anything that depends on it. bool GVNPRE::dependsOnInvoke(Value* V) { if (PHINode* p = dyn_cast(V)) { for (PHINode::op_iterator I = p->op_begin(), E = p->op_end(); I != E; ++I) if (isa(*I)) return true; return false; } else { return false; } } /// clean - Remove all non-opaque values from the set whose operands are not /// themselves in the set, as well as all values that depend on invokes (see /// above) void GVNPRE::clean(SmallPtrSet& set, BitVector& presentInSet) { std::vector worklist; worklist.reserve(set.size()); topo_sort(set, worklist); for (unsigned i = 0; i < worklist.size(); ++i) { Value* v = worklist[i]; // Handle binary ops if (isa(v) || isa(v) || isa(v)) { User* U = cast(v); bool lhsValid = !isa(U->getOperand(0)); lhsValid |= presentInSet.test(VN.lookup(U->getOperand(0))); if (lhsValid) lhsValid = !dependsOnInvoke(U->getOperand(0)); bool rhsValid = !isa(U->getOperand(1)); rhsValid |= presentInSet.test(VN.lookup(U->getOperand(1))); if (rhsValid) rhsValid = !dependsOnInvoke(U->getOperand(1)); if (!lhsValid || !rhsValid) { set.erase(U); presentInSet.flip(VN.lookup(U)); } // Handle ternary ops } else if (isa(v) || isa(v) || isa(v)) { User* U = cast(v); bool lhsValid = !isa(U->getOperand(0)); lhsValid |= presentInSet.test(VN.lookup(U->getOperand(0))); if (lhsValid) lhsValid = !dependsOnInvoke(U->getOperand(0)); bool rhsValid = !isa(U->getOperand(1)); rhsValid |= presentInSet.test(VN.lookup(U->getOperand(1))); if (rhsValid) rhsValid = !dependsOnInvoke(U->getOperand(1)); bool thirdValid = !isa(U->getOperand(2)); thirdValid |= presentInSet.test(VN.lookup(U->getOperand(2))); if (thirdValid) thirdValid = !dependsOnInvoke(U->getOperand(2)); if (!lhsValid || !rhsValid || !thirdValid) { set.erase(U); presentInSet.flip(VN.lookup(U)); } } } } /// topo_sort - Given a set of values, sort them by topological /// order into the provided vector. void GVNPRE::topo_sort(SmallPtrSet& set, std::vector& vec) { SmallPtrSet visited; std::vector stack; for (SmallPtrSet::iterator I = set.begin(), E = set.end(); I != E; ++I) { if (visited.count(*I) == 0) stack.push_back(*I); while (!stack.empty()) { Value* e = stack.back(); // Handle binary ops if (isa(e) || isa(e) || isa(e)) { User* U = cast(e); Value* l = find_leader(set, VN.lookup(U->getOperand(0))); Value* r = find_leader(set, VN.lookup(U->getOperand(1))); if (l != 0 && isa(l) && visited.count(l) == 0) stack.push_back(l); else if (r != 0 && isa(r) && visited.count(r) == 0) stack.push_back(r); else { vec.push_back(e); visited.insert(e); stack.pop_back(); } // Handle ternary ops } else if (isa(e) || isa(e) || isa(e)) { User* U = cast(e); Value* l = find_leader(set, VN.lookup(U->getOperand(0))); Value* r = find_leader(set, VN.lookup(U->getOperand(1))); Value* m = find_leader(set, VN.lookup(U->getOperand(2))); if (l != 0 && isa(l) && visited.count(l) == 0) stack.push_back(l); else if (r != 0 && isa(r) && visited.count(r) == 0) stack.push_back(r); else if (m != 0 && isa(m) && visited.count(m) == 0) stack.push_back(r); else { vec.push_back(e); visited.insert(e); stack.pop_back(); } // Handle opaque ops } else { visited.insert(e); vec.push_back(e); stack.pop_back(); } } stack.clear(); } } /// dump - Dump a set of values to standard error void GVNPRE::dump(const SmallPtrSet& s) const { DOUT << "{ "; for (SmallPtrSet::iterator I = s.begin(), E = s.end(); I != E; ++I) { DOUT << "" << VN.lookup(*I) << ": "; DEBUG((*I)->dump()); } DOUT << "}\n\n"; } /// elimination - Phase 3 of the main algorithm. Perform full redundancy /// elimination by walking the dominator tree and removing any instruction that /// is dominated by another instruction with the same value number. bool GVNPRE::elimination() { DOUT << "\n\nPhase 3: Elimination\n\n"; bool changed_function = false; std::vector > replace; std::vector erase; DominatorTree& DT = getAnalysis(); for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { BasicBlock* BB = DI->getBlock(); //DOUT << "Block: " << BB->getName() << "\n"; //dump(availableOut[BB]); //DOUT << "\n\n"; for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { if (isa(BI) || isa(BI) || isa(BI) || isa(BI) || isa(BI) || isa(BI)) { Value *leader = find_leader(availableOut[BB], VN.lookup(BI)); if (leader != 0) if (Instruction* Instr = dyn_cast(leader)) if (Instr->getParent() != 0 && Instr != BI) { replace.push_back(std::make_pair(BI, leader)); erase.push_back(BI); ++NumEliminated; } } } } while (!replace.empty()) { std::pair rep = replace.back(); replace.pop_back(); rep.first->replaceAllUsesWith(rep.second); changed_function = true; } for (std::vector::iterator I = erase.begin(), E = erase.end(); I != E; ++I) (*I)->eraseFromParent(); return changed_function; } /// cleanup - Delete any extraneous values that were created to represent /// expressions without leaders. void GVNPRE::cleanup() { while (!createdExpressions.empty()) { Instruction* I = createdExpressions.back(); createdExpressions.pop_back(); delete I; } } /// buildsets_availout - When calculating availability, handle an instruction /// by inserting it into the appropriate sets void GVNPRE::buildsets_availout(BasicBlock::iterator I, SmallPtrSet& currAvail, SmallPtrSet& currPhis, SmallPtrSet& currExps, SmallPtrSet& currTemps, BitVector& availNumbers, BitVector& expNumbers) { // Handle PHI nodes if (PHINode* p = dyn_cast(I)) { VN.lookup_or_add(p); expNumbers.resize(VN.size()); availNumbers.resize(VN.size()); currPhis.insert(p); // Handle binary ops } else if (isa(I) || isa(I) || isa(I)) { User* U = cast(I); Value* leftValue = U->getOperand(0); Value* rightValue = U->getOperand(1); unsigned num = VN.lookup_or_add(U); expNumbers.resize(VN.size()); availNumbers.resize(VN.size()); if (isa(leftValue)) if (!expNumbers.test(VN.lookup(leftValue))) { currExps.insert(leftValue); expNumbers.set(VN.lookup(leftValue)); } if (isa(rightValue)) if (!expNumbers.test(VN.lookup(rightValue))) { currExps.insert(rightValue); expNumbers.set(VN.lookup(rightValue)); } if (!expNumbers.test(VN.lookup(U))) { currExps.insert(U); expNumbers.set(num); } // Handle ternary ops } else if (isa(I) || isa(I) || isa(I)) { User* U = cast(I); Value* leftValue = U->getOperand(0); Value* rightValue = U->getOperand(1); Value* thirdValue = U->getOperand(2); VN.lookup_or_add(U); unsigned num = VN.lookup_or_add(U); expNumbers.resize(VN.size()); availNumbers.resize(VN.size()); if (isa(leftValue)) if (!expNumbers.test(VN.lookup(leftValue))) { currExps.insert(leftValue); expNumbers.set(VN.lookup(leftValue)); } if (isa(rightValue)) if (!expNumbers.test(VN.lookup(rightValue))) { currExps.insert(rightValue); expNumbers.set(VN.lookup(rightValue)); } if (isa(thirdValue)) if (!expNumbers.test(VN.lookup(thirdValue))) { currExps.insert(thirdValue); expNumbers.set(VN.lookup(thirdValue)); } if (!expNumbers.test(VN.lookup(U))) { currExps.insert(U); expNumbers.set(num); } // Handle opaque ops } else if (!I->isTerminator()){ VN.lookup_or_add(I); expNumbers.resize(VN.size()); availNumbers.resize(VN.size()); currTemps.insert(I); } if (!I->isTerminator()) if (!availNumbers.test(VN.lookup(I))) { currAvail.insert(I); availNumbers.set(VN.lookup(I)); } } /// buildsets_anticout - When walking the postdom tree, calculate the ANTIC_OUT /// set as a function of the ANTIC_IN set of the block's predecessors bool GVNPRE::buildsets_anticout(BasicBlock* BB, SmallPtrSet& anticOut, std::set& visited) { if (BB->getTerminator()->getNumSuccessors() == 1) { if (BB->getTerminator()->getSuccessor(0) != BB && visited.count(BB->getTerminator()->getSuccessor(0)) == 0) { DOUT << "DEFER: " << BB->getName() << "\n"; return true; } else { phi_translate_set(anticipatedIn[BB->getTerminator()->getSuccessor(0)], BB, BB->getTerminator()->getSuccessor(0), anticOut); } } else if (BB->getTerminator()->getNumSuccessors() > 1) { BasicBlock* first = BB->getTerminator()->getSuccessor(0); anticOut.insert(anticipatedIn[first].begin(), anticipatedIn[first].end()); for (unsigned i = 1; i < BB->getTerminator()->getNumSuccessors(); ++i) { BasicBlock* currSucc = BB->getTerminator()->getSuccessor(i); SmallPtrSet& succAnticIn = anticipatedIn[currSucc]; std::vector temp; for (SmallPtrSet::iterator I = anticOut.begin(), E = anticOut.end(); I != E; ++I) if (succAnticIn.count(*I) == 0) temp.push_back(*I); for (std::vector::iterator I = temp.begin(), E = temp.end(); I != E; ++I) anticOut.erase(*I); } } return false; } /// buildsets_anticin - Walk the postdom tree, calculating ANTIC_OUT for /// each block. ANTIC_IN is then a function of ANTIC_OUT and the GEN /// sets populated in buildsets_availout unsigned GVNPRE::buildsets_anticin(BasicBlock* BB, SmallPtrSet& anticOut, SmallPtrSet& currExps, SmallPtrSet& currTemps, std::set& visited) { SmallPtrSet& anticIn = anticipatedIn[BB]; unsigned old = anticIn.size(); bool defer = buildsets_anticout(BB, anticOut, visited); if (defer) return 0; anticIn.clear(); BitVector numbers(VN.size()); for (SmallPtrSet::iterator I = anticOut.begin(), E = anticOut.end(); I != E; ++I) { unsigned num = VN.lookup_or_add(*I); numbers.resize(VN.size()); if (isa(*I)) { anticIn.insert(*I); numbers.set(num); } } for (SmallPtrSet::iterator I = currExps.begin(), E = currExps.end(); I != E; ++I) { if (!numbers.test(VN.lookup_or_add(*I))) { anticIn.insert(*I); numbers.set(VN.lookup(*I)); } } for (SmallPtrSet::iterator I = currTemps.begin(), E = currTemps.end(); I != E; ++I) { anticIn.erase(*I); numbers.flip(VN.lookup(*I)); } clean(anticIn, numbers); anticOut.clear(); if (old != anticIn.size()) return 2; else return 1; } /// buildsets - Phase 1 of the main algorithm. Construct the AVAIL_OUT /// and the ANTIC_IN sets. void GVNPRE::buildsets(Function& F) { std::map > generatedExpressions; std::map > generatedPhis; std::map > generatedTemporaries; DominatorTree &DT = getAnalysis(); // Phase 1, Part 1: calculate AVAIL_OUT // Top-down walk of the dominator tree for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { // Get the sets to update for this block SmallPtrSet& currExps = generatedExpressions[DI->getBlock()]; SmallPtrSet& currPhis = generatedPhis[DI->getBlock()]; SmallPtrSet& currTemps = generatedTemporaries[DI->getBlock()]; SmallPtrSet& currAvail = availableOut[DI->getBlock()]; BasicBlock* BB = DI->getBlock(); // A block inherits AVAIL_OUT from its dominator if (DI->getIDom() != 0) currAvail.insert(availableOut[DI->getIDom()->getBlock()].begin(), availableOut[DI->getIDom()->getBlock()].end()); BitVector availNumbers(VN.size()); for (SmallPtrSet::iterator I = currAvail.begin(), E = currAvail.end(); I != E; ++I) availNumbers.set(VN.lookup(*I)); BitVector expNumbers(VN.size()); for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) buildsets_availout(BI, currAvail, currPhis, currExps, currTemps, availNumbers, expNumbers); } // Phase 1, Part 2: calculate ANTIC_IN std::set visited; SmallPtrSet block_changed; for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) block_changed.insert(FI); bool changed = true; unsigned iterations = 0; while (changed) { changed = false; SmallPtrSet anticOut; // Postorder walk of the CFG for (po_iterator BBI = po_begin(&F.getEntryBlock()), BBE = po_end(&F.getEntryBlock()); BBI != BBE; ++BBI) { BasicBlock* BB = *BBI; if (block_changed.count(BB) != 0) { unsigned ret = buildsets_anticin(BB, anticOut,generatedExpressions[BB], generatedTemporaries[BB], visited); if (ret == 0) { changed = true; continue; } else { visited.insert(BB); if (ret == 2) for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { block_changed.insert(*PI); } else block_changed.erase(BB); changed |= (ret == 2); } } } iterations++; } DOUT << "ITERATIONS: " << iterations << "\n"; } /// insertion_pre - When a partial redundancy has been identified, eliminate it /// by inserting appropriate values into the predecessors and a phi node in /// the main block void GVNPRE::insertion_pre(Value* e, BasicBlock* BB, std::map& avail, SmallPtrSet& new_set) { for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { Value* e2 = avail[*PI]; if (!find_leader(availableOut[*PI], VN.lookup(e2))) { User* U = cast(e2); Value* s1 = 0; if (isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0)) || isa(U->getOperand(0))) s1 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(0))); else s1 = U->getOperand(0); Value* s2 = 0; if (isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1)) || isa(U->getOperand(1))) s2 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(1))); else s2 = U->getOperand(1); // Ternary Operators Value* s3 = 0; if (isa(U) || isa(U) || isa(U)) if (isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2)) || isa(U->getOperand(2))) s3 = find_leader(availableOut[*PI], VN.lookup(U->getOperand(2))); else s3 = U->getOperand(2); Value* newVal = 0; if (BinaryOperator* BO = dyn_cast(U)) newVal = BinaryOperator::create(BO->getOpcode(), s1, s2, BO->getName()+".gvnpre", (*PI)->getTerminator()); else if (CmpInst* C = dyn_cast(U)) newVal = CmpInst::create(C->getOpcode(), C->getPredicate(), s1, s2, C->getName()+".gvnpre", (*PI)->getTerminator()); else if (ShuffleVectorInst* S = dyn_cast(U)) newVal = new ShuffleVectorInst(s1, s2, s3, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (InsertElementInst* S = dyn_cast(U)) newVal = new InsertElementInst(s1, s2, s3, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (ExtractElementInst* S = dyn_cast(U)) newVal = new ExtractElementInst(s1, s2, S->getName()+".gvnpre", (*PI)->getTerminator()); else if (SelectInst* S = dyn_cast(U)) newVal = new SelectInst(S->getCondition(), S->getTrueValue(), S->getFalseValue(), S->getName()+".gvnpre", (*PI)->getTerminator()); VN.add(newVal, VN.lookup(U)); SmallPtrSet& predAvail = availableOut[*PI]; val_replace(predAvail, newVal); std::map::iterator av = avail.find(*PI); if (av != avail.end()) avail.erase(av); avail.insert(std::make_pair(*PI, newVal)); ++NumInsertedVals; } } PHINode* p = 0; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (p == 0) p = new PHINode(avail[*PI]->getType(), "gvnpre-join", BB->begin()); p->addIncoming(avail[*PI], *PI); } VN.add(p, VN.lookup(e)); val_replace(availableOut[BB], p); new_set.insert(p); ++NumInsertedPhis; } /// insertion_mergepoint - When walking the dom tree, check at each merge /// block for the possibility of a partial redundancy. If present, eliminate it unsigned GVNPRE::insertion_mergepoint(std::vector& workList, df_iterator& D, SmallPtrSet& new_set) { bool changed_function = false; bool new_stuff = false; BasicBlock* BB = D->getBlock(); for (unsigned i = 0; i < workList.size(); ++i) { Value* e = workList[i]; if (isa(e) || isa(e) || isa(e) || isa(e) || isa(e) || isa(e)) { if (find_leader(availableOut[D->getIDom()->getBlock()], VN.lookup(e)) != 0) continue; std::map avail; bool by_some = false; int num_avail = 0; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { Value *e2 = phi_translate(e, *PI, BB); Value *e3 = find_leader(availableOut[*PI], VN.lookup(e2)); if (e3 == 0) { std::map::iterator av = avail.find(*PI); if (av != avail.end()) avail.erase(av); avail.insert(std::make_pair(*PI, e2)); } else { std::map::iterator av = avail.find(*PI); if (av != avail.end()) avail.erase(av); avail.insert(std::make_pair(*PI, e3)); by_some = true; num_avail++; } } if (by_some && num_avail < std::distance(pred_begin(BB), pred_end(BB))) { insertion_pre(e, BB, avail, new_set); changed_function = true; new_stuff = true; } } } unsigned retval = 0; if (changed_function) retval += 1; if (new_stuff) retval += 2; return retval; } /// insert - Phase 2 of the main algorithm. Walk the dominator tree looking for /// merge points. When one is found, check for a partial redundancy. If one is /// present, eliminate it. Repeat this walk until no changes are made. bool GVNPRE::insertion(Function& F) { bool changed_function = false; DominatorTree &DT = getAnalysis(); std::map > new_sets; bool new_stuff = true; while (new_stuff) { new_stuff = false; for (df_iterator DI = df_begin(DT.getRootNode()), E = df_end(DT.getRootNode()); DI != E; ++DI) { BasicBlock* BB = DI->getBlock(); if (BB == 0) continue; SmallPtrSet& new_set = new_sets[BB]; SmallPtrSet& availOut = availableOut[BB]; SmallPtrSet& anticIn = anticipatedIn[BB]; new_set.clear(); // Replace leaders with leaders inherited from dominator if (DI->getIDom() != 0) { SmallPtrSet& dom_set = new_sets[DI->getIDom()->getBlock()]; for (SmallPtrSet::iterator I = dom_set.begin(), E = dom_set.end(); I != E; ++I) { new_set.insert(*I); val_replace(availOut, *I); } } // If there is more than one predecessor... if (pred_begin(BB) != pred_end(BB) && ++pred_begin(BB) != pred_end(BB)) { std::vector workList; workList.reserve(anticIn.size()); topo_sort(anticIn, workList); unsigned result = insertion_mergepoint(workList, DI, new_set); if (result & 1) changed_function = true; if (result & 2) new_stuff = true; } } } return changed_function; } // GVNPRE::runOnFunction - This is the main transformation entry point for a // function. // bool GVNPRE::runOnFunction(Function &F) { // Clean out global sets from any previous functions VN.clear(); createdExpressions.clear(); availableOut.clear(); anticipatedIn.clear(); bool changed_function = false; // Phase 1: BuildSets // This phase calculates the AVAIL_OUT and ANTIC_IN sets buildsets(F); for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) { DOUT << "AVAIL_OUT: " << FI->getName() << "\n"; dump(availableOut[FI]); DOUT << "\n"; DOUT << "ANTIC_IN: " << FI->getName() << "\n"; dump(anticipatedIn[FI]); DOUT << "\n\n"; } // Phase 2: Insert // This phase inserts values to make partially redundant values // fully redundant changed_function |= insertion(F); // Phase 3: Eliminate // This phase performs trivial full redundancy elimination changed_function |= elimination(); // Phase 4: Cleanup // This phase cleans up values that were created solely // as leaders for expressions cleanup(); return changed_function; }