//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class wraps target description classes used by the various code // generation TableGen backends. This makes it easier to access the data and // provides a single place that needs to check it for validity. All of these // classes abort on error conditions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "CodeGenIntrinsics.h" #include "CodeGenSchedule.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include using namespace llvm; static cl::opt AsmParserNum("asmparsernum", cl::init(0), cl::desc("Make -gen-asm-parser emit assembly parser #N")); static cl::opt AsmWriterNum("asmwriternum", cl::init(0), cl::desc("Make -gen-asm-writer emit assembly writer #N")); /// getValueType - Return the MVT::SimpleValueType that the specified TableGen /// record corresponds to. MVT::SimpleValueType llvm::getValueType(Record *Rec) { return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); } std::string llvm::getName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "UNKNOWN"; case MVT::iPTR: return "TLI.getPointerTy()"; case MVT::iPTRAny: return "TLI.getPointerTy()"; default: return getEnumName(T); } } std::string llvm::getEnumName(MVT::SimpleValueType T) { switch (T) { case MVT::Other: return "MVT::Other"; case MVT::i1: return "MVT::i1"; case MVT::i8: return "MVT::i8"; case MVT::i16: return "MVT::i16"; case MVT::i32: return "MVT::i32"; case MVT::i64: return "MVT::i64"; case MVT::i128: return "MVT::i128"; case MVT::iAny: return "MVT::iAny"; case MVT::fAny: return "MVT::fAny"; case MVT::vAny: return "MVT::vAny"; case MVT::f16: return "MVT::f16"; case MVT::f32: return "MVT::f32"; case MVT::f64: return "MVT::f64"; case MVT::f80: return "MVT::f80"; case MVT::f128: return "MVT::f128"; case MVT::ppcf128: return "MVT::ppcf128"; case MVT::x86mmx: return "MVT::x86mmx"; case MVT::Glue: return "MVT::Glue"; case MVT::isVoid: return "MVT::isVoid"; case MVT::v2i1: return "MVT::v2i1"; case MVT::v4i1: return "MVT::v4i1"; case MVT::v8i1: return "MVT::v8i1"; case MVT::v16i1: return "MVT::v16i1"; case MVT::v32i1: return "MVT::v32i1"; case MVT::v64i1: return "MVT::v64i1"; case MVT::v1i8: return "MVT::v1i8"; case MVT::v2i8: return "MVT::v2i8"; case MVT::v4i8: return "MVT::v4i8"; case MVT::v8i8: return "MVT::v8i8"; case MVT::v16i8: return "MVT::v16i8"; case MVT::v32i8: return "MVT::v32i8"; case MVT::v64i8: return "MVT::v64i8"; case MVT::v1i16: return "MVT::v1i16"; case MVT::v2i16: return "MVT::v2i16"; case MVT::v4i16: return "MVT::v4i16"; case MVT::v8i16: return "MVT::v8i16"; case MVT::v16i16: return "MVT::v16i16"; case MVT::v32i16: return "MVT::v32i16"; case MVT::v1i32: return "MVT::v1i32"; case MVT::v2i32: return "MVT::v2i32"; case MVT::v4i32: return "MVT::v4i32"; case MVT::v8i32: return "MVT::v8i32"; case MVT::v16i32: return "MVT::v16i32"; case MVT::v1i64: return "MVT::v1i64"; case MVT::v2i64: return "MVT::v2i64"; case MVT::v4i64: return "MVT::v4i64"; case MVT::v8i64: return "MVT::v8i64"; case MVT::v16i64: return "MVT::v16i64"; case MVT::v2f16: return "MVT::v2f16"; case MVT::v4f16: return "MVT::v4f16"; case MVT::v8f16: return "MVT::v8f16"; case MVT::v1f32: return "MVT::v1f32"; case MVT::v2f32: return "MVT::v2f32"; case MVT::v4f32: return "MVT::v4f32"; case MVT::v8f32: return "MVT::v8f32"; case MVT::v16f32: return "MVT::v16f32"; case MVT::v1f64: return "MVT::v1f64"; case MVT::v2f64: return "MVT::v2f64"; case MVT::v4f64: return "MVT::v4f64"; case MVT::v8f64: return "MVT::v8f64"; case MVT::Metadata: return "MVT::Metadata"; case MVT::iPTR: return "MVT::iPTR"; case MVT::iPTRAny: return "MVT::iPTRAny"; case MVT::Untyped: return "MVT::Untyped"; default: llvm_unreachable("ILLEGAL VALUE TYPE!"); } } /// getQualifiedName - Return the name of the specified record, with a /// namespace qualifier if the record contains one. /// std::string llvm::getQualifiedName(const Record *R) { std::string Namespace; if (R->getValue("Namespace")) Namespace = R->getValueAsString("Namespace"); if (Namespace.empty()) return R->getName(); return Namespace + "::" + R->getName(); } /// getTarget - Return the current instance of the Target class. /// CodeGenTarget::CodeGenTarget(RecordKeeper &records) : Records(records), RegBank(0), SchedModels(0) { std::vector Targets = Records.getAllDerivedDefinitions("Target"); if (Targets.size() == 0) PrintFatalError("ERROR: No 'Target' subclasses defined!"); if (Targets.size() != 1) PrintFatalError("ERROR: Multiple subclasses of Target defined!"); TargetRec = Targets[0]; } CodeGenTarget::~CodeGenTarget() { DeleteContainerSeconds(Instructions); delete RegBank; delete SchedModels; } const std::string &CodeGenTarget::getName() const { return TargetRec->getName(); } std::string CodeGenTarget::getInstNamespace() const { for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) { // Make sure not to pick up "TargetOpcode" by accidentally getting // the namespace off the PHI instruction or something. if ((*i)->Namespace != "TargetOpcode") return (*i)->Namespace; } return ""; } Record *CodeGenTarget::getInstructionSet() const { return TargetRec->getValueAsDef("InstructionSet"); } /// getAsmParser - Return the AssemblyParser definition for this target. /// Record *CodeGenTarget::getAsmParser() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); if (AsmParserNum >= LI.size()) PrintFatalError("Target does not have an AsmParser #" + Twine(AsmParserNum) + "!"); return LI[AsmParserNum]; } /// getAsmParserVariant - Return the AssmblyParserVariant definition for /// this target. /// Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); if (i >= LI.size()) PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + "!"); return LI[i]; } /// getAsmParserVariantCount - Return the AssmblyParserVariant definition /// available for this target. /// unsigned CodeGenTarget::getAsmParserVariantCount() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); return LI.size(); } /// getAsmWriter - Return the AssemblyWriter definition for this target. /// Record *CodeGenTarget::getAsmWriter() const { std::vector LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); if (AsmWriterNum >= LI.size()) PrintFatalError("Target does not have an AsmWriter #" + Twine(AsmWriterNum) + "!"); return LI[AsmWriterNum]; } CodeGenRegBank &CodeGenTarget::getRegBank() const { if (!RegBank) RegBank = new CodeGenRegBank(Records); return *RegBank; } void CodeGenTarget::ReadRegAltNameIndices() const { RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); } /// getRegisterByName - If there is a register with the specific AsmName, /// return it. const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { const StringMap &Regs = getRegBank().getRegistersByName(); StringMap::const_iterator I = Regs.find(Name); if (I == Regs.end()) return 0; return I->second; } std::vector CodeGenTarget:: getRegisterVTs(Record *R) const { const CodeGenRegister *Reg = getRegBank().getReg(R); std::vector Result; ArrayRef RCs = getRegBank().getRegClasses(); for (unsigned i = 0, e = RCs.size(); i != e; ++i) { const CodeGenRegisterClass &RC = *RCs[i]; if (RC.contains(Reg)) { ArrayRef InVTs = RC.getValueTypes(); Result.insert(Result.end(), InVTs.begin(), InVTs.end()); } } // Remove duplicates. array_pod_sort(Result.begin(), Result.end()); Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); return Result; } void CodeGenTarget::ReadLegalValueTypes() const { ArrayRef RCs = getRegBank().getRegClasses(); for (unsigned i = 0, e = RCs.size(); i != e; ++i) for (unsigned ri = 0, re = RCs[i]->VTs.size(); ri != re; ++ri) LegalValueTypes.push_back(RCs[i]->VTs[ri]); // Remove duplicates. std::sort(LegalValueTypes.begin(), LegalValueTypes.end()); LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), LegalValueTypes.end()), LegalValueTypes.end()); } CodeGenSchedModels &CodeGenTarget::getSchedModels() const { if (!SchedModels) SchedModels = new CodeGenSchedModels(Records, *this); return *SchedModels; } void CodeGenTarget::ReadInstructions() const { std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); if (Insts.size() <= 2) PrintFatalError("No 'Instruction' subclasses defined!"); // Parse the instructions defined in the .td file. for (unsigned i = 0, e = Insts.size(); i != e; ++i) Instructions[Insts[i]] = new CodeGenInstruction(Insts[i]); } static const CodeGenInstruction * GetInstByName(const char *Name, const DenseMap &Insts, RecordKeeper &Records) { const Record *Rec = Records.getDef(Name); DenseMap::const_iterator I = Insts.find(Rec); if (Rec == 0 || I == Insts.end()) PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); return I->second; } /// \brief Return all of the instructions defined by the target, ordered by /// their enum value. void CodeGenTarget::ComputeInstrsByEnum() const { // The ordering here must match the ordering in TargetOpcodes.h. static const char *const FixedInstrs[] = { "PHI", "INLINEASM", "CFI_INSTRUCTION", "EH_LABEL", "GC_LABEL", "KILL", "EXTRACT_SUBREG", "INSERT_SUBREG", "IMPLICIT_DEF", "SUBREG_TO_REG", "COPY_TO_REGCLASS", "DBG_VALUE", "REG_SEQUENCE", "COPY", "BUNDLE", "LIFETIME_START", "LIFETIME_END", "STACKMAP", "PATCHPOINT", 0}; const DenseMap &Insts = getInstructions(); for (const char *const *p = FixedInstrs; *p; ++p) { const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); assert(Instr && "Missing target independent instruction"); assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); InstrsByEnum.push_back(Instr); } unsigned EndOfPredefines = InstrsByEnum.size(); for (DenseMap::const_iterator I = Insts.begin(), E = Insts.end(); I != E; ++I) { const CodeGenInstruction *CGI = I->second; if (CGI->Namespace != "TargetOpcode") InstrsByEnum.push_back(CGI); } assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); // All of the instructions are now in random order based on the map iteration. // Sort them by name. std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { return Rec1->TheDef->getName() < Rec2->TheDef->getName(); }); } /// isLittleEndianEncoding - Return whether this target encodes its instruction /// in little-endian format, i.e. bits laid out in the order [0..n] /// bool CodeGenTarget::isLittleEndianEncoding() const { return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); } /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit /// encodings, reverse the bit order of all instructions. void CodeGenTarget::reverseBitsForLittleEndianEncoding() { if (!isLittleEndianEncoding()) return; std::vector Insts = Records.getAllDerivedDefinitions("Instruction"); for (std::vector::iterator I = Insts.begin(), E = Insts.end(); I != E; ++I) { Record *R = *I; if (R->getValueAsString("Namespace") == "TargetOpcode" || R->getValueAsBit("isPseudo")) continue; BitsInit *BI = R->getValueAsBitsInit("Inst"); unsigned numBits = BI->getNumBits(); SmallVector NewBits(numBits); for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { unsigned bitSwapIdx = numBits - bit - 1; Init *OrigBit = BI->getBit(bit); Init *BitSwap = BI->getBit(bitSwapIdx); NewBits[bit] = BitSwap; NewBits[bitSwapIdx] = OrigBit; } if (numBits % 2) { unsigned middle = (numBits + 1) / 2; NewBits[middle] = BI->getBit(middle); } BitsInit *NewBI = BitsInit::get(NewBits); // Update the bits in reversed order so that emitInstrOpBits will get the // correct endianness. R->getValue("Inst")->setValue(NewBI); } } /// guessInstructionProperties - Return true if it's OK to guess instruction /// properties instead of raising an error. /// /// This is configurable as a temporary migration aid. It will eventually be /// permanently false. bool CodeGenTarget::guessInstructionProperties() const { return getInstructionSet()->getValueAsBit("guessInstructionProperties"); } //===----------------------------------------------------------------------===// // ComplexPattern implementation // ComplexPattern::ComplexPattern(Record *R) { Ty = ::getValueType(R->getValueAsDef("Ty")); NumOperands = R->getValueAsInt("NumOperands"); SelectFunc = R->getValueAsString("SelectFunc"); RootNodes = R->getValueAsListOfDefs("RootNodes"); // Parse the properties. Properties = 0; std::vector PropList = R->getValueAsListOfDefs("Properties"); for (unsigned i = 0, e = PropList.size(); i != e; ++i) if (PropList[i]->getName() == "SDNPHasChain") { Properties |= 1 << SDNPHasChain; } else if (PropList[i]->getName() == "SDNPOptInGlue") { Properties |= 1 << SDNPOptInGlue; } else if (PropList[i]->getName() == "SDNPMayStore") { Properties |= 1 << SDNPMayStore; } else if (PropList[i]->getName() == "SDNPMayLoad") { Properties |= 1 << SDNPMayLoad; } else if (PropList[i]->getName() == "SDNPSideEffect") { Properties |= 1 << SDNPSideEffect; } else if (PropList[i]->getName() == "SDNPMemOperand") { Properties |= 1 << SDNPMemOperand; } else if (PropList[i]->getName() == "SDNPVariadic") { Properties |= 1 << SDNPVariadic; } else if (PropList[i]->getName() == "SDNPWantRoot") { Properties |= 1 << SDNPWantRoot; } else if (PropList[i]->getName() == "SDNPWantParent") { Properties |= 1 << SDNPWantParent; } else { errs() << "Unsupported SD Node property '" << PropList[i]->getName() << "' on ComplexPattern '" << R->getName() << "'!\n"; exit(1); } } //===----------------------------------------------------------------------===// // CodeGenIntrinsic Implementation //===----------------------------------------------------------------------===// std::vector llvm::LoadIntrinsics(const RecordKeeper &RC, bool TargetOnly) { std::vector I = RC.getAllDerivedDefinitions("Intrinsic"); std::vector Result; for (unsigned i = 0, e = I.size(); i != e; ++i) { bool isTarget = I[i]->getValueAsBit("isTarget"); if (isTarget == TargetOnly) Result.push_back(CodeGenIntrinsic(I[i])); } return Result; } CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { TheDef = R; std::string DefName = R->getName(); ModRef = ReadWriteMem; isOverloaded = false; isCommutative = false; canThrow = false; isNoReturn = false; isNoDuplicate = false; if (DefName.size() <= 4 || std::string(DefName.begin(), DefName.begin() + 4) != "int_") PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); EnumName = std::string(DefName.begin()+4, DefName.end()); if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); TargetPrefix = R->getValueAsString("TargetPrefix"); Name = R->getValueAsString("LLVMName"); if (Name == "") { // If an explicit name isn't specified, derive one from the DefName. Name = "llvm."; for (unsigned i = 0, e = EnumName.size(); i != e; ++i) Name += (EnumName[i] == '_') ? '.' : EnumName[i]; } else { // Verify it starts with "llvm.". if (Name.size() <= 5 || std::string(Name.begin(), Name.begin() + 5) != "llvm.") PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); } // If TargetPrefix is specified, make sure that Name starts with // "llvm..". if (!TargetPrefix.empty()) { if (Name.size() < 6+TargetPrefix.size() || std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) != (TargetPrefix + ".")) PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + TargetPrefix + ".'!"); } // Parse the list of return types. std::vector OverloadedVTs; ListInit *TypeList = R->getValueAsListInit("RetTypes"); for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); MVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedType") && !TyEl->isSubClassOf("LLVMTruncatedType")) || VT == MVT::iAny || VT == MVT::vAny) && "Expected iAny or vAny type"); } else { VT = getValueType(TyEl->getValueAsDef("VT")); } if (MVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded = true; } // Reject invalid types. if (VT == MVT::isVoid) PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); IS.RetVTs.push_back(VT); IS.RetTypeDefs.push_back(TyEl); } // Parse the list of parameter types. TypeList = R->getValueAsListInit("ParamTypes"); for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) { Record *TyEl = TypeList->getElementAsRecord(i); assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); MVT::SimpleValueType VT; if (TyEl->isSubClassOf("LLVMMatchType")) { unsigned MatchTy = TyEl->getValueAsInt("Number"); assert(MatchTy < OverloadedVTs.size() && "Invalid matching number!"); VT = OverloadedVTs[MatchTy]; // It only makes sense to use the extended and truncated vector element // variants with iAny types; otherwise, if the intrinsic is not // overloaded, all the types can be specified directly. assert(((!TyEl->isSubClassOf("LLVMExtendedType") && !TyEl->isSubClassOf("LLVMTruncatedType")) || VT == MVT::iAny || VT == MVT::vAny) && "Expected iAny or vAny type"); } else VT = getValueType(TyEl->getValueAsDef("VT")); if (MVT(VT).isOverloaded()) { OverloadedVTs.push_back(VT); isOverloaded = true; } // Reject invalid types. if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); IS.ParamVTs.push_back(VT); IS.ParamTypeDefs.push_back(TyEl); } // Parse the intrinsic properties. ListInit *PropList = R->getValueAsListInit("Properties"); for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) { Record *Property = PropList->getElementAsRecord(i); assert(Property->isSubClassOf("IntrinsicProperty") && "Expected a property!"); if (Property->getName() == "IntrNoMem") ModRef = NoMem; else if (Property->getName() == "IntrReadArgMem") ModRef = ReadArgMem; else if (Property->getName() == "IntrReadMem") ModRef = ReadMem; else if (Property->getName() == "IntrReadWriteArgMem") ModRef = ReadWriteArgMem; else if (Property->getName() == "Commutative") isCommutative = true; else if (Property->getName() == "Throws") canThrow = true; else if (Property->getName() == "IntrNoDuplicate") isNoDuplicate = true; else if (Property->getName() == "IntrNoReturn") isNoReturn = true; else if (Property->isSubClassOf("NoCapture")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); } else if (Property->isSubClassOf("ReadOnly")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); } else if (Property->isSubClassOf("ReadNone")) { unsigned ArgNo = Property->getValueAsInt("ArgNo"); ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); } else llvm_unreachable("Unknown property!"); } // Sort the argument attributes for later benefit. std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); }