//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This library implements the functionality defined in llvm/Assembly/Writer.h // // Note that these routines must be extremely tolerant of various errors in the // LLVM code, because it can be used for debugging transformations. // //===----------------------------------------------------------------------===// #include "llvm/Assembly/Writer.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/Assembly/AsmAnnotationWriter.h" #include "llvm/LLVMContext.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" #include "llvm/Operator.h" #include "llvm/Module.h" #include "llvm/ValueSymbolTable.h" #include "llvm/TypeSymbolTable.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/FormattedStream.h" #include #include #include using namespace llvm; // Make virtual table appear in this compilation unit. AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {} //===----------------------------------------------------------------------===// // Helper Functions //===----------------------------------------------------------------------===// static const Module *getModuleFromVal(const Value *V) { if (const Argument *MA = dyn_cast(V)) return MA->getParent() ? MA->getParent()->getParent() : 0; if (const BasicBlock *BB = dyn_cast(V)) return BB->getParent() ? BB->getParent()->getParent() : 0; if (const Instruction *I = dyn_cast(V)) { const Function *M = I->getParent() ? I->getParent()->getParent() : 0; return M ? M->getParent() : 0; } if (const GlobalValue *GV = dyn_cast(V)) return GV->getParent(); return 0; } // PrintEscapedString - Print each character of the specified string, escaping // it if it is not printable or if it is an escape char. static void PrintEscapedString(StringRef Name, raw_ostream &Out) { for (unsigned i = 0, e = Name.size(); i != e; ++i) { unsigned char C = Name[i]; if (isprint(C) && C != '\\' && C != '"') Out << C; else Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F); } } enum PrefixType { GlobalPrefix, LabelPrefix, LocalPrefix, NoPrefix }; /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) { assert(Name.data() && "Cannot get empty name!"); switch (Prefix) { default: llvm_unreachable("Bad prefix!"); case NoPrefix: break; case GlobalPrefix: OS << '@'; break; case LabelPrefix: break; case LocalPrefix: OS << '%'; break; } // Scan the name to see if it needs quotes first. bool NeedsQuotes = isdigit(Name[0]); if (!NeedsQuotes) { for (unsigned i = 0, e = Name.size(); i != e; ++i) { char C = Name[i]; if (!isalnum(C) && C != '-' && C != '.' && C != '_') { NeedsQuotes = true; break; } } } // If we didn't need any quotes, just write out the name in one blast. if (!NeedsQuotes) { OS << Name; return; } // Okay, we need quotes. Output the quotes and escape any scary characters as // needed. OS << '"'; PrintEscapedString(Name, OS); OS << '"'; } /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either /// prefixed with % (if the string only contains simple characters) or is /// surrounded with ""'s (if it has special chars in it). Print it out. static void PrintLLVMName(raw_ostream &OS, const Value *V) { PrintLLVMName(OS, V->getName(), isa(V) ? GlobalPrefix : LocalPrefix); } //===----------------------------------------------------------------------===// // TypePrinting Class: Type printing machinery //===----------------------------------------------------------------------===// static DenseMap &getTypeNamesMap(void *M) { return *static_cast*>(M); } void TypePrinting::clear() { getTypeNamesMap(TypeNames).clear(); } bool TypePrinting::hasTypeName(const Type *Ty) const { return getTypeNamesMap(TypeNames).count(Ty); } void TypePrinting::addTypeName(const Type *Ty, const std::string &N) { getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N)); } TypePrinting::TypePrinting() { TypeNames = new DenseMap(); } TypePrinting::~TypePrinting() { delete &getTypeNamesMap(TypeNames); } /// CalcTypeName - Write the specified type to the specified raw_ostream, making /// use of type names or up references to shorten the type name where possible. void TypePrinting::CalcTypeName(const Type *Ty, SmallVectorImpl &TypeStack, raw_ostream &OS, bool IgnoreTopLevelName) { // Check to see if the type is named. if (!IgnoreTopLevelName) { DenseMap &TM = getTypeNamesMap(TypeNames); DenseMap::iterator I = TM.find(Ty); if (I != TM.end()) { OS << I->second; return; } } // Check to see if the Type is already on the stack... unsigned Slot = 0, CurSize = TypeStack.size(); while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type // This is another base case for the recursion. In this case, we know // that we have looped back to a type that we have previously visited. // Generate the appropriate upreference to handle this. if (Slot < CurSize) { OS << '\\' << unsigned(CurSize-Slot); // Here's the upreference return; } TypeStack.push_back(Ty); // Recursive case: Add us to the stack.. switch (Ty->getTypeID()) { case Type::VoidTyID: OS << "void"; break; case Type::FloatTyID: OS << "float"; break; case Type::DoubleTyID: OS << "double"; break; case Type::X86_FP80TyID: OS << "x86_fp80"; break; case Type::FP128TyID: OS << "fp128"; break; case Type::PPC_FP128TyID: OS << "ppc_fp128"; break; case Type::LabelTyID: OS << "label"; break; case Type::MetadataTyID: OS << "metadata"; break; case Type::IntegerTyID: OS << 'i' << cast(Ty)->getBitWidth(); break; case Type::FunctionTyID: { const FunctionType *FTy = cast(Ty); CalcTypeName(FTy->getReturnType(), TypeStack, OS); OS << " ("; for (FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end(); I != E; ++I) { if (I != FTy->param_begin()) OS << ", "; CalcTypeName(*I, TypeStack, OS); } if (FTy->isVarArg()) { if (FTy->getNumParams()) OS << ", "; OS << "..."; } OS << ')'; break; } case Type::StructTyID: { const StructType *STy = cast(Ty); if (STy->isPacked()) OS << '<'; OS << '{'; for (StructType::element_iterator I = STy->element_begin(), E = STy->element_end(); I != E; ++I) { OS << ' '; CalcTypeName(*I, TypeStack, OS); if (llvm::next(I) == STy->element_end()) OS << ' '; else OS << ','; } OS << '}'; if (STy->isPacked()) OS << '>'; break; } case Type::UnionTyID: { const UnionType *UTy = cast(Ty); OS << "union {"; for (StructType::element_iterator I = UTy->element_begin(), E = UTy->element_end(); I != E; ++I) { OS << ' '; CalcTypeName(*I, TypeStack, OS); if (llvm::next(I) == UTy->element_end()) OS << ' '; else OS << ','; } OS << '}'; break; } case Type::PointerTyID: { const PointerType *PTy = cast(Ty); CalcTypeName(PTy->getElementType(), TypeStack, OS); if (unsigned AddressSpace = PTy->getAddressSpace()) OS << " addrspace(" << AddressSpace << ')'; OS << '*'; break; } case Type::ArrayTyID: { const ArrayType *ATy = cast(Ty); OS << '[' << ATy->getNumElements() << " x "; CalcTypeName(ATy->getElementType(), TypeStack, OS); OS << ']'; break; } case Type::VectorTyID: { const VectorType *PTy = cast(Ty); OS << "<" << PTy->getNumElements() << " x "; CalcTypeName(PTy->getElementType(), TypeStack, OS); OS << '>'; break; } case Type::OpaqueTyID: OS << "opaque"; break; default: OS << ""; break; } TypeStack.pop_back(); // Remove self from stack. } /// printTypeInt - The internal guts of printing out a type that has a /// potentially named portion. /// void TypePrinting::print(const Type *Ty, raw_ostream &OS, bool IgnoreTopLevelName) { // Check to see if the type is named. DenseMap &TM = getTypeNamesMap(TypeNames); if (!IgnoreTopLevelName) { DenseMap::iterator I = TM.find(Ty); if (I != TM.end()) { OS << I->second; return; } } // Otherwise we have a type that has not been named but is a derived type. // Carefully recurse the type hierarchy to print out any contained symbolic // names. SmallVector TypeStack; std::string TypeName; raw_string_ostream TypeOS(TypeName); CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName); OS << TypeOS.str(); // Cache type name for later use. if (!IgnoreTopLevelName) TM.insert(std::make_pair(Ty, TypeOS.str())); } namespace { class TypeFinder { // To avoid walking constant expressions multiple times and other IR // objects, we keep several helper maps. DenseSet VisitedConstants; DenseSet VisitedTypes; TypePrinting &TP; std::vector &NumberedTypes; public: TypeFinder(TypePrinting &tp, std::vector &numberedTypes) : TP(tp), NumberedTypes(numberedTypes) {} void Run(const Module &M) { // Get types from the type symbol table. This gets opaque types referened // only through derived named types. const TypeSymbolTable &ST = M.getTypeSymbolTable(); for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); TI != E; ++TI) IncorporateType(TI->second); // Get types from global variables. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { IncorporateType(I->getType()); if (I->hasInitializer()) IncorporateValue(I->getInitializer()); } // Get types from aliases. for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) { IncorporateType(I->getType()); IncorporateValue(I->getAliasee()); } // Get types from functions. for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) { IncorporateType(FI->getType()); for (Function::const_iterator BB = FI->begin(), E = FI->end(); BB != E;++BB) for (BasicBlock::const_iterator II = BB->begin(), E = BB->end(); II != E; ++II) { const Instruction &I = *II; // Incorporate the type of the instruction and all its operands. IncorporateType(I.getType()); for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) IncorporateValue(*OI); } } } private: void IncorporateType(const Type *Ty) { // Check to see if we're already visited this type. if (!VisitedTypes.insert(Ty).second) return; // If this is a structure or opaque type, add a name for the type. if (((Ty->isStructTy() && cast(Ty)->getNumElements()) || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) { TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size()))); NumberedTypes.push_back(Ty); } // Recursively walk all contained types. for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); I != E; ++I) IncorporateType(*I); } /// IncorporateValue - This method is used to walk operand lists finding /// types hiding in constant expressions and other operands that won't be /// walked in other ways. GlobalValues, basic blocks, instructions, and /// inst operands are all explicitly enumerated. void IncorporateValue(const Value *V) { if (V == 0 || !isa(V) || isa(V)) return; // Already visited? if (!VisitedConstants.insert(V).second) return; // Check this type. IncorporateType(V->getType()); // Look in operands for types. const Constant *C = cast(V); for (Constant::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E;++I) IncorporateValue(*I); } }; } // end anonymous namespace /// AddModuleTypesToPrinter - Add all of the symbolic type names for types in /// the specified module to the TypePrinter and all numbered types to it and the /// NumberedTypes table. static void AddModuleTypesToPrinter(TypePrinting &TP, std::vector &NumberedTypes, const Module *M) { if (M == 0) return; // If the module has a symbol table, take all global types and stuff their // names into the TypeNames map. const TypeSymbolTable &ST = M->getTypeSymbolTable(); for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end(); TI != E; ++TI) { const Type *Ty = cast(TI->second); // As a heuristic, don't insert pointer to primitive types, because // they are used too often to have a single useful name. if (const PointerType *PTy = dyn_cast(Ty)) { const Type *PETy = PTy->getElementType(); if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) && !PETy->isOpaqueTy()) continue; } // Likewise don't insert primitives either. if (Ty->isIntegerTy() || Ty->isPrimitiveType()) continue; // Get the name as a string and insert it into TypeNames. std::string NameStr; raw_string_ostream NameROS(NameStr); formatted_raw_ostream NameOS(NameROS); PrintLLVMName(NameOS, TI->first, LocalPrefix); NameOS.flush(); TP.addTypeName(Ty, NameStr); } // Walk the entire module to find references to unnamed structure and opaque // types. This is required for correctness by opaque types (because multiple // uses of an unnamed opaque type needs to be referred to by the same ID) and // it shrinks complex recursive structure types substantially in some cases. TypeFinder(TP, NumberedTypes).Run(*M); } /// WriteTypeSymbolic - This attempts to write the specified type as a symbolic /// type, iff there is an entry in the modules symbol table for the specified /// type or one of it's component types. /// void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) { TypePrinting Printer; std::vector NumberedTypes; AddModuleTypesToPrinter(Printer, NumberedTypes, M); Printer.print(Ty, OS); } //===----------------------------------------------------------------------===// // SlotTracker Class: Enumerate slot numbers for unnamed values //===----------------------------------------------------------------------===// namespace { /// This class provides computation of slot numbers for LLVM Assembly writing. /// class SlotTracker { public: /// ValueMap - A mapping of Values to slot numbers. typedef DenseMap ValueMap; private: /// TheModule - The module for which we are holding slot numbers. const Module* TheModule; /// TheFunction - The function for which we are holding slot numbers. const Function* TheFunction; bool FunctionProcessed; /// mMap - The TypePlanes map for the module level data. ValueMap mMap; unsigned mNext; /// fMap - The TypePlanes map for the function level data. ValueMap fMap; unsigned fNext; /// mdnMap - Map for MDNodes. DenseMap mdnMap; unsigned mdnNext; public: /// Construct from a module explicit SlotTracker(const Module *M); /// Construct from a function, starting out in incorp state. explicit SlotTracker(const Function *F); /// Return the slot number of the specified value in it's type /// plane. If something is not in the SlotTracker, return -1. int getLocalSlot(const Value *V); int getGlobalSlot(const GlobalValue *V); int getMetadataSlot(const MDNode *N); /// If you'd like to deal with a function instead of just a module, use /// this method to get its data into the SlotTracker. void incorporateFunction(const Function *F) { TheFunction = F; FunctionProcessed = false; } /// After calling incorporateFunction, use this method to remove the /// most recently incorporated function from the SlotTracker. This /// will reset the state of the machine back to just the module contents. void purgeFunction(); /// MDNode map iterators. typedef DenseMap::iterator mdn_iterator; mdn_iterator mdn_begin() { return mdnMap.begin(); } mdn_iterator mdn_end() { return mdnMap.end(); } unsigned mdn_size() const { return mdnMap.size(); } bool mdn_empty() const { return mdnMap.empty(); } /// This function does the actual initialization. inline void initialize(); // Implementation Details private: /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void CreateModuleSlot(const GlobalValue *V); /// CreateMetadataSlot - Insert the specified MDNode* into the slot table. void CreateMetadataSlot(const MDNode *N); /// CreateFunctionSlot - Insert the specified Value* into the slot table. void CreateFunctionSlot(const Value *V); /// Add all of the module level global variables (and their initializers) /// and function declarations, but not the contents of those functions. void processModule(); /// Add all of the functions arguments, basic blocks, and instructions. void processFunction(); SlotTracker(const SlotTracker &); // DO NOT IMPLEMENT void operator=(const SlotTracker &); // DO NOT IMPLEMENT }; } // end anonymous namespace static SlotTracker *createSlotTracker(const Value *V) { if (const Argument *FA = dyn_cast(V)) return new SlotTracker(FA->getParent()); if (const Instruction *I = dyn_cast(V)) return new SlotTracker(I->getParent()->getParent()); if (const BasicBlock *BB = dyn_cast(V)) return new SlotTracker(BB->getParent()); if (const GlobalVariable *GV = dyn_cast(V)) return new SlotTracker(GV->getParent()); if (const GlobalAlias *GA = dyn_cast(V)) return new SlotTracker(GA->getParent()); if (const Function *Func = dyn_cast(V)) return new SlotTracker(Func); if (const MDNode *MD = dyn_cast(V)) { if (!MD->isFunctionLocal()) return new SlotTracker(MD->getFunction()); return new SlotTracker((Function *)0); } return 0; } #if 0 #define ST_DEBUG(X) dbgs() << X #else #define ST_DEBUG(X) #endif // Module level constructor. Causes the contents of the Module (sans functions) // to be added to the slot table. SlotTracker::SlotTracker(const Module *M) : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0) { } // Function level constructor. Causes the contents of the Module and the one // function provided to be added to the slot table. SlotTracker::SlotTracker(const Function *F) : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false), mNext(0), fNext(0), mdnNext(0) { } inline void SlotTracker::initialize() { if (TheModule) { processModule(); TheModule = 0; ///< Prevent re-processing next time we're called. } if (TheFunction && !FunctionProcessed) processFunction(); } // Iterate through all the global variables, functions, and global // variable initializers and create slots for them. void SlotTracker::processModule() { ST_DEBUG("begin processModule!\n"); // Add all of the unnamed global variables to the value table. for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) { if (!I->hasName()) CreateModuleSlot(I); } // Add metadata used by named metadata. for (Module::const_named_metadata_iterator I = TheModule->named_metadata_begin(), E = TheModule->named_metadata_end(); I != E; ++I) { const NamedMDNode *NMD = I; for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) CreateMetadataSlot(NMD->getOperand(i)); } // Add all the unnamed functions to the table. for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) if (!I->hasName()) CreateModuleSlot(I); ST_DEBUG("end processModule!\n"); } // Process the arguments, basic blocks, and instructions of a function. void SlotTracker::processFunction() { ST_DEBUG("begin processFunction!\n"); fNext = 0; // Add all the function arguments with no names. for(Function::const_arg_iterator AI = TheFunction->arg_begin(), AE = TheFunction->arg_end(); AI != AE; ++AI) if (!AI->hasName()) CreateFunctionSlot(AI); ST_DEBUG("Inserting Instructions:\n"); SmallVector, 4> MDForInst; // Add all of the basic blocks and instructions with no names. for (Function::const_iterator BB = TheFunction->begin(), E = TheFunction->end(); BB != E; ++BB) { if (!BB->hasName()) CreateFunctionSlot(BB); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (!I->getType()->isVoidTy() && !I->hasName()) CreateFunctionSlot(I); // Intrinsics can directly use metadata. We allow direct calls to any // llvm.foo function here, because the target may not be linked into the // optimizer. if (const CallInst *CI = dyn_cast(I)) { if (Function *F = CI->getCalledFunction()) if (F->getName().startswith("llvm.")) for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (MDNode *N = dyn_cast_or_null(I->getOperand(i))) CreateMetadataSlot(N); } // Process metadata attached with this instruction. I->getAllMetadata(MDForInst); for (unsigned i = 0, e = MDForInst.size(); i != e; ++i) CreateMetadataSlot(MDForInst[i].second); MDForInst.clear(); } } FunctionProcessed = true; ST_DEBUG("end processFunction!\n"); } /// Clean up after incorporating a function. This is the only way to get out of /// the function incorporation state that affects get*Slot/Create*Slot. Function /// incorporation state is indicated by TheFunction != 0. void SlotTracker::purgeFunction() { ST_DEBUG("begin purgeFunction!\n"); fMap.clear(); // Simply discard the function level map TheFunction = 0; FunctionProcessed = false; ST_DEBUG("end purgeFunction!\n"); } /// getGlobalSlot - Get the slot number of a global value. int SlotTracker::getGlobalSlot(const GlobalValue *V) { // Check for uninitialized state and do lazy initialization. initialize(); // Find the type plane in the module map ValueMap::iterator MI = mMap.find(V); return MI == mMap.end() ? -1 : (int)MI->second; } /// getMetadataSlot - Get the slot number of a MDNode. int SlotTracker::getMetadataSlot(const MDNode *N) { // Check for uninitialized state and do lazy initialization. initialize(); // Find the type plane in the module map mdn_iterator MI = mdnMap.find(N); return MI == mdnMap.end() ? -1 : (int)MI->second; } /// getLocalSlot - Get the slot number for a value that is local to a function. int SlotTracker::getLocalSlot(const Value *V) { assert(!isa(V) && "Can't get a constant or global slot with this!"); // Check for uninitialized state and do lazy initialization. initialize(); ValueMap::iterator FI = fMap.find(V); return FI == fMap.end() ? -1 : (int)FI->second; } /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table. void SlotTracker::CreateModuleSlot(const GlobalValue *V) { assert(V && "Can't insert a null Value into SlotTracker!"); assert(!V->getType()->isVoidTy() && "Doesn't need a slot!"); assert(!V->hasName() && "Doesn't need a slot!"); unsigned DestSlot = mNext++; mMap[V] = DestSlot; ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " ["); // G = Global, F = Function, A = Alias, o = other ST_DEBUG((isa(V) ? 'G' : (isa(V) ? 'F' : (isa(V) ? 'A' : 'o'))) << "]\n"); } /// CreateSlot - Create a new slot for the specified value if it has no name. void SlotTracker::CreateFunctionSlot(const Value *V) { assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!"); unsigned DestSlot = fNext++; fMap[V] = DestSlot; // G = Global, F = Function, o = other ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" << DestSlot << " [o]\n"); } /// CreateModuleSlot - Insert the specified MDNode* into the slot table. void SlotTracker::CreateMetadataSlot(const MDNode *N) { assert(N && "Can't insert a null Value into SlotTracker!"); // Don't insert if N is a function-local metadata, these are always printed // inline. if (!N->isFunctionLocal()) { mdn_iterator I = mdnMap.find(N); if (I != mdnMap.end()) return; unsigned DestSlot = mdnNext++; mdnMap[N] = DestSlot; } // Recursively add any MDNodes referenced by operands. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (const MDNode *Op = dyn_cast_or_null(N->getOperand(i))) CreateMetadataSlot(Op); } //===----------------------------------------------------------------------===// // AsmWriter Implementation //===----------------------------------------------------------------------===// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context); static const char *getPredicateText(unsigned predicate) { const char * pred = "unknown"; switch (predicate) { case FCmpInst::FCMP_FALSE: pred = "false"; break; case FCmpInst::FCMP_OEQ: pred = "oeq"; break; case FCmpInst::FCMP_OGT: pred = "ogt"; break; case FCmpInst::FCMP_OGE: pred = "oge"; break; case FCmpInst::FCMP_OLT: pred = "olt"; break; case FCmpInst::FCMP_OLE: pred = "ole"; break; case FCmpInst::FCMP_ONE: pred = "one"; break; case FCmpInst::FCMP_ORD: pred = "ord"; break; case FCmpInst::FCMP_UNO: pred = "uno"; break; case FCmpInst::FCMP_UEQ: pred = "ueq"; break; case FCmpInst::FCMP_UGT: pred = "ugt"; break; case FCmpInst::FCMP_UGE: pred = "uge"; break; case FCmpInst::FCMP_ULT: pred = "ult"; break; case FCmpInst::FCMP_ULE: pred = "ule"; break; case FCmpInst::FCMP_UNE: pred = "une"; break; case FCmpInst::FCMP_TRUE: pred = "true"; break; case ICmpInst::ICMP_EQ: pred = "eq"; break; case ICmpInst::ICMP_NE: pred = "ne"; break; case ICmpInst::ICMP_SGT: pred = "sgt"; break; case ICmpInst::ICMP_SGE: pred = "sge"; break; case ICmpInst::ICMP_SLT: pred = "slt"; break; case ICmpInst::ICMP_SLE: pred = "sle"; break; case ICmpInst::ICMP_UGT: pred = "ugt"; break; case ICmpInst::ICMP_UGE: pred = "uge"; break; case ICmpInst::ICMP_ULT: pred = "ult"; break; case ICmpInst::ICMP_ULE: pred = "ule"; break; } return pred; } static void WriteOptimizationInfo(raw_ostream &Out, const User *U) { if (const OverflowingBinaryOperator *OBO = dyn_cast(U)) { if (OBO->hasNoUnsignedWrap()) Out << " nuw"; if (OBO->hasNoSignedWrap()) Out << " nsw"; } else if (const SDivOperator *Div = dyn_cast(U)) { if (Div->isExact()) Out << " exact"; } else if (const GEPOperator *GEP = dyn_cast(U)) { if (GEP->isInBounds()) Out << " inbounds"; } } static void WriteConstantInternal(raw_ostream &Out, const Constant *CV, TypePrinting &TypePrinter, SlotTracker *Machine, const Module *Context) { if (const ConstantInt *CI = dyn_cast(CV)) { if (CI->getType()->isIntegerTy(1)) { Out << (CI->getZExtValue() ? "true" : "false"); return; } Out << CI->getValue(); return; } if (const ConstantFP *CFP = dyn_cast(CV)) { if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble || &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) { // We would like to output the FP constant value in exponential notation, // but we cannot do this if doing so will lose precision. Check here to // make sure that we only output it in exponential format if we can parse // the value back and get the same value. // bool ignored; bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble; double Val = isDouble ? CFP->getValueAPF().convertToDouble() : CFP->getValueAPF().convertToFloat(); SmallString<128> StrVal; raw_svector_ostream(StrVal) << Val; // Check to make sure that the stringized number is not some string like // "Inf" or NaN, that atof will accept, but the lexer will not. Check // that the string matches the "[-+]?[0-9]" regex. // if ((StrVal[0] >= '0' && StrVal[0] <= '9') || ((StrVal[0] == '-' || StrVal[0] == '+') && (StrVal[1] >= '0' && StrVal[1] <= '9'))) { // Reparse stringized version! if (atof(StrVal.c_str()) == Val) { Out << StrVal.str(); return; } } // Otherwise we could not reparse it to exactly the same value, so we must // output the string in hexadecimal format! Note that loading and storing // floating point types changes the bits of NaNs on some hosts, notably // x86, so we must not use these types. assert(sizeof(double) == sizeof(uint64_t) && "assuming that double is 64 bits!"); char Buffer[40]; APFloat apf = CFP->getValueAPF(); // Floats are represented in ASCII IR as double, convert. if (!isDouble) apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); Out << "0x" << utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()), Buffer+40); return; } // Some form of long double. These appear as a magic letter identifying // the type, then a fixed number of hex digits. Out << "0x"; if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) { Out << 'K'; // api needed to prevent premature destruction APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t* p = api.getRawData(); uint64_t word = p[1]; int shiftcount=12; int width = api.getBitWidth(); for (int j=0; j>shiftcount) & 15; if (nibble < 10) Out << (unsigned char)(nibble + '0'); else Out << (unsigned char)(nibble - 10 + 'A'); if (shiftcount == 0 && j+4 < width) { word = *p; shiftcount = 64; if (width-j-4 < 64) shiftcount = width-j-4; } } return; } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) Out << 'L'; else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) Out << 'M'; else llvm_unreachable("Unsupported floating point type"); // api needed to prevent premature destruction APInt api = CFP->getValueAPF().bitcastToAPInt(); const uint64_t* p = api.getRawData(); uint64_t word = *p; int shiftcount=60; int width = api.getBitWidth(); for (int j=0; j>shiftcount) & 15; if (nibble < 10) Out << (unsigned char)(nibble + '0'); else Out << (unsigned char)(nibble - 10 + 'A'); if (shiftcount == 0 && j+4 < width) { word = *(++p); shiftcount = 64; if (width-j-4 < 64) shiftcount = width-j-4; } } return; } if (isa(CV)) { Out << "zeroinitializer"; return; } if (const BlockAddress *BA = dyn_cast(CV)) { Out << "blockaddress("; WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine, Context); Out << ", "; WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine, Context); Out << ")"; return; } if (const ConstantArray *CA = dyn_cast(CV)) { // As a special case, print the array as a string if it is an array of // i8 with ConstantInt values. // const Type *ETy = CA->getType()->getElementType(); if (CA->isString()) { Out << "c\""; PrintEscapedString(CA->getAsString(), Out); Out << '"'; } else { // Cannot output in string format... Out << '['; if (CA->getNumOperands()) { TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine, Context); } } Out << ']'; } return; } if (const ConstantStruct *CS = dyn_cast(CV)) { if (CS->getType()->isPacked()) Out << '<'; Out << '{'; unsigned N = CS->getNumOperands(); if (N) { Out << ' '; TypePrinter.print(CS->getOperand(0)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1; i < N; i++) { Out << ", "; TypePrinter.print(CS->getOperand(i)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine, Context); } Out << ' '; } Out << '}'; if (CS->getType()->isPacked()) Out << '>'; return; } if (const ConstantUnion *CU = dyn_cast(CV)) { Out << "{ "; TypePrinter.print(CU->getOperand(0)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, CU->getOperand(0), &TypePrinter, Machine, Context); Out << " }"; return; } if (const ConstantVector *CP = dyn_cast(CV)) { const Type *ETy = CP->getType()->getElementType(); assert(CP->getNumOperands() > 0 && "Number of operands for a PackedConst must be > 0"); Out << '<'; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine, Context); for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) { Out << ", "; TypePrinter.print(ETy, Out); Out << ' '; WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine, Context); } Out << '>'; return; } if (isa(CV)) { Out << "null"; return; } if (isa(CV)) { Out << "undef"; return; } if (const MDNode *Node = dyn_cast(CV)) { Out << "!" << Machine->getMetadataSlot(Node); return; } if (const ConstantExpr *CE = dyn_cast(CV)) { Out << CE->getOpcodeName(); WriteOptimizationInfo(Out, CE); if (CE->isCompare()) Out << ' ' << getPredicateText(CE->getPredicate()); Out << " ("; for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) { TypePrinter.print((*OI)->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context); if (OI+1 != CE->op_end()) Out << ", "; } if (CE->hasIndices()) { const SmallVector &Indices = CE->getIndices(); for (unsigned i = 0, e = Indices.size(); i != e; ++i) Out << ", " << Indices[i]; } if (CE->isCast()) { Out << " to "; TypePrinter.print(CE->getType(), Out); } Out << ')'; return; } Out << ""; } static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { Out << "!{"; for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) { const Value *V = Node->getOperand(mi); if (V == 0) Out << "null"; else { TypePrinter->print(V->getType(), Out); Out << ' '; WriteAsOperandInternal(Out, Node->getOperand(mi), TypePrinter, Machine, Context); } if (mi + 1 != me) Out << ", "; } Out << "}"; } /// WriteAsOperand - Write the name of the specified value out to the specified /// ostream. This can be useful when you just want to print int %reg126, not /// the whole instruction that generated it. /// static void WriteAsOperandInternal(raw_ostream &Out, const Value *V, TypePrinting *TypePrinter, SlotTracker *Machine, const Module *Context) { if (V->hasName()) { PrintLLVMName(Out, V); return; } const Constant *CV = dyn_cast(V); if (CV && !isa(CV)) { assert(TypePrinter && "Constants require TypePrinting!"); WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context); return; } if (const InlineAsm *IA = dyn_cast(V)) { Out << "asm "; if (IA->hasSideEffects()) Out << "sideeffect "; if (IA->isAlignStack()) Out << "alignstack "; Out << '"'; PrintEscapedString(IA->getAsmString(), Out); Out << "\", \""; PrintEscapedString(IA->getConstraintString(), Out); Out << '"'; return; } if (const MDNode *N = dyn_cast(V)) { if (N->isFunctionLocal()) { // Print metadata inline, not via slot reference number. WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context); return; } if (!Machine) { if (N->isFunctionLocal()) Machine = new SlotTracker(N->getFunction()); else Machine = new SlotTracker(Context); } Out << '!' << Machine->getMetadataSlot(N); return; } if (const MDString *MDS = dyn_cast(V)) { Out << "!\""; PrintEscapedString(MDS->getString(), Out); Out << '"'; return; } if (V->getValueID() == Value::PseudoSourceValueVal || V->getValueID() == Value::FixedStackPseudoSourceValueVal) { V->print(Out); return; } char Prefix = '%'; int Slot; if (Machine) { if (const GlobalValue *GV = dyn_cast(V)) { Slot = Machine->getGlobalSlot(GV); Prefix = '@'; } else { Slot = Machine->getLocalSlot(V); } } else { Machine = createSlotTracker(V); if (Machine) { if (const GlobalValue *GV = dyn_cast(V)) { Slot = Machine->getGlobalSlot(GV); Prefix = '@'; } else { Slot = Machine->getLocalSlot(V); } delete Machine; } else { Slot = -1; } } if (Slot != -1) Out << Prefix << Slot; else Out << ""; } void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType, const Module *Context) { // Fast path: Don't construct and populate a TypePrinting object if we // won't be needing any types printed. if (!PrintType && ((!isa(V) && !isa(V)) || V->hasName() || isa(V))) { WriteAsOperandInternal(Out, V, 0, 0, Context); return; } if (Context == 0) Context = getModuleFromVal(V); TypePrinting TypePrinter; std::vector NumberedTypes; AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context); if (PrintType) { TypePrinter.print(V->getType(), Out); Out << ' '; } WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context); } namespace { class AssemblyWriter { formatted_raw_ostream &Out; SlotTracker &Machine; const Module *TheModule; TypePrinting TypePrinter; AssemblyAnnotationWriter *AnnotationWriter; std::vector NumberedTypes; public: inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M, AssemblyAnnotationWriter *AAW) : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) { AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M); } void printMDNodeBody(const MDNode *MD); void printNamedMDNode(const NamedMDNode *NMD); void printModule(const Module *M); void writeOperand(const Value *Op, bool PrintType); void writeParamOperand(const Value *Operand, Attributes Attrs); void writeAllMDNodes(); void printTypeSymbolTable(const TypeSymbolTable &ST); void printGlobal(const GlobalVariable *GV); void printAlias(const GlobalAlias *GV); void printFunction(const Function *F); void printArgument(const Argument *FA, Attributes Attrs); void printBasicBlock(const BasicBlock *BB); void printInstruction(const Instruction &I); private: // printInfoComment - Print a little comment after the instruction indicating // which slot it occupies. void printInfoComment(const Value &V); }; } // end of anonymous namespace void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { if (Operand == 0) { Out << ""; return; } if (PrintType) { TypePrinter.print(Operand->getType(), Out); Out << ' '; } WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::writeParamOperand(const Value *Operand, Attributes Attrs) { if (Operand == 0) { Out << ""; return; } // Print the type TypePrinter.print(Operand->getType(), Out); // Print parameter attributes list if (Attrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs); Out << ' '; // Print the operand WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } void AssemblyWriter::printModule(const Module *M) { if (!M->getModuleIdentifier().empty() && // Don't print the ID if it will start a new line (which would // require a comment char before it). M->getModuleIdentifier().find('\n') == std::string::npos) Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; if (!M->getDataLayout().empty()) Out << "target datalayout = \"" << M->getDataLayout() << "\"\n"; if (!M->getTargetTriple().empty()) Out << "target triple = \"" << M->getTargetTriple() << "\"\n"; if (!M->getModuleInlineAsm().empty()) { // Split the string into lines, to make it easier to read the .ll file. std::string Asm = M->getModuleInlineAsm(); size_t CurPos = 0; size_t NewLine = Asm.find_first_of('\n', CurPos); Out << '\n'; while (NewLine != std::string::npos) { // We found a newline, print the portion of the asm string from the // last newline up to this newline. Out << "module asm \""; PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine), Out); Out << "\"\n"; CurPos = NewLine+1; NewLine = Asm.find_first_of('\n', CurPos); } Out << "module asm \""; PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out); Out << "\"\n"; } // Loop over the dependent libraries and emit them. Module::lib_iterator LI = M->lib_begin(); Module::lib_iterator LE = M->lib_end(); if (LI != LE) { Out << '\n'; Out << "deplibs = [ "; while (LI != LE) { Out << '"' << *LI << '"'; ++LI; if (LI != LE) Out << ", "; } Out << " ]"; } // Loop over the symbol table, emitting all id'd types. if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n'; printTypeSymbolTable(M->getTypeSymbolTable()); // Output all globals. if (!M->global_empty()) Out << '\n'; for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I) printGlobal(I); // Output all aliases. if (!M->alias_empty()) Out << "\n"; for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); I != E; ++I) printAlias(I); // Output all of the functions. for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) printFunction(I); // Output named metadata. if (!M->named_metadata_empty()) Out << '\n'; for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), E = M->named_metadata_end(); I != E; ++I) printNamedMDNode(I); // Output metadata. if (!Machine.mdn_empty()) { Out << '\n'; writeAllMDNodes(); } } void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) { Out << "!" << NMD->getName() << " = !{"; for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { if (i) Out << ", "; Out << '!' << Machine.getMetadataSlot(NMD->getOperand(i)); } Out << "}\n"; } static void PrintLinkage(GlobalValue::LinkageTypes LT, formatted_raw_ostream &Out) { switch (LT) { case GlobalValue::ExternalLinkage: break; case GlobalValue::PrivateLinkage: Out << "private "; break; case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break; case GlobalValue::LinkerPrivateWeakLinkage: Out << "linker_private_weak "; break; case GlobalValue::InternalLinkage: Out << "internal "; break; case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break; case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break; case GlobalValue::WeakAnyLinkage: Out << "weak "; break; case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break; case GlobalValue::CommonLinkage: Out << "common "; break; case GlobalValue::AppendingLinkage: Out << "appending "; break; case GlobalValue::DLLImportLinkage: Out << "dllimport "; break; case GlobalValue::DLLExportLinkage: Out << "dllexport "; break; case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break; case GlobalValue::AvailableExternallyLinkage: Out << "available_externally "; break; } } static void PrintVisibility(GlobalValue::VisibilityTypes Vis, formatted_raw_ostream &Out) { switch (Vis) { case GlobalValue::DefaultVisibility: break; case GlobalValue::HiddenVisibility: Out << "hidden "; break; case GlobalValue::ProtectedVisibility: Out << "protected "; break; } } void AssemblyWriter::printGlobal(const GlobalVariable *GV) { if (GV->isMaterializable()) Out << "; Materializable\n"; WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent()); Out << " = "; if (!GV->hasInitializer() && GV->hasExternalLinkage()) Out << "external "; PrintLinkage(GV->getLinkage(), Out); PrintVisibility(GV->getVisibility(), Out); if (GV->isThreadLocal()) Out << "thread_local "; if (unsigned AddressSpace = GV->getType()->getAddressSpace()) Out << "addrspace(" << AddressSpace << ") "; Out << (GV->isConstant() ? "constant " : "global "); TypePrinter.print(GV->getType()->getElementType(), Out); if (GV->hasInitializer()) { Out << ' '; writeOperand(GV->getInitializer(), false); } if (GV->hasSection()) { Out << ", section \""; PrintEscapedString(GV->getSection(), Out); Out << '"'; } if (GV->getAlignment()) Out << ", align " << GV->getAlignment(); printInfoComment(*GV); Out << '\n'; } void AssemblyWriter::printAlias(const GlobalAlias *GA) { if (GA->isMaterializable()) Out << "; Materializable\n"; // Don't crash when dumping partially built GA if (!GA->hasName()) Out << "<> = "; else { PrintLLVMName(Out, GA); Out << " = "; } PrintVisibility(GA->getVisibility(), Out); Out << "alias "; PrintLinkage(GA->getLinkage(), Out); const Constant *Aliasee = GA->getAliasee(); if (const GlobalVariable *GV = dyn_cast(Aliasee)) { TypePrinter.print(GV->getType(), Out); Out << ' '; PrintLLVMName(Out, GV); } else if (const Function *F = dyn_cast(Aliasee)) { TypePrinter.print(F->getFunctionType(), Out); Out << "* "; WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); } else if (const GlobalAlias *GA = dyn_cast(Aliasee)) { TypePrinter.print(GA->getType(), Out); Out << ' '; PrintLLVMName(Out, GA); } else { const ConstantExpr *CE = cast(Aliasee); // The only valid GEP is an all zero GEP. assert((CE->getOpcode() == Instruction::BitCast || CE->getOpcode() == Instruction::GetElementPtr) && "Unsupported aliasee"); writeOperand(CE, false); } printInfoComment(*GA); Out << '\n'; } void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) { // Emit all numbered types. for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) { Out << '%' << i << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %2 = type %2 TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out); Out << '\n'; } // Print the named types. for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI) { PrintLLVMName(Out, TI->first, LocalPrefix); Out << " = type "; // Make sure we print out at least one level of the type structure, so // that we do not get %FILE = type %FILE TypePrinter.printAtLeastOneLevel(TI->second, Out); Out << '\n'; } } /// printFunction - Print all aspects of a function. /// void AssemblyWriter::printFunction(const Function *F) { // Print out the return type and name. Out << '\n'; if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out); if (F->isMaterializable()) Out << "; Materializable\n"; if (F->isDeclaration()) Out << "declare "; else Out << "define "; PrintLinkage(F->getLinkage(), Out); PrintVisibility(F->getVisibility(), Out); // Print the calling convention. switch (F->getCallingConv()) { case CallingConv::C: break; // default case CallingConv::Fast: Out << "fastcc "; break; case CallingConv::Cold: Out << "coldcc "; break; case CallingConv::X86_StdCall: Out << "x86_stdcallcc "; break; case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break; case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break; case CallingConv::ARM_APCS: Out << "arm_apcscc "; break; case CallingConv::ARM_AAPCS: Out << "arm_aapcscc "; break; case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break; case CallingConv::MSP430_INTR: Out << "msp430_intrcc "; break; default: Out << "cc" << F->getCallingConv() << " "; break; } const FunctionType *FT = F->getFunctionType(); const AttrListPtr &Attrs = F->getAttributes(); Attributes RetAttrs = Attrs.getRetAttributes(); if (RetAttrs != Attribute::None) Out << Attribute::getAsString(Attrs.getRetAttributes()) << ' '; TypePrinter.print(F->getReturnType(), Out); Out << ' '; WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent()); Out << '('; Machine.incorporateFunction(F); // Loop over the arguments, printing them... unsigned Idx = 1; if (!F->isDeclaration()) { // If this isn't a declaration, print the argument names as well. for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { // Insert commas as we go... the first arg doesn't get a comma if (I != F->arg_begin()) Out << ", "; printArgument(I, Attrs.getParamAttributes(Idx)); Idx++; } } else { // Otherwise, print the types from the function type. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { // Insert commas as we go... the first arg doesn't get a comma if (i) Out << ", "; // Output type... TypePrinter.print(FT->getParamType(i), Out); Attributes ArgAttrs = Attrs.getParamAttributes(i+1); if (ArgAttrs != Attribute::None) Out << ' ' << Attribute::getAsString(ArgAttrs); } } // Finish printing arguments... if (FT->isVarArg()) { if (FT->getNumParams()) Out << ", "; Out << "..."; // Output varargs portion of signature! } Out << ')'; Attributes FnAttrs = Attrs.getFnAttributes(); if (FnAttrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes()); if (F->hasSection()) { Out << " section \""; PrintEscapedString(F->getSection(), Out); Out << '"'; } if (F->getAlignment()) Out << " align " << F->getAlignment(); if (F->hasGC()) Out << " gc \"" << F->getGC() << '"'; if (F->isDeclaration()) { Out << "\n"; } else { Out << " {"; // Output all of its basic blocks... for the function for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I) printBasicBlock(I); Out << "}\n"; } Machine.purgeFunction(); } /// printArgument - This member is called for every argument that is passed into /// the function. Simply print it out /// void AssemblyWriter::printArgument(const Argument *Arg, Attributes Attrs) { // Output type... TypePrinter.print(Arg->getType(), Out); // Output parameter attributes list if (Attrs != Attribute::None) Out << ' ' << Attribute::getAsString(Attrs); // Output name, if available... if (Arg->hasName()) { Out << ' '; PrintLLVMName(Out, Arg); } } /// printBasicBlock - This member is called for each basic block in a method. /// void AssemblyWriter::printBasicBlock(const BasicBlock *BB) { if (BB->hasName()) { // Print out the label if it exists... Out << "\n"; PrintLLVMName(Out, BB->getName(), LabelPrefix); Out << ':'; } else if (!BB->use_empty()) { // Don't print block # of no uses... Out << "\n;