//===-- SlotCalculator.cpp - Calculate what slots values land in ----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a useful analysis step to figure out what numbered slots // values in a program will land in (keeping track of per plane information). // // This is used when writing a file to disk, either in bytecode or assembly. // //===----------------------------------------------------------------------===// #include "SlotCalculator.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/SymbolTable.h" #include "llvm/Type.h" #include "llvm/Analysis/ConstantsScanner.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; #if 0 #include #define SC_DEBUG(X) std::cerr << X #else #define SC_DEBUG(X) #endif SlotCalculator::SlotCalculator(const Module *M ) { ModuleContainsAllFunctionConstants = false; ModuleTypeLevel = 0; TheModule = M; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // SC_DEBUG("Inserting primitive types:\n"); for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::TypeID)i)); insertType(Type::getPrimitiveType((Type::TypeID)i), true); } if (M == 0) return; // Empty table... processModule(); } SlotCalculator::SlotCalculator(const Function *M ) { ModuleContainsAllFunctionConstants = false; TheModule = M ? M->getParent() : 0; // Preload table... Make sure that all of the primitive types are in the table // and that their Primitive ID is equal to their slot # // SC_DEBUG("Inserting primitive types:\n"); for (unsigned i = 0; i < Type::FirstDerivedTyID; ++i) { assert(Type::getPrimitiveType((Type::TypeID)i)); insertType(Type::getPrimitiveType((Type::TypeID)i), true); } if (TheModule == 0) return; // Empty table... processModule(); // Process module level stuff incorporateFunction(M); // Start out in incorporated state } unsigned SlotCalculator::getGlobalSlot(const Value *V) const { assert(!CompactionTable.empty() && "This method can only be used when compaction is enabled!"); std::map::const_iterator I = NodeMap.find(V); assert(I != NodeMap.end() && "Didn't find global slot entry!"); return I->second; } unsigned SlotCalculator::getGlobalSlot(const Type* T) const { std::map::const_iterator I = TypeMap.find(T); assert(I != TypeMap.end() && "Didn't find global slot entry!"); return I->second; } SlotCalculator::TypePlane &SlotCalculator::getPlane(unsigned Plane) { if (CompactionTable.empty()) { // No compaction table active? // fall out } else if (!CompactionTable[Plane].empty()) { // Compaction table active. assert(Plane < CompactionTable.size()); return CompactionTable[Plane]; } else { // Final case: compaction table active, but this plane is not // compactified. If the type plane is compactified, unmap back to the // global type plane corresponding to "Plane". if (!CompactionTypes.empty()) { const Type *Ty = CompactionTypes[Plane]; TypeMapType::iterator It = TypeMap.find(Ty); assert(It != TypeMap.end() && "Type not in global constant map?"); Plane = It->second; } } // Okay we are just returning an entry out of the main Table. Make sure the // plane exists and return it. if (Plane >= Table.size()) Table.resize(Plane+1); return Table[Plane]; } // processModule - Process all of the module level function declarations and // types that are available. // void SlotCalculator::processModule() { SC_DEBUG("begin processModule!\n"); // Add all of the global variables to the value table... // for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) getOrCreateSlot(I); // Scavenge the types out of the functions, then add the functions themselves // to the value table... // for (Module::const_iterator I = TheModule->begin(), E = TheModule->end(); I != E; ++I) getOrCreateSlot(I); // Add all of the module level constants used as initializers // for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end(); I != E; ++I) if (I->hasInitializer()) getOrCreateSlot(I->getInitializer()); // Now that all global constants have been added, rearrange constant planes // that contain constant strings so that the strings occur at the start of the // plane, not somewhere in the middle. // for (unsigned plane = 0, e = Table.size(); plane != e; ++plane) { if (const ArrayType *AT = dyn_cast(Types[plane])) if (AT->getElementType() == Type::SByteTy || AT->getElementType() == Type::UByteTy) { TypePlane &Plane = Table[plane]; unsigned FirstNonStringID = 0; for (unsigned i = 0, e = Plane.size(); i != e; ++i) if (isa(Plane[i]) || (isa(Plane[i]) && cast(Plane[i])->isString())) { // Check to see if we have to shuffle this string around. If not, // don't do anything. if (i != FirstNonStringID) { // Swap the plane entries.... std::swap(Plane[i], Plane[FirstNonStringID]); // Keep the NodeMap up to date. NodeMap[Plane[i]] = i; NodeMap[Plane[FirstNonStringID]] = FirstNonStringID; } ++FirstNonStringID; } } } // Scan all of the functions for their constants, which allows us to emit // more compact modules. This is optional, and is just used to compactify // the constants used by different functions together. // // This functionality tends to produce smaller bytecode files. This should // not be used in the future by clients that want to, for example, build and // emit functions on the fly. For now, however, it is unconditionally // enabled. ModuleContainsAllFunctionConstants = true; SC_DEBUG("Inserting function constants:\n"); for (Module::const_iterator F = TheModule->begin(), E = TheModule->end(); F != E; ++F) { for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { if ((isa(*OI) && !isa(*OI)) || isa(*OI)) getOrCreateSlot(*OI); } getOrCreateSlot(I->getType()); } processSymbolTableConstants(&F->getSymbolTable()); } // Insert constants that are named at module level into the slot pool so that // the module symbol table can refer to them... SC_DEBUG("Inserting SymbolTable values:\n"); processSymbolTable(&TheModule->getSymbolTable()); // Now that we have collected together all of the information relevant to the // module, compactify the type table if it is particularly big and outputting // a bytecode file. The basic problem we run into is that some programs have // a large number of types, which causes the type field to overflow its size, // which causes instructions to explode in size (particularly call // instructions). To avoid this behavior, we "sort" the type table so that // all non-value types are pushed to the end of the type table, giving nice // low numbers to the types that can be used by instructions, thus reducing // the amount of explodage we suffer. if (Types.size() >= 64) { unsigned FirstNonValueTypeID = 0; for (unsigned i = 0, e = Types.size(); i != e; ++i) if (Types[i]->isFirstClassType() || Types[i]->isPrimitiveType()) { // Check to see if we have to shuffle this type around. If not, don't // do anything. if (i != FirstNonValueTypeID) { // Swap the type ID's. std::swap(Types[i], Types[FirstNonValueTypeID]); // Keep the TypeMap up to date. TypeMap[Types[i]] = i; TypeMap[Types[FirstNonValueTypeID]] = FirstNonValueTypeID; // When we move a type, make sure to move its value plane as needed. if (Table.size() > FirstNonValueTypeID) { if (Table.size() <= i) Table.resize(i+1); std::swap(Table[i], Table[FirstNonValueTypeID]); } } ++FirstNonValueTypeID; } } SC_DEBUG("end processModule!\n"); } // processSymbolTable - Insert all of the values in the specified symbol table // into the values table... // void SlotCalculator::processSymbolTable(const SymbolTable *ST) { // Do the types first. for (SymbolTable::type_const_iterator TI = ST->type_begin(), TE = ST->type_end(); TI != TE; ++TI ) getOrCreateSlot(TI->second); // Now do the values. for (SymbolTable::plane_const_iterator PI = ST->plane_begin(), PE = ST->plane_end(); PI != PE; ++PI) for (SymbolTable::value_const_iterator VI = PI->second.begin(), VE = PI->second.end(); VI != VE; ++VI) getOrCreateSlot(VI->second); } void SlotCalculator::processSymbolTableConstants(const SymbolTable *ST) { // Do the types first for (SymbolTable::type_const_iterator TI = ST->type_begin(), TE = ST->type_end(); TI != TE; ++TI ) getOrCreateSlot(TI->second); // Now do the constant values in all planes for (SymbolTable::plane_const_iterator PI = ST->plane_begin(), PE = ST->plane_end(); PI != PE; ++PI) for (SymbolTable::value_const_iterator VI = PI->second.begin(), VE = PI->second.end(); VI != VE; ++VI) if (isa(VI->second) && !isa(VI->second)) getOrCreateSlot(VI->second); } void SlotCalculator::incorporateFunction(const Function *F) { assert((ModuleLevel.size() == 0 || ModuleTypeLevel == 0) && "Module already incorporated!"); SC_DEBUG("begin processFunction!\n"); // If we emitted all of the function constants, build a compaction table. if (ModuleContainsAllFunctionConstants) buildCompactionTable(F); // Update the ModuleLevel entries to be accurate. ModuleLevel.resize(getNumPlanes()); for (unsigned i = 0, e = getNumPlanes(); i != e; ++i) ModuleLevel[i] = getPlane(i).size(); ModuleTypeLevel = Types.size(); // Iterate over function arguments, adding them to the value table... for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) getOrCreateSlot(I); if (!ModuleContainsAllFunctionConstants) { // Iterate over all of the instructions in the function, looking for // constant values that are referenced. Add these to the value pools // before any nonconstant values. This will be turned into the constant // pool for the bytecode writer. // // Emit all of the constants that are being used by the instructions in // the function... for (constant_iterator CI = constant_begin(F), CE = constant_end(F); CI != CE; ++CI) getOrCreateSlot(*CI); // If there is a symbol table, it is possible that the user has names for // constants that are not being used. In this case, we will have problems // if we don't emit the constants now, because otherwise we will get // symbol table references to constants not in the output. Scan for these // constants now. // processSymbolTableConstants(&F->getSymbolTable()); } SC_DEBUG("Inserting Instructions:\n"); // Add all of the instructions to the type planes... for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { getOrCreateSlot(BB); for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { getOrCreateSlot(I); } } // If we are building a compaction table, prune out planes that do not benefit // from being compactified. if (!CompactionTable.empty()) pruneCompactionTable(); SC_DEBUG("end processFunction!\n"); } void SlotCalculator::purgeFunction() { assert((ModuleLevel.size() != 0 || ModuleTypeLevel != 0) && "Module not incorporated!"); unsigned NumModuleTypes = ModuleLevel.size(); SC_DEBUG("begin purgeFunction!\n"); // First, free the compaction map if used. CompactionNodeMap.clear(); CompactionTypeMap.clear(); // Next, remove values from existing type planes for (unsigned i = 0; i != NumModuleTypes; ++i) { // Size of plane before function came unsigned ModuleLev = getModuleLevel(i); assert(int(ModuleLev) >= 0 && "BAD!"); TypePlane &Plane = getPlane(i); assert(ModuleLev <= Plane.size() && "module levels higher than elements?"); while (Plane.size() != ModuleLev) { assert(!isa(Plane.back()) && "Functions cannot define globals!"); NodeMap.erase(Plane.back()); // Erase from nodemap Plane.pop_back(); // Shrink plane } } // We don't need this state anymore, free it up. ModuleLevel.clear(); ModuleTypeLevel = 0; // Finally, remove any type planes defined by the function... CompactionTypes.clear(); if (!CompactionTable.empty()) { CompactionTable.clear(); } else { while (Table.size() > NumModuleTypes) { TypePlane &Plane = Table.back(); SC_DEBUG("Removing Plane " << (Table.size()-1) << " of size " << Plane.size() << "\n"); while (Plane.size()) { assert(!isa(Plane.back()) && "Functions cannot define globals!"); NodeMap.erase(Plane.back()); // Erase from nodemap Plane.pop_back(); // Shrink plane } Table.pop_back(); // Nuke the plane, we don't like it. } } SC_DEBUG("end purgeFunction!\n"); } static inline bool hasNullValue(const Type *Ty) { return Ty != Type::LabelTy && Ty != Type::VoidTy && !isa(Ty); } /// getOrCreateCompactionTableSlot - This method is used to build up the initial /// approximation of the compaction table. unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) { std::map::iterator I = CompactionNodeMap.lower_bound(V); if (I != CompactionNodeMap.end() && I->first == V) return I->second; // Already exists? // Make sure the type is in the table. unsigned Ty; if (!CompactionTypes.empty()) Ty = getOrCreateCompactionTableSlot(V->getType()); else // If the type plane was decompactified, use the global plane ID Ty = getSlot(V->getType()); if (CompactionTable.size() <= Ty) CompactionTable.resize(Ty+1); TypePlane &TyPlane = CompactionTable[Ty]; // Make sure to insert the null entry if the thing we are inserting is not a // null constant. if (TyPlane.empty() && hasNullValue(V->getType())) { Value *ZeroInitializer = Constant::getNullValue(V->getType()); if (V != ZeroInitializer) { TyPlane.push_back(ZeroInitializer); CompactionNodeMap[ZeroInitializer] = 0; } } unsigned SlotNo = TyPlane.size(); TyPlane.push_back(V); CompactionNodeMap.insert(std::make_pair(V, SlotNo)); return SlotNo; } /// getOrCreateCompactionTableSlot - This method is used to build up the initial /// approximation of the compaction table. unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Type *T) { std::map::iterator I = CompactionTypeMap.lower_bound(T); if (I != CompactionTypeMap.end() && I->first == T) return I->second; // Already exists? unsigned SlotNo = CompactionTypes.size(); SC_DEBUG("Inserting Compaction Type #" << SlotNo << ": " << T << "\n"); CompactionTypes.push_back(T); CompactionTypeMap.insert(std::make_pair(T, SlotNo)); return SlotNo; } /// buildCompactionTable - Since all of the function constants and types are /// stored in the module-level constant table, we don't need to emit a function /// constant table. Also due to this, the indices for various constants and /// types might be very large in large programs. In order to avoid blowing up /// the size of instructions in the bytecode encoding, we build a compaction /// table, which defines a mapping from function-local identifiers to global /// identifiers. void SlotCalculator::buildCompactionTable(const Function *F) { assert(CompactionNodeMap.empty() && "Compaction table already built!"); assert(CompactionTypeMap.empty() && "Compaction types already built!"); // First step, insert the primitive types. CompactionTable.resize(Type::LastPrimitiveTyID+1); for (unsigned i = 0; i <= Type::LastPrimitiveTyID; ++i) { const Type *PrimTy = Type::getPrimitiveType((Type::TypeID)i); CompactionTypes.push_back(PrimTy); CompactionTypeMap[PrimTy] = i; } // Next, include any types used by function arguments. for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) getOrCreateCompactionTableSlot(I->getType()); // Next, find all of the types and values that are referred to by the // instructions in the function. for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { getOrCreateCompactionTableSlot(I->getType()); for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) if (isa(I->getOperand(op)) || isa(I->getOperand(op))) getOrCreateCompactionTableSlot(I->getOperand(op)); } // Do the types in the symbol table const SymbolTable &ST = F->getSymbolTable(); for (SymbolTable::type_const_iterator TI = ST.type_begin(), TE = ST.type_end(); TI != TE; ++TI) getOrCreateCompactionTableSlot(TI->second); // Now do the constants and global values for (SymbolTable::plane_const_iterator PI = ST.plane_begin(), PE = ST.plane_end(); PI != PE; ++PI) for (SymbolTable::value_const_iterator VI = PI->second.begin(), VE = PI->second.end(); VI != VE; ++VI) if (isa(VI->second) && !isa(VI->second)) getOrCreateCompactionTableSlot(VI->second); // Now that we have all of the values in the table, and know what types are // referenced, make sure that there is at least the zero initializer in any // used type plane. Since the type was used, we will be emitting instructions // to the plane even if there are no constants in it. CompactionTable.resize(CompactionTypes.size()); for (unsigned i = 0, e = CompactionTable.size(); i != e; ++i) if (CompactionTable[i].empty() && (i != Type::VoidTyID) && i != Type::LabelTyID) { const Type *Ty = CompactionTypes[i]; SC_DEBUG("Getting Null Value #" << i << " for Type " << Ty << "\n"); assert(Ty->getTypeID() != Type::VoidTyID); assert(Ty->getTypeID() != Type::LabelTyID); getOrCreateCompactionTableSlot(Constant::getNullValue(Ty)); } // Okay, now at this point, we have a legal compaction table. Since we want // to emit the smallest possible binaries, do not compactify the type plane if // it will not save us anything. Because we have not yet incorporated the // function body itself yet, we don't know whether or not it's a good idea to // compactify other planes. We will defer this decision until later. TypeList &GlobalTypes = Types; // All of the values types will be scrunched to the start of the types plane // of the global table. Figure out just how many there are. assert(!GlobalTypes.empty() && "No global types???"); unsigned NumFCTypes = GlobalTypes.size()-1; while (!GlobalTypes[NumFCTypes]->isFirstClassType()) --NumFCTypes; // If there are fewer that 64 types, no instructions will be exploded due to // the size of the type operands. Thus there is no need to compactify types. // Also, if the compaction table contains most of the entries in the global // table, there really is no reason to compactify either. if (NumFCTypes < 64) { // Decompactifying types is tricky, because we have to move type planes all // over the place. At least we don't need to worry about updating the // CompactionNodeMap for non-types though. std::vector TmpCompactionTable; std::swap(CompactionTable, TmpCompactionTable); TypeList TmpTypes; std::swap(TmpTypes, CompactionTypes); // Move each plane back over to the uncompactified plane while (!TmpTypes.empty()) { const Type *Ty = TmpTypes.back(); TmpTypes.pop_back(); CompactionTypeMap.erase(Ty); // Decompactify type! // Find the global slot number for this type. int TySlot = getSlot(Ty); assert(TySlot != -1 && "Type doesn't exist in global table?"); // Now we know where to put the compaction table plane. if (CompactionTable.size() <= unsigned(TySlot)) CompactionTable.resize(TySlot+1); // Move the plane back into the compaction table. std::swap(CompactionTable[TySlot], TmpCompactionTable[TmpTypes.size()]); // And remove the empty plane we just moved in. TmpCompactionTable.pop_back(); } } } /// pruneCompactionTable - Once the entire function being processed has been /// incorporated into the current compaction table, look over the compaction /// table and check to see if there are any values whose compaction will not /// save us any space in the bytecode file. If compactifying these values /// serves no purpose, then we might as well not even emit the compactification /// information to the bytecode file, saving a bit more space. /// /// Note that the type plane has already been compactified if possible. /// void SlotCalculator::pruneCompactionTable() { TypeList &TyPlane = CompactionTypes; for (unsigned ctp = 0, e = CompactionTable.size(); ctp != e; ++ctp) if (!CompactionTable[ctp].empty()) { TypePlane &CPlane = CompactionTable[ctp]; unsigned GlobalSlot = ctp; if (!TyPlane.empty()) GlobalSlot = getGlobalSlot(TyPlane[ctp]); if (GlobalSlot >= Table.size()) Table.resize(GlobalSlot+1); TypePlane &GPlane = Table[GlobalSlot]; unsigned ModLevel = getModuleLevel(ctp); unsigned NumFunctionObjs = CPlane.size()-ModLevel; // If the maximum index required if all entries in this plane were merged // into the global plane is less than 64, go ahead and eliminate the // plane. bool PrunePlane = GPlane.size() + NumFunctionObjs < 64; // If there are no function-local values defined, and the maximum // referenced global entry is less than 64, we don't need to compactify. if (!PrunePlane && NumFunctionObjs == 0) { unsigned MaxIdx = 0; for (unsigned i = 0; i != ModLevel; ++i) { unsigned Idx = NodeMap[CPlane[i]]; if (Idx > MaxIdx) MaxIdx = Idx; } PrunePlane = MaxIdx < 64; } // Ok, finally, if we decided to prune this plane out of the compaction // table, do so now. if (PrunePlane) { TypePlane OldPlane; std::swap(OldPlane, CPlane); // Loop over the function local objects, relocating them to the global // table plane. for (unsigned i = ModLevel, e = OldPlane.size(); i != e; ++i) { const Value *V = OldPlane[i]; CompactionNodeMap.erase(V); assert(NodeMap.count(V) == 0 && "Value already in table??"); getOrCreateSlot(V); } // For compactified global values, just remove them from the compaction // node map. for (unsigned i = 0; i != ModLevel; ++i) CompactionNodeMap.erase(OldPlane[i]); // Update the new modulelevel for this plane. assert(ctp < ModuleLevel.size() && "Cannot set modulelevel!"); ModuleLevel[ctp] = GPlane.size()-NumFunctionObjs; assert((int)ModuleLevel[ctp] >= 0 && "Bad computation!"); } } } /// Determine if the compaction table is actually empty. Because the /// compaction table always includes the primitive type planes, we /// can't just check getCompactionTable().size() because it will never /// be zero. Furthermore, the ModuleLevel factors into whether a given /// plane is empty or not. This function does the necessary computation /// to determine if its actually empty. bool SlotCalculator::CompactionTableIsEmpty() const { // Check a degenerate case, just in case. if (CompactionTable.size() == 0) return true; // Check each plane for (unsigned i = 0, e = CompactionTable.size(); i < e; ++i) { // If the plane is not empty if (!CompactionTable[i].empty()) { // If the module level is non-zero then at least the // first element of the plane is valid and therefore not empty. unsigned End = getModuleLevel(i); if (End != 0) return false; } } // All the compaction table planes are empty so the table is // considered empty too. return true; } int SlotCalculator::getSlot(const Value *V) const { // If there is a CompactionTable active... if (!CompactionNodeMap.empty()) { std::map::const_iterator I = CompactionNodeMap.find(V); if (I != CompactionNodeMap.end()) return (int)I->second; // Otherwise, if it's not in the compaction table, it must be in a // non-compactified plane. } std::map::const_iterator I = NodeMap.find(V); if (I != NodeMap.end()) return (int)I->second; return -1; } int SlotCalculator::getSlot(const Type*T) const { // If there is a CompactionTable active... if (!CompactionTypeMap.empty()) { std::map::const_iterator I = CompactionTypeMap.find(T); if (I != CompactionTypeMap.end()) return (int)I->second; // Otherwise, if it's not in the compaction table, it must be in a // non-compactified plane. } std::map::const_iterator I = TypeMap.find(T); if (I != TypeMap.end()) return (int)I->second; return -1; } int SlotCalculator::getOrCreateSlot(const Value *V) { if (V->getType() == Type::VoidTy) return -1; int SlotNo = getSlot(V); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; if (const GlobalValue *GV = dyn_cast(V)) assert(GV->getParent() != 0 && "Global not embedded into a module!"); if (!isa(V)) // Initializers for globals are handled explicitly if (const Constant *C = dyn_cast(V)) { assert(CompactionNodeMap.empty() && "All needed constants should be in the compaction map already!"); // Do not index the characters that make up constant strings. We emit // constant strings as special entities that don't require their // individual characters to be emitted. if (!isa(C) || !cast(C)->isString()) { // This makes sure that if a constant has uses (for example an array of // const ints), that they are inserted also. // for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E; ++I) getOrCreateSlot(*I); } else { assert(ModuleLevel.empty() && "How can a constant string be directly accessed in a function?"); // Otherwise, if we are emitting a bytecode file and this IS a string, // remember it. if (!C->isNullValue()) ConstantStrings.push_back(cast(C)); } } return insertValue(V); } int SlotCalculator::getOrCreateSlot(const Type* T) { int SlotNo = getSlot(T); // Check to see if it's already in! if (SlotNo != -1) return SlotNo; return insertType(T); } int SlotCalculator::insertValue(const Value *D, bool dontIgnore) { assert(D && "Can't insert a null value!"); assert(getSlot(D) == -1 && "Value is already in the table!"); // If we are building a compaction map, and if this plane is being compacted, // insert the value into the compaction map, not into the global map. if (!CompactionNodeMap.empty()) { if (D->getType() == Type::VoidTy) return -1; // Do not insert void values assert(!isa(D) && "Types, constants, and globals should be in global table!"); int Plane = getSlot(D->getType()); assert(Plane != -1 && CompactionTable.size() > (unsigned)Plane && "Didn't find value type!"); if (!CompactionTable[Plane].empty()) return getOrCreateCompactionTableSlot(D); } // If this node does not contribute to a plane, or if the node has a // name and we don't want names, then ignore the silly node... Note that types // do need slot numbers so that we can keep track of where other values land. // if (!dontIgnore) // Don't ignore nonignorables! if (D->getType() == Type::VoidTy ) { // Ignore void type nodes SC_DEBUG("ignored value " << *D << "\n"); return -1; // We do need types unconditionally though } // Okay, everything is happy, actually insert the silly value now... return doInsertValue(D); } int SlotCalculator::insertType(const Type *Ty, bool dontIgnore) { assert(Ty && "Can't insert a null type!"); assert(getSlot(Ty) == -1 && "Type is already in the table!"); // If we are building a compaction map, and if this plane is being compacted, // insert the value into the compaction map, not into the global map. if (!CompactionTypeMap.empty()) { getOrCreateCompactionTableSlot(Ty); } // Insert the current type before any subtypes. This is important because // recursive types elements are inserted in a bottom up order. Changing // this here can break things. For example: // // global { \2 * } { { \2 }* null } // int ResultSlot = doInsertType(Ty); SC_DEBUG(" Inserted type: " << Ty->getDescription() << " slot=" << ResultSlot << "\n"); // Loop over any contained types in the definition... in post // order. for (po_iterator I = po_begin(Ty), E = po_end(Ty); I != E; ++I) { if (*I != Ty) { const Type *SubTy = *I; // If we haven't seen this sub type before, add it to our type table! if (getSlot(SubTy) == -1) { SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n"); doInsertType(SubTy); SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() << "\n"); } } } return ResultSlot; } // doInsertValue - This is a small helper function to be called only // be insertValue. // int SlotCalculator::doInsertValue(const Value *D) { const Type *Typ = D->getType(); unsigned Ty; // Used for debugging DefSlot=-1 assertion... //if (Typ == Type::TypeTy) // cerr << "Inserting type '" << cast(D)->getDescription() << "'!\n"; if (Typ->isDerivedType()) { int ValSlot; if (CompactionTable.empty()) ValSlot = getSlot(Typ); else ValSlot = getGlobalSlot(Typ); if (ValSlot == -1) { // Have we already entered this type? // Nope, this is the first we have seen the type, process it. ValSlot = insertType(Typ, true); assert(ValSlot != -1 && "ProcessType returned -1 for a type?"); } Ty = (unsigned)ValSlot; } else { Ty = Typ->getTypeID(); } if (Table.size() <= Ty) // Make sure we have the type plane allocated... Table.resize(Ty+1, TypePlane()); // If this is the first value to get inserted into the type plane, make sure // to insert the implicit null value... if (Table[Ty].empty() && hasNullValue(Typ)) { Value *ZeroInitializer = Constant::getNullValue(Typ); // If we are pushing zeroinit, it will be handled below. if (D != ZeroInitializer) { Table[Ty].push_back(ZeroInitializer); NodeMap[ZeroInitializer] = 0; } } // Insert node into table and NodeMap... unsigned DestSlot = NodeMap[D] = Table[Ty].size(); Table[Ty].push_back(D); SC_DEBUG(" Inserting value [" << Ty << "] = " << D << " slot=" << DestSlot << " ["); // G = Global, C = Constant, T = Type, F = Function, o = other SC_DEBUG((isa(D) ? "G" : (isa(D) ? "C" : (isa(D) ? "F" : "o")))); SC_DEBUG("]\n"); return (int)DestSlot; } // doInsertType - This is a small helper function to be called only // be insertType. // int SlotCalculator::doInsertType(const Type *Ty) { // Insert node into table and NodeMap... unsigned DestSlot = TypeMap[Ty] = Types.size(); Types.push_back(Ty); SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n" ); return (int)DestSlot; }