//===- LowerAllocations.cpp - Reduce malloc & free insts to calls ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // The LowerAllocations transformation is a target-dependent tranformation // because it depends on the size of data types and alignment constraints. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lowerallocs" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Constants.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/Compiler.h" using namespace llvm; STATISTIC(NumLowered, "Number of allocations lowered"); namespace { /// LowerAllocations - Turn malloc and free instructions into %malloc and /// %free calls. /// class VISIBILITY_HIDDEN LowerAllocations : public BasicBlockPass { Constant *MallocFunc; // Functions in the module we are processing Constant *FreeFunc; // Initialized by doInitialization bool LowerMallocArgToInteger; public: static char ID; // Pass ID, replacement for typeid explicit LowerAllocations(bool LowerToInt = false) : BasicBlockPass(&ID), MallocFunc(0), FreeFunc(0), LowerMallocArgToInteger(LowerToInt) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); // This is a cluster of orthogonal Transforms: AU.addPreserved(); AU.addPreservedID(PromoteMemoryToRegisterID); AU.addPreservedID(LowerSwitchID); AU.addPreservedID(LowerInvokePassID); } /// doPassInitialization - For the lower allocations pass, this ensures that /// a module contains a declaration for a malloc and a free function. /// bool doInitialization(Module &M); virtual bool doInitialization(Function &F) { return doInitialization(*F.getParent()); } /// runOnBasicBlock - This method does the actual work of converting /// instructions over, assuming that the pass has already been initialized. /// bool runOnBasicBlock(BasicBlock &BB); }; } char LowerAllocations::ID = 0; static RegisterPass X("lowerallocs", "Lower allocations from instructions to calls"); // Publically exposed interface to pass... const PassInfo *const llvm::LowerAllocationsID = &X; // createLowerAllocationsPass - Interface to this file... Pass *llvm::createLowerAllocationsPass(bool LowerMallocArgToInteger) { return new LowerAllocations(LowerMallocArgToInteger); } // doInitialization - For the lower allocations pass, this ensures that a // module contains a declaration for a malloc and a free function. // // This function is always successful. // bool LowerAllocations::doInitialization(Module &M) { const Type *BPTy = Context->getPointerTypeUnqual(Type::Int8Ty); // Prototype malloc as "char* malloc(...)", because we don't know in // doInitialization whether size_t is int or long. FunctionType *FT = Context->getFunctionType(BPTy, true); MallocFunc = M.getOrInsertFunction("malloc", FT); FreeFunc = M.getOrInsertFunction("free" , Type::VoidTy, BPTy, (Type *)0); return true; } // runOnBasicBlock - This method does the actual work of converting // instructions over, assuming that the pass has already been initialized. // bool LowerAllocations::runOnBasicBlock(BasicBlock &BB) { bool Changed = false; assert(MallocFunc && FreeFunc && "Pass not initialized!"); BasicBlock::InstListType &BBIL = BB.getInstList(); const TargetData &TD = getAnalysis(); const Type *IntPtrTy = TD.getIntPtrType(); // Loop over all of the instructions, looking for malloc or free instructions for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) { if (MallocInst *MI = dyn_cast(I)) { const Type *AllocTy = MI->getType()->getElementType(); // malloc(type) becomes i8 *malloc(size) Value *MallocArg; if (LowerMallocArgToInteger) MallocArg = Context->getConstantInt(Type::Int64Ty, TD.getTypeAllocSize(AllocTy)); else MallocArg = Context->getConstantExprSizeOf(AllocTy); MallocArg = Context->getConstantExprTruncOrBitCast(cast(MallocArg), IntPtrTy); if (MI->isArrayAllocation()) { if (isa(MallocArg) && cast(MallocArg)->isOne()) { MallocArg = MI->getOperand(0); // Operand * 1 = Operand } else if (Constant *CO = dyn_cast(MI->getOperand(0))) { CO = Context->getConstantExprIntegerCast(CO, IntPtrTy, false /*ZExt*/); MallocArg = Context->getConstantExprMul(CO, cast(MallocArg)); } else { Value *Scale = MI->getOperand(0); if (Scale->getType() != IntPtrTy) Scale = CastInst::CreateIntegerCast(Scale, IntPtrTy, false /*ZExt*/, "", I); // Multiply it by the array size if necessary... MallocArg = BinaryOperator::Create(Instruction::Mul, Scale, MallocArg, "", I); } } // Create the call to Malloc. CallInst *MCall = CallInst::Create(MallocFunc, MallocArg, "", I); MCall->setTailCall(); // Create a cast instruction to convert to the right type... Value *MCast; if (MCall->getType() != Type::VoidTy) MCast = new BitCastInst(MCall, MI->getType(), "", I); else MCast = Context->getNullValue(MI->getType()); // Replace all uses of the old malloc inst with the cast inst MI->replaceAllUsesWith(MCast); I = --BBIL.erase(I); // remove and delete the malloc instr... Changed = true; ++NumLowered; } else if (FreeInst *FI = dyn_cast(I)) { Value *PtrCast = new BitCastInst(FI->getOperand(0), Context->getPointerTypeUnqual(Type::Int8Ty), "", I); // Insert a call to the free function... CallInst::Create(FreeFunc, PtrCast, "", I)->setTailCall(); // Delete the old free instruction I = --BBIL.erase(I); Changed = true; ++NumLowered; } } return Changed; }