//===-- ExternalFunctions.cpp - Implement External Functions --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains both code to deal with invoking "external" functions, but // also contains code that implements "exported" external functions. // // External functions in the interpreter are implemented by // using the system's dynamic loader to look up the address of the function // we want to invoke. If a function is found, then one of the // many lle_* wrapper functions in this file will translate its arguments from // GenericValues to the types the function is actually expecting, before the // function is called. // //===----------------------------------------------------------------------===// #include "Interpreter.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Support/Streams.h" #include "llvm/System/DynamicLibrary.h" #include "llvm/Target/TargetData.h" #include "llvm/Support/ManagedStatic.h" #include #include #include #include #include #ifdef __linux__ #include #endif using std::vector; using namespace llvm; typedef GenericValue (*ExFunc)(FunctionType *, const vector &); static ManagedStatic > Functions; static std::map FuncNames; static Interpreter *TheInterpreter; static char getTypeID(const Type *Ty) { switch (Ty->getTypeID()) { case Type::VoidTyID: return 'V'; case Type::IntegerTyID: switch (cast(Ty)->getBitWidth()) { case 1: return 'o'; case 8: return 'B'; case 16: return 'S'; case 32: return 'I'; case 64: return 'L'; default: return 'N'; } case Type::FloatTyID: return 'F'; case Type::DoubleTyID: return 'D'; case Type::PointerTyID: return 'P'; case Type::FunctionTyID:return 'M'; case Type::StructTyID: return 'T'; case Type::ArrayTyID: return 'A'; case Type::OpaqueTyID: return 'O'; default: return 'U'; } } // Try to find address of external function given a Function object. // Please note, that interpreter doesn't know how to assemble a // real call in general case (this is JIT job), that's why it assumes, // that all external functions has the same (and pretty "general") signature. // The typical example of such functions are "lle_X_" ones. static ExFunc lookupFunction(const Function *F) { // Function not found, look it up... start by figuring out what the // composite function name should be. std::string ExtName = "lle_"; const FunctionType *FT = F->getFunctionType(); for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) ExtName += getTypeID(FT->getContainedType(i)); ExtName += "_" + F->getName(); ExFunc FnPtr = FuncNames[ExtName]; if (FnPtr == 0) FnPtr = FuncNames["lle_X_"+F->getName()]; if (FnPtr == 0) // Try calling a generic function... if it exists... FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol( ("lle_X_"+F->getName()).c_str()); if (FnPtr == 0) FnPtr = (ExFunc)(intptr_t) sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); if (FnPtr != 0) Functions->insert(std::make_pair(F, FnPtr)); // Cache for later return FnPtr; } GenericValue Interpreter::callExternalFunction(Function *F, const std::vector &ArgVals) { TheInterpreter = this; // Do a lookup to see if the function is in our cache... this should just be a // deferred annotation! std::map::iterator FI = Functions->find(F); ExFunc Fn = (FI == Functions->end()) ? lookupFunction(F) : FI->second; if (Fn == 0) { cerr << "Tried to execute an unknown external function: " << F->getType()->getDescription() << " " << F->getName() << "\n"; if (F->getName() == "__main") return GenericValue(); abort(); } // TODO: FIXME when types are not const! GenericValue Result = Fn(const_cast(F->getFunctionType()), ArgVals); return Result; } //===----------------------------------------------------------------------===// // Functions "exported" to the running application... // extern "C" { // Don't add C++ manglings to llvm mangling :) // void putchar(ubyte) GenericValue lle_X_putchar(FunctionType *FT, const vector &Args){ cout << ((char)Args[0].IntVal.getZExtValue()) << std::flush; return Args[0]; } // void _IO_putc(int c, FILE* fp) GenericValue lle_X__IO_putc(FunctionType *FT, const vector &Args){ #ifdef __linux__ _IO_putc((char)Args[0].IntVal.getZExtValue(), (FILE*) Args[1].PointerVal); #else assert(0 && "Can't call _IO_putc on this platform"); #endif return Args[0]; } // void atexit(Function*) GenericValue lle_X_atexit(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); GenericValue GV; GV.IntVal = 0; return GV; } // void exit(int) GenericValue lle_X_exit(FunctionType *FT, const vector &Args) { TheInterpreter->exitCalled(Args[0]); return GenericValue(); } // void abort(void) GenericValue lle_X_abort(FunctionType *FT, const vector &Args) { raise (SIGABRT); return GenericValue(); } // void *malloc(uint) GenericValue lle_X_malloc(FunctionType *FT, const vector &Args) { assert(Args.size() == 1 && "Malloc expects one argument!"); assert(isa(FT->getReturnType()) && "malloc must return pointer"); return PTOGV(malloc(Args[0].IntVal.getZExtValue())); } // void *calloc(uint, uint) GenericValue lle_X_calloc(FunctionType *FT, const vector &Args) { assert(Args.size() == 2 && "calloc expects two arguments!"); assert(isa(FT->getReturnType()) && "calloc must return pointer"); return PTOGV(calloc(Args[0].IntVal.getZExtValue(), Args[1].IntVal.getZExtValue())); } // void *calloc(uint, uint) GenericValue lle_X_realloc(FunctionType *FT, const vector &Args) { assert(Args.size() == 2 && "calloc expects two arguments!"); assert(isa(FT->getReturnType()) &&"realloc must return pointer"); return PTOGV(realloc(GVTOP(Args[0]), Args[1].IntVal.getZExtValue())); } // void free(void *) GenericValue lle_X_free(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); free(GVTOP(Args[0])); return GenericValue(); } // int atoi(char *) GenericValue lle_X_atoi(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, atoi((char*)GVTOP(Args[0]))); return GV; } // double pow(double, double) GenericValue lle_X_pow(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.DoubleVal = pow(Args[0].DoubleVal, Args[1].DoubleVal); return GV; } // double sin(double) GenericValue lle_X_sin(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = sin(Args[0].DoubleVal); return GV; } // double cos(double) GenericValue lle_X_cos(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = cos(Args[0].DoubleVal); return GV; } // double exp(double) GenericValue lle_X_exp(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = exp(Args[0].DoubleVal); return GV; } // double sqrt(double) GenericValue lle_X_sqrt(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = sqrt(Args[0].DoubleVal); return GV; } // double log(double) GenericValue lle_X_log(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = log(Args[0].DoubleVal); return GV; } // double floor(double) GenericValue lle_X_floor(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.DoubleVal = floor(Args[0].DoubleVal); return GV; } #ifdef HAVE_RAND48 // double drand48() GenericValue lle_X_drand48(FunctionType *FT, const vector &Args) { assert(Args.empty()); GenericValue GV; GV.DoubleVal = drand48(); return GV; } // long lrand48() GenericValue lle_X_lrand48(FunctionType *FT, const vector &Args) { assert(Args.empty()); GenericValue GV; GV.IntVal = APInt(32, lrand48()); return GV; } // void srand48(long) GenericValue lle_X_srand48(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); srand48(Args[0].IntVal.getZExtValue()); return GenericValue(); } #endif // int rand() GenericValue lle_X_rand(FunctionType *FT, const vector &Args) { assert(Args.empty()); GenericValue GV; GV.IntVal = APInt(32, rand()); return GV; } // void srand(uint) GenericValue lle_X_srand(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); srand(Args[0].IntVal.getZExtValue()); return GenericValue(); } // int puts(const char*) GenericValue lle_X_puts(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, puts((char*)GVTOP(Args[0]))); return GV; } // int sprintf(sbyte *, sbyte *, ...) - a very rough implementation to make // output useful. GenericValue lle_X_sprintf(FunctionType *FT, const vector &Args) { char *OutputBuffer = (char *)GVTOP(Args[0]); const char *FmtStr = (const char *)GVTOP(Args[1]); unsigned ArgNo = 2; // printf should return # chars printed. This is completely incorrect, but // close enough for now. GenericValue GV; GV.IntVal = APInt(32, strlen(FmtStr)); while (1) { switch (*FmtStr) { case 0: return GV; // Null terminator... default: // Normal nonspecial character sprintf(OutputBuffer++, "%c", *FmtStr++); break; case '\\': { // Handle escape codes sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); FmtStr += 2; OutputBuffer += 2; break; } case '%': { // Handle format specifiers char FmtBuf[100] = "", Buffer[1000] = ""; char *FB = FmtBuf; *FB++ = *FmtStr++; char Last = *FB++ = *FmtStr++; unsigned HowLong = 0; while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && Last != 'p' && Last != 's' && Last != '%') { if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's Last = *FB++ = *FmtStr++; } *FB = 0; switch (Last) { case '%': strcpy(Buffer, "%"); break; case 'c': sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); break; case 'd': case 'i': case 'u': case 'o': case 'x': case 'X': if (HowLong >= 1) { if (HowLong == 1 && TheInterpreter->getTargetData()->getPointerSizeInBits() == 64 && sizeof(long) < sizeof(int64_t)) { // Make sure we use %lld with a 64 bit argument because we might be // compiling LLI on a 32 bit compiler. unsigned Size = strlen(FmtBuf); FmtBuf[Size] = FmtBuf[Size-1]; FmtBuf[Size+1] = 0; FmtBuf[Size-1] = 'l'; } sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); } else sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); break; case 'e': case 'E': case 'g': case 'G': case 'f': sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; case 'p': sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; case 's': sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; default: cerr << ""; ArgNo++; break; } strcpy(OutputBuffer, Buffer); OutputBuffer += strlen(Buffer); } break; } } return GV; } // int printf(sbyte *, ...) - a very rough implementation to make output useful. GenericValue lle_X_printf(FunctionType *FT, const vector &Args) { char Buffer[10000]; vector NewArgs; NewArgs.push_back(PTOGV((void*)&Buffer[0])); NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); GenericValue GV = lle_X_sprintf(FT, NewArgs); cout << Buffer; return GV; } static void ByteswapSCANFResults(const char *Fmt, void *Arg0, void *Arg1, void *Arg2, void *Arg3, void *Arg4, void *Arg5, void *Arg6, void *Arg7, void *Arg8) { void *Args[] = { Arg0, Arg1, Arg2, Arg3, Arg4, Arg5, Arg6, Arg7, Arg8, 0 }; // Loop over the format string, munging read values as appropriate (performs // byteswaps as necessary). unsigned ArgNo = 0; while (*Fmt) { if (*Fmt++ == '%') { // Read any flag characters that may be present... bool Suppress = false; bool Half = false; bool Long = false; bool LongLong = false; // long long or long double while (1) { switch (*Fmt++) { case '*': Suppress = true; break; case 'a': /*Allocate = true;*/ break; // We don't need to track this case 'h': Half = true; break; case 'l': Long = true; break; case 'q': case 'L': LongLong = true; break; default: if (Fmt[-1] > '9' || Fmt[-1] < '0') // Ignore field width specs goto Out; } } Out: // Read the conversion character if (!Suppress && Fmt[-1] != '%') { // Nothing to do? unsigned Size = 0; const Type *Ty = 0; switch (Fmt[-1]) { case 'i': case 'o': case 'u': case 'x': case 'X': case 'n': case 'p': case 'd': if (Long || LongLong) { Size = 8; Ty = Type::Int64Ty; } else if (Half) { Size = 4; Ty = Type::Int16Ty; } else { Size = 4; Ty = Type::Int32Ty; } break; case 'e': case 'g': case 'E': case 'f': if (Long || LongLong) { Size = 8; Ty = Type::DoubleTy; } else { Size = 4; Ty = Type::FloatTy; } break; case 's': case 'c': case '[': // No byteswap needed Size = 1; Ty = Type::Int8Ty; break; default: break; } if (Size) { GenericValue GV; void *Arg = Args[ArgNo++]; memcpy(&GV, Arg, Size); TheInterpreter->StoreValueToMemory(GV, (GenericValue*)Arg, Ty); } } } } } // int sscanf(const char *format, ...); GenericValue lle_X_sscanf(FunctionType *FT, const vector &args) { assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); char *Args[10]; for (unsigned i = 0; i < args.size(); ++i) Args[i] = (char*)GVTOP(args[i]); GenericValue GV; GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9])); ByteswapSCANFResults(Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9], 0); return GV; } // int scanf(const char *format, ...); GenericValue lle_X_scanf(FunctionType *FT, const vector &args) { assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); char *Args[10]; for (unsigned i = 0; i < args.size(); ++i) Args[i] = (char*)GVTOP(args[i]); GenericValue GV; GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9])); ByteswapSCANFResults(Args[0], Args[1], Args[2], Args[3], Args[4], Args[5], Args[6], Args[7], Args[8], Args[9]); return GV; } // int clock(void) - Profiling implementation GenericValue lle_i_clock(FunctionType *FT, const vector &Args) { extern unsigned int clock(void); GenericValue GV; GV.IntVal = APInt(32, clock()); return GV; } //===----------------------------------------------------------------------===// // String Functions... //===----------------------------------------------------------------------===// // int strcmp(const char *S1, const char *S2); GenericValue lle_X_strcmp(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); GenericValue Ret; Ret.IntVal = APInt(32, strcmp((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); return Ret; } // char *strcat(char *Dest, const char *src); GenericValue lle_X_strcat(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); assert(isa(FT->getReturnType()) &&"strcat must return pointer"); return PTOGV(strcat((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); } // char *strcpy(char *Dest, const char *src); GenericValue lle_X_strcpy(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); assert(isa(FT->getReturnType()) &&"strcpy must return pointer"); return PTOGV(strcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]))); } static GenericValue size_t_to_GV (size_t n) { GenericValue Ret; if (sizeof (size_t) == sizeof (uint64_t)) { Ret.IntVal = APInt(64, n); } else { assert (sizeof (size_t) == sizeof (unsigned int)); Ret.IntVal = APInt(32, n); } return Ret; } static size_t GV_to_size_t (GenericValue GV) { size_t count; if (sizeof (size_t) == sizeof (uint64_t)) { count = (size_t)GV.IntVal.getZExtValue(); } else { assert (sizeof (size_t) == sizeof (unsigned int)); count = (size_t)GV.IntVal.getZExtValue(); } return count; } // size_t strlen(const char *src); GenericValue lle_X_strlen(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); size_t strlenResult = strlen ((char *) GVTOP (Args[0])); return size_t_to_GV (strlenResult); } // char *strdup(const char *src); GenericValue lle_X_strdup(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); assert(isa(FT->getReturnType()) && "strdup must return pointer"); return PTOGV(strdup((char*)GVTOP(Args[0]))); } // char *__strdup(const char *src); GenericValue lle_X___strdup(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); assert(isa(FT->getReturnType()) &&"_strdup must return pointer"); return PTOGV(strdup((char*)GVTOP(Args[0]))); } // void *memset(void *S, int C, size_t N) GenericValue lle_X_memset(FunctionType *FT, const vector &Args) { assert(Args.size() == 3); size_t count = GV_to_size_t (Args[2]); assert(isa(FT->getReturnType()) && "memset must return pointer"); return PTOGV(memset(GVTOP(Args[0]), uint32_t(Args[1].IntVal.getZExtValue()), count)); } // void *memcpy(void *Dest, void *src, size_t Size); GenericValue lle_X_memcpy(FunctionType *FT, const vector &Args) { assert(Args.size() == 3); assert(isa(FT->getReturnType()) && "memcpy must return pointer"); size_t count = GV_to_size_t (Args[2]); return PTOGV(memcpy((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); } // void *memcpy(void *Dest, void *src, size_t Size); GenericValue lle_X_memmove(FunctionType *FT, const vector &Args) { assert(Args.size() == 3); assert(isa(FT->getReturnType()) && "memmove must return pointer"); size_t count = GV_to_size_t (Args[2]); return PTOGV(memmove((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), count)); } //===----------------------------------------------------------------------===// // IO Functions... //===----------------------------------------------------------------------===// // getFILE - Turn a pointer in the host address space into a legit pointer in // the interpreter address space. This is an identity transformation. #define getFILE(ptr) ((FILE*)ptr) // FILE *fopen(const char *filename, const char *mode); GenericValue lle_X_fopen(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); assert(isa(FT->getReturnType()) && "fopen must return pointer"); return PTOGV(fopen((const char *)GVTOP(Args[0]), (const char *)GVTOP(Args[1]))); } // int fclose(FILE *F); GenericValue lle_X_fclose(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, fclose(getFILE(GVTOP(Args[0])))); return GV; } // int feof(FILE *stream); GenericValue lle_X_feof(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, feof(getFILE(GVTOP(Args[0])))); return GV; } // size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream); GenericValue lle_X_fread(FunctionType *FT, const vector &Args) { assert(Args.size() == 4); size_t result; result = fread((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); return size_t_to_GV (result); } // size_t fwrite(const void *ptr, size_t size, size_t nitems, FILE *stream); GenericValue lle_X_fwrite(FunctionType *FT, const vector &Args) { assert(Args.size() == 4); size_t result; result = fwrite((void*)GVTOP(Args[0]), GV_to_size_t (Args[1]), GV_to_size_t (Args[2]), getFILE(GVTOP(Args[3]))); return size_t_to_GV (result); } // char *fgets(char *s, int n, FILE *stream); GenericValue lle_X_fgets(FunctionType *FT, const vector &Args) { assert(Args.size() == 3); return PTOGV(fgets((char*)GVTOP(Args[0]), Args[1].IntVal.getZExtValue(), getFILE(GVTOP(Args[2])))); } // FILE *freopen(const char *path, const char *mode, FILE *stream); GenericValue lle_X_freopen(FunctionType *FT, const vector &Args) { assert(Args.size() == 3); assert(isa(FT->getReturnType()) &&"freopen must return pointer"); return PTOGV(freopen((char*)GVTOP(Args[0]), (char*)GVTOP(Args[1]), getFILE(GVTOP(Args[2])))); } // int fflush(FILE *stream); GenericValue lle_X_fflush(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, fflush(getFILE(GVTOP(Args[0])))); return GV; } // int getc(FILE *stream); GenericValue lle_X_getc(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, getc(getFILE(GVTOP(Args[0])))); return GV; } // int _IO_getc(FILE *stream); GenericValue lle_X__IO_getc(FunctionType *F, const vector &Args) { return lle_X_getc(F, Args); } // int fputc(int C, FILE *stream); GenericValue lle_X_fputc(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.IntVal = APInt(32, fputc(Args[0].IntVal.getZExtValue(), getFILE(GVTOP(Args[1])))); return GV; } // int ungetc(int C, FILE *stream); GenericValue lle_X_ungetc(FunctionType *FT, const vector &Args) { assert(Args.size() == 2); GenericValue GV; GV.IntVal = APInt(32, ungetc(Args[0].IntVal.getZExtValue(), getFILE(GVTOP(Args[1])))); return GV; } // int ferror (FILE *stream); GenericValue lle_X_ferror(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; GV.IntVal = APInt(32, ferror (getFILE(GVTOP(Args[0])))); return GV; } // int fprintf(FILE *,sbyte *, ...) - a very rough implementation to make output // useful. GenericValue lle_X_fprintf(FunctionType *FT, const vector &Args) { assert(Args.size() >= 2); char Buffer[10000]; vector NewArgs; NewArgs.push_back(PTOGV(Buffer)); NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); GenericValue GV = lle_X_sprintf(FT, NewArgs); fputs(Buffer, getFILE(GVTOP(Args[0]))); return GV; } // int __cxa_guard_acquire (__guard *g); GenericValue lle_X___cxa_guard_acquire(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); GenericValue GV; #ifdef __linux__ GV.IntVal = APInt(32, __cxxabiv1::__cxa_guard_acquire ( (__cxxabiv1::__guard*)GVTOP(Args[0]))); #else assert(0 && "Can't call __cxa_guard_acquire on this platform"); #endif return GV; } // void __cxa_guard_release (__guard *g); GenericValue lle_X___cxa_guard_release(FunctionType *FT, const vector &Args) { assert(Args.size() == 1); #ifdef __linux__ __cxxabiv1::__cxa_guard_release ((__cxxabiv1::__guard*)GVTOP(Args[0])); #else assert(0 && "Can't call __cxa_guard_release on this platform"); #endif return GenericValue(); } } // End extern "C" void Interpreter::initializeExternalFunctions() { FuncNames["lle_X_putchar"] = lle_X_putchar; FuncNames["lle_X__IO_putc"] = lle_X__IO_putc; FuncNames["lle_X_exit"] = lle_X_exit; FuncNames["lle_X_abort"] = lle_X_abort; FuncNames["lle_X_malloc"] = lle_X_malloc; FuncNames["lle_X_calloc"] = lle_X_calloc; FuncNames["lle_X_realloc"] = lle_X_realloc; FuncNames["lle_X_free"] = lle_X_free; FuncNames["lle_X_atoi"] = lle_X_atoi; FuncNames["lle_X_pow"] = lle_X_pow; FuncNames["lle_X_sin"] = lle_X_sin; FuncNames["lle_X_cos"] = lle_X_cos; FuncNames["lle_X_exp"] = lle_X_exp; FuncNames["lle_X_log"] = lle_X_log; FuncNames["lle_X_floor"] = lle_X_floor; FuncNames["lle_X_srand"] = lle_X_srand; FuncNames["lle_X_rand"] = lle_X_rand; #ifdef HAVE_RAND48 FuncNames["lle_X_drand48"] = lle_X_drand48; FuncNames["lle_X_srand48"] = lle_X_srand48; FuncNames["lle_X_lrand48"] = lle_X_lrand48; #endif FuncNames["lle_X_sqrt"] = lle_X_sqrt; FuncNames["lle_X_puts"] = lle_X_puts; FuncNames["lle_X_printf"] = lle_X_printf; FuncNames["lle_X_sprintf"] = lle_X_sprintf; FuncNames["lle_X_sscanf"] = lle_X_sscanf; FuncNames["lle_X_scanf"] = lle_X_scanf; FuncNames["lle_i_clock"] = lle_i_clock; FuncNames["lle_X_strcmp"] = lle_X_strcmp; FuncNames["lle_X_strcat"] = lle_X_strcat; FuncNames["lle_X_strcpy"] = lle_X_strcpy; FuncNames["lle_X_strlen"] = lle_X_strlen; FuncNames["lle_X___strdup"] = lle_X___strdup; FuncNames["lle_X_memset"] = lle_X_memset; FuncNames["lle_X_memcpy"] = lle_X_memcpy; FuncNames["lle_X_memmove"] = lle_X_memmove; FuncNames["lle_X_fopen"] = lle_X_fopen; FuncNames["lle_X_fclose"] = lle_X_fclose; FuncNames["lle_X_feof"] = lle_X_feof; FuncNames["lle_X_fread"] = lle_X_fread; FuncNames["lle_X_fwrite"] = lle_X_fwrite; FuncNames["lle_X_fgets"] = lle_X_fgets; FuncNames["lle_X_fflush"] = lle_X_fflush; FuncNames["lle_X_fgetc"] = lle_X_getc; FuncNames["lle_X_getc"] = lle_X_getc; FuncNames["lle_X__IO_getc"] = lle_X__IO_getc; FuncNames["lle_X_fputc"] = lle_X_fputc; FuncNames["lle_X_ungetc"] = lle_X_ungetc; FuncNames["lle_X_fprintf"] = lle_X_fprintf; FuncNames["lle_X_freopen"] = lle_X_freopen; FuncNames["lle_X___cxa_guard_acquire"] = lle_X___cxa_guard_acquire; FuncNames["lle_X____cxa_guard_release"] = lle_X___cxa_guard_release; }