//===-- MSchedGraph.cpp - Scheduling Graph ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A graph class for dependencies // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ModuloSched" #include "MSchedGraph.h" #include "../../Target/SparcV9/SparcV9RegisterInfo.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Target/TargetInstrInfo.h" #include "Support/Debug.h" #include using namespace llvm; MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst, MSchedGraph *graph, unsigned late, bool isBranch) : Inst(inst), Parent(graph), latency(late), isBranchInstr(isBranch) { //Add to the graph graph->addNode(inst, this); } void MSchedGraphNode::print(std::ostream &os) const { os << "MSchedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n"; } MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) { //Loop over all the successors of our predecessor //return the edge the corresponds to this in edge for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end(); I != E; ++I) { if(*I == this) return I.getEdge(); } assert(0 && "Should have found edge between this node and its predecessor!"); } unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) { //Loop over all the successors of our predecessor //return the edge the corresponds to this in edge int count = 0; for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end(); I != E; ++I) { if(*I == this) return count; count++; } assert(0 && "Should have found edge between this node and its predecessor!"); abort(); } bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) { for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) if(*I == succ) return true; return false; } bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) { if(find( Predecessors.begin(), Predecessors.end(), pred) != Predecessors.end()) return true; else return false; } void MSchedGraph::addNode(const MachineInstr *MI, MSchedGraphNode *node) { //Make sure node does not already exist assert(GraphMap.find(MI) == GraphMap.end() && "New MSchedGraphNode already exists for this instruction"); GraphMap[MI] = node; } MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ) : BB(bb), Target(targ) { //Make sure BB is not null, assert(BB != NULL && "Basic Block is null"); DEBUG(std::cerr << "Constructing graph for " << bb << "\n"); //Create nodes and edges for this BB buildNodesAndEdges(); } MSchedGraph::~MSchedGraph () { for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) delete I->second; } void MSchedGraph::buildNodesAndEdges() { //Get Machine target information for calculating latency const TargetInstrInfo &MTI = Target.getInstrInfo(); std::vector memInstructions; std::map > regNumtoNodeMap; std::map > valuetoNodeMap; //Save PHI instructions to deal with later std::vector phiInstrs; //Loop over instructions in MBB and add nodes and edges for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) { //Get each instruction of machine basic block, get the delay //using the op code, create a new node for it, and add to the //graph. MachineOpCode opCode = MI->getOpcode(); int delay; #if 0 // FIXME: LOOK INTO THIS //Check if subsequent instructions can be issued before //the result is ready, if so use min delay. if(MTI.hasResultInterlock(MIopCode)) delay = MTI.minLatency(MIopCode); else #endif //Get delay delay = MTI.maxLatency(opCode); //Create new node for this machine instruction and add to the graph. //Create only if not a nop if(MTI.isNop(opCode)) continue; //Add PHI to phi instruction list to be processed later if (opCode == TargetInstrInfo::PHI) phiInstrs.push_back(MI); bool isBranch = false; //We want to flag the branch node to treat it special if(MTI.isBranch(opCode)) isBranch = true; //Node is created and added to the graph automatically MSchedGraphNode *node = new MSchedGraphNode(MI, this, delay, isBranch); DEBUG(std::cerr << "Created Node: " << *node << "\n"); //Check OpCode to keep track of memory operations to add memory dependencies later. if(MTI.isLoad(opCode) || MTI.isStore(opCode)) memInstructions.push_back(node); //Loop over all operands, and put them into the register number to //graph node map for determining dependencies //If an operands is a use/def, we have an anti dependence to itself for(unsigned i=0; i < MI->getNumOperands(); ++i) { //Get Operand const MachineOperand &mOp = MI->getOperand(i); //Check if it has an allocated register if(mOp.hasAllocatedReg()) { int regNum = mOp.getReg(); if(regNum != SparcV9::g0) { //Put into our map regNumtoNodeMap[regNum].push_back(std::make_pair(i, node)); } continue; } //Add virtual registers dependencies //Check if any exist in the value map already and create dependencies //between them. if(mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) { //Make sure virtual register value is not null assert((mOp.getVRegValue() != NULL) && "Null value is defined"); //Check if this is a read operation in a phi node, if so DO NOT PROCESS if(mOp.isUse() && (opCode == TargetInstrInfo::PHI)) continue; if (const Value* srcI = mOp.getVRegValue()) { //Find value in the map std::map >::iterator V = valuetoNodeMap.find(srcI); //If there is something in the map already, add edges from //those instructions //to this one we are processing if(V != valuetoNodeMap.end()) { addValueEdges(V->second, node, mOp.isUse(), mOp.isDef()); //Add to value map V->second.push_back(std::make_pair(i,node)); } //Otherwise put it in the map else //Put into value map valuetoNodeMap[mOp.getVRegValue()].push_back(std::make_pair(i, node)); } } } } addMemEdges(memInstructions); addMachRegEdges(regNumtoNodeMap); //Finally deal with PHI Nodes and Value* for(std::vector::iterator I = phiInstrs.begin(), E = phiInstrs.end(); I != E; ++I) { //Get Node for this instruction MSchedGraphNode *node = find(*I)->second; //Loop over operands for this instruction and add value edges for(unsigned i=0; i < (*I)->getNumOperands(); ++i) { //Get Operand const MachineOperand &mOp = (*I)->getOperand(i); if((mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) { //find the value in the map if (const Value* srcI = mOp.getVRegValue()) { //Find value in the map std::map >::iterator V = valuetoNodeMap.find(srcI); //If there is something in the map already, add edges from //those instructions //to this one we are processing if(V != valuetoNodeMap.end()) { addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), 1); } } } } } } void MSchedGraph::addValueEdges(std::vector &NodesInMap, MSchedGraphNode *destNode, bool nodeIsUse, bool nodeIsDef, int diff) { for(std::vector::iterator I = NodesInMap.begin(), E = NodesInMap.end(); I != E; ++I) { //Get node in vectors machine operand that is the same value as node MSchedGraphNode *srcNode = I->second; MachineOperand mOp = srcNode->getInst()->getOperand(I->first); //Node is a Def, so add output dep. if(nodeIsDef) { if(mOp.isUse()) srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep, MSchedGraphEdge::AntiDep, diff); if(mOp.isDef()) srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep, MSchedGraphEdge::OutputDep, diff); } if(nodeIsUse) { if(mOp.isDef()) srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep, MSchedGraphEdge::TrueDep, diff); } } } void MSchedGraph::addMachRegEdges(std::map >& regNumtoNodeMap) { //Loop over all machine registers in the map, and add dependencies //between the instructions that use it typedef std::map > regNodeMap; for(regNodeMap::iterator I = regNumtoNodeMap.begin(); I != regNumtoNodeMap.end(); ++I) { //Get the register number int regNum = (*I).first; //Get Vector of nodes that use this register std::vector Nodes = (*I).second; //Loop over nodes and determine the dependence between the other //nodes in the vector for(unsigned i =0; i < Nodes.size(); ++i) { //Get src node operator index that uses this machine register int srcOpIndex = Nodes[i].first; //Get the actual src Node MSchedGraphNode *srcNode = Nodes[i].second; //Get Operand const MachineOperand &srcMOp = srcNode->getInst()->getOperand(srcOpIndex); bool srcIsUseandDef = srcMOp.isDef() && srcMOp.isUse(); bool srcIsUse = srcMOp.isUse() && !srcMOp.isDef(); //Look at all instructions after this in execution order for(unsigned j=i+1; j < Nodes.size(); ++j) { //Sink node is a write if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) { //Src only uses the register (read) if(srcIsUse) srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::AntiDep); else if(srcIsUseandDef) { srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::AntiDep); srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::OutputDep); } else srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::OutputDep); } //Dest node is a read else { if(!srcIsUse || srcIsUseandDef) srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::TrueDep); } } //Look at all the instructions before this one since machine registers //could live across iterations. for(unsigned j = 0; j < i; ++j) { //Sink node is a write if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) { //Src only uses the register (read) if(srcIsUse) srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::AntiDep, 1); else if(srcIsUseandDef) { srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::AntiDep, 1); srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::OutputDep, 1); } else srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::OutputDep, 1); } //Dest node is a read else { if(!srcIsUse || srcIsUseandDef) srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister, MSchedGraphEdge::TrueDep,1 ); } } } } } void MSchedGraph::addMemEdges(const std::vector& memInst) { //Get Target machine instruction info const TargetInstrInfo& TMI = Target.getInstrInfo(); //Loop over all memory instructions in the vector //Knowing that they are in execution, add true, anti, and output dependencies for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) { //Get the machine opCode to determine type of memory instruction MachineOpCode srcNodeOpCode = memInst[srcIndex]->getInst()->getOpcode(); //All instructions after this one in execution order have an iteration delay of 0 for(unsigned destIndex = srcIndex + 1; destIndex < memInst.size(); ++destIndex) { //source is a Load, so add anti-dependencies (store after load) if(TMI.isLoad(srcNodeOpCode)) if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode())) memInst[srcIndex]->addOutEdge(memInst[destIndex], MSchedGraphEdge::MemoryDep, MSchedGraphEdge::AntiDep); //If source is a store, add output and true dependencies if(TMI.isStore(srcNodeOpCode)) { if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode())) memInst[srcIndex]->addOutEdge(memInst[destIndex], MSchedGraphEdge::MemoryDep, MSchedGraphEdge::OutputDep); else memInst[srcIndex]->addOutEdge(memInst[destIndex], MSchedGraphEdge::MemoryDep, MSchedGraphEdge::TrueDep); } } //All instructions before the src in execution order have an iteration delay of 1 for(unsigned destIndex = 0; destIndex < srcIndex; ++destIndex) { //source is a Load, so add anti-dependencies (store after load) if(TMI.isLoad(srcNodeOpCode)) if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode())) memInst[srcIndex]->addOutEdge(memInst[destIndex], MSchedGraphEdge::MemoryDep, MSchedGraphEdge::AntiDep, 1); if(TMI.isStore(srcNodeOpCode)) { if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode())) memInst[srcIndex]->addOutEdge(memInst[destIndex], MSchedGraphEdge::MemoryDep, MSchedGraphEdge::OutputDep, 1); else memInst[srcIndex]->addOutEdge(memInst[destIndex], MSchedGraphEdge::MemoryDep, MSchedGraphEdge::TrueDep, 1); } } } }