//===-- LLVMTargetMachine.cpp - Implement the LLVMTargetMachine class -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LLVMTargetMachine class. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetMachine.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineFunctionAnalysis.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; // Enable or disable FastISel. Both options are needed, because // FastISel is enabled by default with -fast, and we wish to be // able to enable or disable fast-isel independently from -O0. static cl::opt EnableFastISelOption("fast-isel", cl::Hidden, cl::desc("Enable the \"fast\" instruction selector")); static cl::opt ShowMCEncoding("show-mc-encoding", cl::Hidden, cl::desc("Show encoding in .s output")); static cl::opt ShowMCInst("show-mc-inst", cl::Hidden, cl::desc("Show instruction structure in .s output")); static cl::opt AsmVerbose("asm-verbose", cl::desc("Add comments to directives."), cl::init(cl::BOU_UNSET)); static bool getVerboseAsm() { switch (AsmVerbose) { case cl::BOU_UNSET: return TargetMachine::getAsmVerbosityDefault(); case cl::BOU_TRUE: return true; case cl::BOU_FALSE: return false; } llvm_unreachable("Invalid verbose asm state"); } void LLVMTargetMachine::initAsmInfo() { MCAsmInfo *TmpAsmInfo = TheTarget.createMCAsmInfo(*getRegisterInfo(), TargetTriple); // TargetSelect.h moved to a different directory between LLVM 2.9 and 3.0, // and if the old one gets included then MCAsmInfo will be NULL and // we'll crash later. // Provide the user with a useful error message about what's wrong. assert(TmpAsmInfo && "MCAsmInfo not initialized. " "Make sure you include the correct TargetSelect.h" "and that InitializeAllTargetMCs() is being invoked!"); if (Options.DisableIntegratedAS) TmpAsmInfo->setUseIntegratedAssembler(false); if (Options.CompressDebugSections) TmpAsmInfo->setCompressDebugSections(true); AsmInfo = TmpAsmInfo; } LLVMTargetMachine::LLVMTargetMachine(const Target &T, StringRef Triple, StringRef CPU, StringRef FS, TargetOptions Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : TargetMachine(T, Triple, CPU, FS, Options) { CodeGenInfo = T.createMCCodeGenInfo(Triple, RM, CM, OL); } void LLVMTargetMachine::addAnalysisPasses(PassManagerBase &PM) { PM.add(createBasicTargetTransformInfoPass(this)); } /// addPassesToX helper drives creation and initialization of TargetPassConfig. static MCContext *addPassesToGenerateCode(LLVMTargetMachine *TM, PassManagerBase &PM, bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) { // Add internal analysis passes from the target machine. TM->addAnalysisPasses(PM); // Targets may override createPassConfig to provide a target-specific sublass. TargetPassConfig *PassConfig = TM->createPassConfig(PM); PassConfig->setStartStopPasses(StartAfter, StopAfter); // Set PassConfig options provided by TargetMachine. PassConfig->setDisableVerify(DisableVerify); PM.add(PassConfig); PassConfig->addIRPasses(); PassConfig->addCodeGenPrepare(); PassConfig->addPassesToHandleExceptions(); PassConfig->addISelPrepare(); // Install a MachineModuleInfo class, which is an immutable pass that holds // all the per-module stuff we're generating, including MCContext. MachineModuleInfo *MMI = new MachineModuleInfo(*TM->getMCAsmInfo(), *TM->getRegisterInfo(), &TM->getTargetLowering()->getObjFileLowering()); PM.add(MMI); // Set up a MachineFunction for the rest of CodeGen to work on. PM.add(new MachineFunctionAnalysis(*TM)); // Enable FastISel with -fast, but allow that to be overridden. if (EnableFastISelOption == cl::BOU_TRUE || (TM->getOptLevel() == CodeGenOpt::None && EnableFastISelOption != cl::BOU_FALSE)) TM->setFastISel(true); // Ask the target for an isel. if (PassConfig->addInstSelector()) return nullptr; PassConfig->addMachinePasses(); PassConfig->setInitialized(); return &MMI->getContext(); } bool LLVMTargetMachine::addPassesToEmitFile(PassManagerBase &PM, formatted_raw_ostream &Out, CodeGenFileType FileType, bool DisableVerify, AnalysisID StartAfter, AnalysisID StopAfter) { // Add common CodeGen passes. MCContext *Context = addPassesToGenerateCode(this, PM, DisableVerify, StartAfter, StopAfter); if (!Context) return true; if (StopAfter) { // FIXME: The intent is that this should eventually write out a YAML file, // containing the LLVM IR, the machine-level IR (when stopping after a // machine-level pass), and whatever other information is needed to // deserialize the code and resume compilation. For now, just write the // LLVM IR. PM.add(createPrintModulePass(Out)); return false; } if (hasMCSaveTempLabels()) Context->setAllowTemporaryLabels(false); const MCAsmInfo &MAI = *getMCAsmInfo(); const MCRegisterInfo &MRI = *getRegisterInfo(); const MCInstrInfo &MII = *getInstrInfo(); const MCSubtargetInfo &STI = getSubtarget(); std::unique_ptr AsmStreamer; switch (FileType) { case CGFT_AssemblyFile: { MCInstPrinter *InstPrinter = getTarget().createMCInstPrinter(MAI.getAssemblerDialect(), MAI, MII, MRI, STI); // Create a code emitter if asked to show the encoding. MCCodeEmitter *MCE = nullptr; if (ShowMCEncoding) MCE = getTarget().createMCCodeEmitter(MII, MRI, STI, *Context); MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(), TargetCPU); MCStreamer *S = getTarget().createAsmStreamer(*Context, Out, getVerboseAsm(), hasMCUseDwarfDirectory(), InstPrinter, MCE, MAB, ShowMCInst); AsmStreamer.reset(S); break; } case CGFT_ObjectFile: { // Create the code emitter for the target if it exists. If not, .o file // emission fails. MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(MII, MRI, STI, *Context); MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(), TargetCPU); if (!MCE || !MAB) return true; AsmStreamer.reset(getTarget().createMCObjectStreamer( getTargetTriple(), *Context, *MAB, Out, MCE, STI, hasMCRelaxAll(), hasMCNoExecStack())); break; } case CGFT_Null: // The Null output is intended for use for performance analysis and testing, // not real users. AsmStreamer.reset(createNullStreamer(*Context)); break; } // Create the AsmPrinter, which takes ownership of AsmStreamer if successful. FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer); if (!Printer) return true; // If successful, createAsmPrinter took ownership of AsmStreamer. AsmStreamer.release(); PM.add(Printer); return false; } /// addPassesToEmitMachineCode - Add passes to the specified pass manager to /// get machine code emitted. This uses a JITCodeEmitter object to handle /// actually outputting the machine code and resolving things like the address /// of functions. This method should return true if machine code emission is /// not supported. /// bool LLVMTargetMachine::addPassesToEmitMachineCode(PassManagerBase &PM, JITCodeEmitter &JCE, bool DisableVerify) { // Add common CodeGen passes. MCContext *Context = addPassesToGenerateCode(this, PM, DisableVerify, nullptr, nullptr); if (!Context) return true; addCodeEmitter(PM, JCE); return false; // success! } /// addPassesToEmitMC - Add passes to the specified pass manager to get /// machine code emitted with the MCJIT. This method returns true if machine /// code is not supported. It fills the MCContext Ctx pointer which can be /// used to build custom MCStreamer. /// bool LLVMTargetMachine::addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx, raw_ostream &Out, bool DisableVerify) { // Add common CodeGen passes. Ctx = addPassesToGenerateCode(this, PM, DisableVerify, nullptr, nullptr); if (!Ctx) return true; if (hasMCSaveTempLabels()) Ctx->setAllowTemporaryLabels(false); // Create the code emitter for the target if it exists. If not, .o file // emission fails. const MCRegisterInfo &MRI = *getRegisterInfo(); const MCSubtargetInfo &STI = getSubtarget(); MCCodeEmitter *MCE = getTarget().createMCCodeEmitter(*getInstrInfo(), MRI, STI, *Ctx); MCAsmBackend *MAB = getTarget().createMCAsmBackend(MRI, getTargetTriple(), TargetCPU); if (!MCE || !MAB) return true; std::unique_ptr AsmStreamer; AsmStreamer.reset(getTarget().createMCObjectStreamer( getTargetTriple(), *Ctx, *MAB, Out, MCE, STI, hasMCRelaxAll(), hasMCNoExecStack())); // Create the AsmPrinter, which takes ownership of AsmStreamer if successful. FunctionPass *Printer = getTarget().createAsmPrinter(*this, *AsmStreamer); if (!Printer) return true; // If successful, createAsmPrinter took ownership of AsmStreamer. AsmStreamer.release(); PM.add(Printer); return false; // success! }