//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation is designed for use by code generators which do not yet // support stack unwinding. This pass supports two models of exception handling // lowering, the 'cheap' support and the 'expensive' support. // // 'Cheap' exception handling support gives the program the ability to execute // any program which does not "throw an exception", by turning 'invoke' // instructions into calls and by turning 'unwind' instructions into calls to // abort(). If the program does dynamically use the unwind instruction, the // program will print a message then abort. // // 'Expensive' exception handling support gives the full exception handling // support to the program at the cost of making the 'invoke' instruction // really expensive. It basically inserts setjmp/longjmp calls to emulate the // exception handling as necessary. // // Because the 'expensive' support slows down programs a lot, and EH is only // used for a subset of the programs, it must be specifically enabled by an // option. // // Note that after this pass runs the CFG is not entirely accurate (exceptional // control flow edges are not correct anymore) so only very simple things should // be done after the lowerinvoke pass has run (like generation of native code). // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't // support the invoke instruction yet" lowering pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetLowering.h" #include using namespace llvm; namespace { Statistic<> NumInvokes("lowerinvoke", "Number of invokes replaced"); Statistic<> NumUnwinds("lowerinvoke", "Number of unwinds replaced"); Statistic<> NumSpilled("lowerinvoke", "Number of registers live across unwind edges"); cl::opt ExpensiveEHSupport("enable-correct-eh-support", cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); class VISIBILITY_HIDDEN LowerInvoke : public FunctionPass { // Used for both models. Function *WriteFn; Function *AbortFn; Value *AbortMessage; unsigned AbortMessageLength; // Used for expensive EH support. const Type *JBLinkTy; GlobalVariable *JBListHead; Function *SetJmpFn, *LongJmpFn; // We peek in TLI to grab the target's jmp_buf size and alignment const TargetLowering *TLI; public: LowerInvoke(const TargetLowering *tli = NULL) : TLI(tli) { } bool doInitialization(Module &M); bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // This is a cluster of orthogonal Transforms AU.addPreservedID(PromoteMemoryToRegisterID); AU.addPreservedID(LowerSelectID); AU.addPreservedID(LowerSwitchID); AU.addPreservedID(LowerAllocationsID); } private: void createAbortMessage(); void writeAbortMessage(Instruction *IB); bool insertCheapEHSupport(Function &F); void splitLiveRangesLiveAcrossInvokes(std::vector &Invokes); void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, AllocaInst *InvokeNum, SwitchInst *CatchSwitch); bool insertExpensiveEHSupport(Function &F); }; RegisterPass X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators"); } const PassInfo *llvm::LowerInvokePassID = X.getPassInfo(); // Public Interface To the LowerInvoke pass. FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { return new LowerInvoke(TLI); } // doInitialization - Make sure that there is a prototype for abort in the // current module. bool LowerInvoke::doInitialization(Module &M) { const Type *VoidPtrTy = PointerType::get(Type::SByteTy); AbortMessage = 0; if (ExpensiveEHSupport) { // Insert a type for the linked list of jump buffers. unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; JBSize = JBSize ? JBSize : 200; const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); { // The type is recursive, so use a type holder. std::vector Elements; Elements.push_back(JmpBufTy); OpaqueType *OT = OpaqueType::get(); Elements.push_back(PointerType::get(OT)); PATypeHolder JBLType(StructType::get(Elements)); OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle. JBLinkTy = JBLType.get(); M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy); } const Type *PtrJBList = PointerType::get(JBLinkTy); // Now that we've done that, insert the jmpbuf list head global, unless it // already exists. if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { JBListHead = new GlobalVariable(PtrJBList, false, GlobalValue::LinkOnceLinkage, Constant::getNullValue(PtrJBList), "llvm.sjljeh.jblist", &M); } SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::IntTy, PointerType::get(JmpBufTy), (Type *)0); LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy, PointerType::get(JmpBufTy), Type::IntTy, (Type *)0); } // We need the 'write' and 'abort' functions for both models. AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, (Type *)0); // Unfortunately, 'write' can end up being prototyped in several different // ways. If the user defines a three (or more) operand function named 'write' // we will use their prototype. We _do not_ want to insert another instance // of a write prototype, because we don't know that the funcresolve pass will // run after us. If there is a definition of a write function, but it's not // suitable for our uses, we just don't emit write calls. If there is no // write prototype at all, we just add one. if (Function *WF = M.getNamedFunction("write")) { if (WF->getFunctionType()->getNumParams() > 3 || WF->getFunctionType()->isVarArg()) WriteFn = WF; else WriteFn = 0; } else { WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::IntTy, VoidPtrTy, Type::IntTy, (Type *)0); } return true; } void LowerInvoke::createAbortMessage() { Module &M = *WriteFn->getParent(); if (ExpensiveEHSupport) { // The abort message for expensive EH support tells the user that the // program 'unwound' without an 'invoke' instruction. Constant *Msg = ConstantArray::get("ERROR: Exception thrown, but not caught!\n"); AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true, GlobalValue::InternalLinkage, Msg, "abortmsg", &M); std::vector GEPIdx(2, Constant::getNullValue(Type::IntTy)); AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, GEPIdx); } else { // The abort message for cheap EH support tells the user that EH is not // enabled. Constant *Msg = ConstantArray::get("Exception handler needed, but not enabled. Recompile" " program with -enable-correct-eh-support.\n"); AbortMessageLength = Msg->getNumOperands()-1; // don't include \0 GlobalVariable *MsgGV = new GlobalVariable(Msg->getType(), true, GlobalValue::InternalLinkage, Msg, "abortmsg", &M); std::vector GEPIdx(2, Constant::getNullValue(Type::IntTy)); AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, GEPIdx); } } void LowerInvoke::writeAbortMessage(Instruction *IB) { if (WriteFn) { if (AbortMessage == 0) createAbortMessage(); // These are the arguments we WANT... std::vector Args; Args.push_back(ConstantInt::get(Type::IntTy, 2)); Args.push_back(AbortMessage); Args.push_back(ConstantInt::get(Type::IntTy, AbortMessageLength)); // If the actual declaration of write disagrees, insert casts as // appropriate. const FunctionType *FT = WriteFn->getFunctionType(); unsigned NumArgs = FT->getNumParams(); for (unsigned i = 0; i != 3; ++i) if (i < NumArgs && FT->getParamType(i) != Args[i]->getType()) Args[i] = ConstantExpr::getCast(cast(Args[i]), FT->getParamType(i)); (new CallInst(WriteFn, Args, "", IB))->setTailCall(); } } bool LowerInvoke::insertCheapEHSupport(Function &F) { bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (InvokeInst *II = dyn_cast(BB->getTerminator())) { // Insert a normal call instruction... std::string Name = II->getName(); II->setName(""); CallInst *NewCall = new CallInst(II->getCalledValue(), std::vector(II->op_begin()+3, II->op_end()), Name, II); NewCall->setCallingConv(II->getCallingConv()); II->replaceAllUsesWith(NewCall); // Insert an unconditional branch to the normal destination. new BranchInst(II->getNormalDest(), II); // Remove any PHI node entries from the exception destination. II->getUnwindDest()->removePredecessor(BB); // Remove the invoke instruction now. BB->getInstList().erase(II); ++NumInvokes; Changed = true; } else if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { // Insert a new call to write(2, AbortMessage, AbortMessageLength); writeAbortMessage(UI); // Insert a call to abort() (new CallInst(AbortFn, std::vector(), "", UI))->setTailCall(); // Insert a return instruction. This really should be a "barrier", as it // is unreachable. new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 : Constant::getNullValue(F.getReturnType()), UI); // Remove the unwind instruction now. BB->getInstList().erase(UI); ++NumUnwinds; Changed = true; } return Changed; } /// rewriteExpensiveInvoke - Insert code and hack the function to replace the /// specified invoke instruction with a call. void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, AllocaInst *InvokeNum, SwitchInst *CatchSwitch) { ConstantInt *InvokeNoC = ConstantInt::get(Type::UIntTy, InvokeNo); // Insert a store of the invoke num before the invoke and store zero into the // location afterward. new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile BasicBlock::iterator NI = II->getNormalDest()->begin(); while (isa(NI)) ++NI; // nonvolatile. new StoreInst(Constant::getNullValue(Type::UIntTy), InvokeNum, false, NI); // Add a switch case to our unwind block. CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); // Insert a normal call instruction. std::string Name = II->getName(); II->setName(""); CallInst *NewCall = new CallInst(II->getCalledValue(), std::vector(II->op_begin()+3, II->op_end()), Name, II); NewCall->setCallingConv(II->getCallingConv()); II->replaceAllUsesWith(NewCall); // Replace the invoke with an uncond branch. new BranchInst(II->getNormalDest(), NewCall->getParent()); II->eraseFromParent(); } /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until /// we reach blocks we've already seen. static void MarkBlocksLiveIn(BasicBlock *BB, std::set &LiveBBs) { if (!LiveBBs.insert(BB).second) return; // already been here. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) MarkBlocksLiveIn(*PI, LiveBBs); } // First thing we need to do is scan the whole function for values that are // live across unwind edges. Each value that is live across an unwind edge // we spill into a stack location, guaranteeing that there is nothing live // across the unwind edge. This process also splits all critical edges // coming out of invoke's. void LowerInvoke:: splitLiveRangesLiveAcrossInvokes(std::vector &Invokes) { // First step, split all critical edges from invoke instructions. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { InvokeInst *II = Invokes[i]; SplitCriticalEdge(II, 0, this); SplitCriticalEdge(II, 1, this); assert(!isa(II->getNormalDest()) && !isa(II->getUnwindDest()) && "critical edge splitting left single entry phi nodes?"); } Function *F = Invokes.back()->getParent()->getParent(); // To avoid having to handle incoming arguments specially, we lower each arg // to a copy instruction in the entry block. This ensure that the argument // value itself cannot be live across the entry block. BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); while (isa(AfterAllocaInsertPt) && isa(cast(AfterAllocaInsertPt)->getArraySize())) ++AfterAllocaInsertPt; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) { CastInst *NC = new CastInst(AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); AI->replaceAllUsesWith(NC); NC->setOperand(0, AI); } // Finally, scan the code looking for instructions with bad live ranges. for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { // Ignore obvious cases we don't have to handle. In particular, most // instructions either have no uses or only have a single use inside the // current block. Ignore them quickly. Instruction *Inst = II; if (Inst->use_empty()) continue; if (Inst->hasOneUse() && cast(Inst->use_back())->getParent() == BB && !isa(Inst->use_back())) continue; // If this is an alloca in the entry block, it's not a real register // value. if (AllocaInst *AI = dyn_cast(Inst)) if (isa(AI->getArraySize()) && BB == F->begin()) continue; // Avoid iterator invalidation by copying users to a temporary vector. std::vector Users; for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); if (User->getParent() != BB || isa(User)) Users.push_back(User); } // Scan all of the uses and see if the live range is live across an unwind // edge. If we find a use live across an invoke edge, create an alloca // and spill the value. std::set InvokesWithStoreInserted; // Find all of the blocks that this value is live in. std::set LiveBBs; LiveBBs.insert(Inst->getParent()); while (!Users.empty()) { Instruction *U = Users.back(); Users.pop_back(); if (!isa(U)) { MarkBlocksLiveIn(U->getParent(), LiveBBs); } else { // Uses for a PHI node occur in their predecessor block. PHINode *PN = cast(U); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Inst) MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); } } // Now that we know all of the blocks that this thing is live in, see if // it includes any of the unwind locations. bool NeedsSpill = false; for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { NeedsSpill = true; } } // If we decided we need a spill, do it. if (NeedsSpill) { ++NumSpilled; DemoteRegToStack(*Inst, true); } } } bool LowerInvoke::insertExpensiveEHSupport(Function &F) { std::vector Returns; std::vector Unwinds; std::vector Invokes; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) { // Remember all return instructions in case we insert an invoke into this // function. Returns.push_back(RI); } else if (InvokeInst *II = dyn_cast(BB->getTerminator())) { Invokes.push_back(II); } else if (UnwindInst *UI = dyn_cast(BB->getTerminator())) { Unwinds.push_back(UI); } if (Unwinds.empty() && Invokes.empty()) return false; NumInvokes += Invokes.size(); NumUnwinds += Unwinds.size(); // TODO: This is not an optimal way to do this. In particular, this always // inserts setjmp calls into the entries of functions with invoke instructions // even though there are possibly paths through the function that do not // execute any invokes. In particular, for functions with early exits, e.g. // the 'addMove' method in hexxagon, it would be nice to not have to do the // setjmp stuff on the early exit path. This requires a bit of dataflow, but // would not be too hard to do. // If we have an invoke instruction, insert a setjmp that dominates all // invokes. After the setjmp, use a cond branch that goes to the original // code path on zero, and to a designated 'catch' block of nonzero. Value *OldJmpBufPtr = 0; if (!Invokes.empty()) { // First thing we need to do is scan the whole function for values that are // live across unwind edges. Each value that is live across an unwind edge // we spill into a stack location, guaranteeing that there is nothing live // across the unwind edge. This process also splits all critical edges // coming out of invoke's. splitLiveRangesLiveAcrossInvokes(Invokes); BasicBlock *EntryBB = F.begin(); // Create an alloca for the incoming jump buffer ptr and the new jump buffer // that needs to be restored on all exits from the function. This is an // alloca because the value needs to be live across invokes. unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; AllocaInst *JmpBuf = new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin()); std::vector Idx; Idx.push_back(Constant::getNullValue(Type::IntTy)); Idx.push_back(ConstantInt::get(Type::UIntTy, 1)); OldJmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "OldBuf", EntryBB->getTerminator()); // Copy the JBListHead to the alloca. Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, EntryBB->getTerminator()); new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); // Add the new jumpbuf to the list. new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); // Create the catch block. The catch block is basically a big switch // statement that goes to all of the invoke catch blocks. BasicBlock *CatchBB = new BasicBlock("setjmp.catch", &F); // Create an alloca which keeps track of which invoke is currently // executing. For normal calls it contains zero. AllocaInst *InvokeNum = new AllocaInst(Type::UIntTy, 0, "invokenum", EntryBB->begin()); new StoreInst(ConstantInt::get(Type::UIntTy, 0), InvokeNum, true, EntryBB->getTerminator()); // Insert a load in the Catch block, and a switch on its value. By default, // we go to a block that just does an unwind (which is the correct action // for a standard call). BasicBlock *UnwindBB = new BasicBlock("unwindbb", &F); Unwinds.push_back(new UnwindInst(UnwindBB)); Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); SwitchInst *CatchSwitch = new SwitchInst(CatchLoad, UnwindBB, Invokes.size(), CatchBB); // Now that things are set up, insert the setjmp call itself. // Split the entry block to insert the conditional branch for the setjmp. BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), "setjmp.cont"); Idx[1] = ConstantInt::get(Type::UIntTy, 0); Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "TheJmpBuf", EntryBB->getTerminator()); Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret", EntryBB->getTerminator()); // Compare the return value to zero. Value *IsNormal = BinaryOperator::createSetEQ(SJRet, Constant::getNullValue(SJRet->getType()), "notunwind", EntryBB->getTerminator()); // Nuke the uncond branch. EntryBB->getTerminator()->eraseFromParent(); // Put in a new condbranch in its place. new BranchInst(ContBlock, CatchBB, IsNormal, EntryBB); // At this point, we are all set up, rewrite each invoke instruction. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch); } // We know that there is at least one unwind. // Create three new blocks, the block to load the jmpbuf ptr and compare // against null, the block to do the longjmp, and the error block for if it // is null. Add them at the end of the function because they are not hot. BasicBlock *UnwindHandler = new BasicBlock("dounwind", &F); BasicBlock *UnwindBlock = new BasicBlock("unwind", &F); BasicBlock *TermBlock = new BasicBlock("unwinderror", &F); // If this function contains an invoke, restore the old jumpbuf ptr. Value *BufPtr; if (OldJmpBufPtr) { // Before the return, insert a copy from the saved value to the new value. BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); new StoreInst(BufPtr, JBListHead, UnwindHandler); } else { BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); } // Load the JBList, if it's null, then there was no catch! Value *NotNull = BinaryOperator::createSetNE(BufPtr, Constant::getNullValue(BufPtr->getType()), "notnull", UnwindHandler); new BranchInst(UnwindBlock, TermBlock, NotNull, UnwindHandler); // Create the block to do the longjmp. // Get a pointer to the jmpbuf and longjmp. std::vector Idx; Idx.push_back(Constant::getNullValue(Type::IntTy)); Idx.push_back(ConstantInt::get(Type::UIntTy, 0)); Idx[0] = new GetElementPtrInst(BufPtr, Idx, "JmpBuf", UnwindBlock); Idx[1] = ConstantInt::get(Type::IntTy, 1); new CallInst(LongJmpFn, Idx, "", UnwindBlock); new UnreachableInst(UnwindBlock); // Set up the term block ("throw without a catch"). new UnreachableInst(TermBlock); // Insert a new call to write(2, AbortMessage, AbortMessageLength); writeAbortMessage(TermBlock->getTerminator()); // Insert a call to abort() (new CallInst(AbortFn, std::vector(), "", TermBlock->getTerminator()))->setTailCall(); // Replace all unwinds with a branch to the unwind handler. for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) { new BranchInst(UnwindHandler, Unwinds[i]); Unwinds[i]->eraseFromParent(); } // Finally, for any returns from this function, if this function contains an // invoke, restore the old jmpbuf pointer to its input value. if (OldJmpBufPtr) { for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *R = Returns[i]; // Before the return, insert a copy from the saved value to the new value. Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); new StoreInst(OldBuf, JBListHead, true, R); } } return true; } bool LowerInvoke::runOnFunction(Function &F) { if (ExpensiveEHSupport) return insertExpensiveEHSupport(F); else return insertCheapEHSupport(F); }