//===-- X86InstrFragmentsSIMD.td - x86 SIMD ISA ------------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides pattern fragments useful for SIMD instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MMX Pattern Fragments //===----------------------------------------------------------------------===// def load_mmx : PatFrag<(ops node:$ptr), (x86mmx (load node:$ptr))>; def bc_mmx : PatFrag<(ops node:$in), (x86mmx (bitconvert node:$in))>; //===----------------------------------------------------------------------===// // SSE specific DAG Nodes. //===----------------------------------------------------------------------===// def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisInt<2> ]>; def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisFP<1>, SDTCisVT<3, i8>]>; def X86umin : SDNode<"X86ISD::UMIN", SDTIntBinOp>; def X86umax : SDNode<"X86ISD::UMAX", SDTIntBinOp>; def X86smin : SDNode<"X86ISD::SMIN", SDTIntBinOp>; def X86smax : SDNode<"X86ISD::SMAX", SDTIntBinOp>; def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>; def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>; // Commutative and Associative FMIN and FMAX. def X86fminc : SDNode<"X86ISD::FMINC", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fmaxc : SDNode<"X86ISD::FMAXC", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86fandn : SDNode<"X86ISD::FANDN", SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>; def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>; def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>; def X86fgetsign: SDNode<"X86ISD::FGETSIGNx86",SDTFPToIntOp>; def X86fhadd : SDNode<"X86ISD::FHADD", SDTFPBinOp>; def X86fhsub : SDNode<"X86ISD::FHSUB", SDTFPBinOp>; def X86hadd : SDNode<"X86ISD::HADD", SDTIntBinOp>; def X86hsub : SDNode<"X86ISD::HSUB", SDTIntBinOp>; def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>; def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>; def X86cmps : SDNode<"X86ISD::FSETCC", SDTX86Cmps>; //def X86cmpsd : SDNode<"X86ISD::FSETCCsd", SDTX86Cmpsd>; def X86pshufb : SDNode<"X86ISD::PSHUFB", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86andnp : SDNode<"X86ISD::ANDNP", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86psign : SDNode<"X86ISD::PSIGN", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>>; def X86pextrb : SDNode<"X86ISD::PEXTRB", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pextrw : SDNode<"X86ISD::PEXTRW", SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>; def X86pinsrb : SDNode<"X86ISD::PINSRB", SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86pinsrw : SDNode<"X86ISD::PINSRW", SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>, SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>; def X86insrtps : SDNode<"X86ISD::INSERTPS", SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>, SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>; def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL", SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>; def X86vzmovly : SDNode<"X86ISD::VZEXT_MOVL", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisOpSmallerThanOp<1, 0> ]>>; def X86vsmovl : SDNode<"X86ISD::VSEXT_MOVL", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisInt<1>, SDTCisInt<0>]>>; def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def X86vzext : SDNode<"X86ISD::VZEXT", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>]>>; def X86vsext : SDNode<"X86ISD::VSEXT", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>]>>; def X86vtrunc : SDNode<"X86ISD::VTRUNC", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>]>>; def X86trunc : SDNode<"X86ISD::TRUNC", SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>]>>; def X86vtruncm : SDNode<"X86ISD::VTRUNCM", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisInt<2>]>>; def X86vfpext : SDNode<"X86ISD::VFPEXT", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCisFP<1>]>>; def X86vfpround: SDNode<"X86ISD::VFPROUND", SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>, SDTCisFP<0>, SDTCisFP<1>]>>; def X86vshldq : SDNode<"X86ISD::VSHLDQ", SDTIntShiftOp>; def X86vshrdq : SDNode<"X86ISD::VSRLDQ", SDTIntShiftOp>; def X86cmpp : SDNode<"X86ISD::CMPP", SDTX86VFCMP>; def X86pcmpeq : SDNode<"X86ISD::PCMPEQ", SDTIntBinOp, [SDNPCommutative]>; def X86pcmpgt : SDNode<"X86ISD::PCMPGT", SDTIntBinOp>; def X86IntCmpMask : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<1, 2>, SDTCisInt<1>]>; def X86pcmpeqm : SDNode<"X86ISD::PCMPEQM", X86IntCmpMask, [SDNPCommutative]>; def X86pcmpgtm : SDNode<"X86ISD::PCMPGTM", X86IntCmpMask>; def X86CmpMaskCC : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>; def X86CmpMaskCCScalar : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>; def X86cmpm : SDNode<"X86ISD::CMPM", X86CmpMaskCC>; def X86cmpmu : SDNode<"X86ISD::CMPMU", X86CmpMaskCC>; def X86cmpms : SDNode<"X86ISD::FSETCC", X86CmpMaskCCScalar>; def X86vshl : SDNode<"X86ISD::VSHL", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>>; def X86vsrl : SDNode<"X86ISD::VSRL", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>>; def X86vsra : SDNode<"X86ISD::VSRA", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisVec<2>]>>; def X86vshli : SDNode<"X86ISD::VSHLI", SDTIntShiftOp>; def X86vsrli : SDNode<"X86ISD::VSRLI", SDTIntShiftOp>; def X86vsrai : SDNode<"X86ISD::VSRAI", SDTIntShiftOp>; def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>; def X86subus : SDNode<"X86ISD::SUBUS", SDTIntBinOp>; def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>; def X86testp : SDNode<"X86ISD::TESTP", SDTX86CmpPTest>; def X86kortest : SDNode<"X86ISD::KORTEST", SDTX86CmpPTest>; def X86testm : SDNode<"X86ISD::TESTM", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<2, 1>]>>; def X86select : SDNode<"X86ISD::SELECT" , SDTSelect>; def X86pmuludq : SDNode<"X86ISD::PMULUDQ", SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<1,2>]>>; // Specific shuffle nodes - At some point ISD::VECTOR_SHUFFLE will always get // translated into one of the target nodes below during lowering. // Note: this is a work in progress... def SDTShuff1Op : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; def SDTShuff2Op : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>]>; def SDTShuff3Op : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>]>; def SDTShuff2OpI : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisInt<2>]>; def SDTShuff3OpI : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisInt<3>]>; def SDTVBroadcast : SDTypeProfile<1, 1, [SDTCisVec<0>]>; def SDTVBroadcastm : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>]>; def SDTBlend : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisVT<3, i32>]>; def SDTFma : SDTypeProfile<1, 3, [SDTCisSameAs<0,1>, SDTCisSameAs<1,2>, SDTCisSameAs<1,3>]>; def X86PAlignr : SDNode<"X86ISD::PALIGNR", SDTShuff3OpI>; def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>; def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>; def X86PShuflw : SDNode<"X86ISD::PSHUFLW", SDTShuff2OpI>; def X86Shufp : SDNode<"X86ISD::SHUFP", SDTShuff3OpI>; def X86Movddup : SDNode<"X86ISD::MOVDDUP", SDTShuff1Op>; def X86Movshdup : SDNode<"X86ISD::MOVSHDUP", SDTShuff1Op>; def X86Movsldup : SDNode<"X86ISD::MOVSLDUP", SDTShuff1Op>; def X86Movsd : SDNode<"X86ISD::MOVSD", SDTShuff2Op>; def X86Movss : SDNode<"X86ISD::MOVSS", SDTShuff2Op>; def X86Movlhps : SDNode<"X86ISD::MOVLHPS", SDTShuff2Op>; def X86Movlhpd : SDNode<"X86ISD::MOVLHPD", SDTShuff2Op>; def X86Movhlps : SDNode<"X86ISD::MOVHLPS", SDTShuff2Op>; def X86Movlps : SDNode<"X86ISD::MOVLPS", SDTShuff2Op>; def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>; def X86Unpckl : SDNode<"X86ISD::UNPCKL", SDTShuff2Op>; def X86Unpckh : SDNode<"X86ISD::UNPCKH", SDTShuff2Op>; def X86VPermilp : SDNode<"X86ISD::VPERMILP", SDTShuff2OpI>; def X86VPermv : SDNode<"X86ISD::VPERMV", SDTShuff2Op>; def X86VPermi : SDNode<"X86ISD::VPERMI", SDTShuff2OpI>; def X86VPermv3 : SDNode<"X86ISD::VPERMV3", SDTShuff3Op>; def X86VPerm2x128 : SDNode<"X86ISD::VPERM2X128", SDTShuff3OpI>; def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>; def X86VBroadcastm : SDNode<"X86ISD::VBROADCASTM", SDTVBroadcastm>; def X86Vinsert : SDNode<"X86ISD::VINSERT", SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; def X86Blendi : SDNode<"X86ISD::BLENDI", SDTBlend>; def X86Fmadd : SDNode<"X86ISD::FMADD", SDTFma>; def X86Fnmadd : SDNode<"X86ISD::FNMADD", SDTFma>; def X86Fmsub : SDNode<"X86ISD::FMSUB", SDTFma>; def X86Fnmsub : SDNode<"X86ISD::FNMSUB", SDTFma>; def X86Fmaddsub : SDNode<"X86ISD::FMADDSUB", SDTFma>; def X86Fmsubadd : SDNode<"X86ISD::FMSUBADD", SDTFma>; def SDT_PCMPISTRI : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, v16i8>, SDTCisVT<3, v16i8>, SDTCisVT<4, i8>]>; def SDT_PCMPESTRI : SDTypeProfile<2, 5, [SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisVT<2, v16i8>, SDTCisVT<3, i32>, SDTCisVT<4, v16i8>, SDTCisVT<5, i32>, SDTCisVT<6, i8>]>; def X86pcmpistri : SDNode<"X86ISD::PCMPISTRI", SDT_PCMPISTRI>; def X86pcmpestri : SDNode<"X86ISD::PCMPESTRI", SDT_PCMPESTRI>; //===----------------------------------------------------------------------===// // SSE Complex Patterns //===----------------------------------------------------------------------===// // These are 'extloads' from a scalar to the low element of a vector, zeroing // the top elements. These are used for the SSE 'ss' and 'sd' instruction // forms. def sse_load_f32 : ComplexPattern; def sse_load_f64 : ComplexPattern; def ssmem : Operand { let PrintMethod = "printf32mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86Mem32AsmOperand; let OperandType = "OPERAND_MEMORY"; } def sdmem : Operand { let PrintMethod = "printf64mem"; let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm); let ParserMatchClass = X86Mem64AsmOperand; let OperandType = "OPERAND_MEMORY"; } //===----------------------------------------------------------------------===// // SSE pattern fragments //===----------------------------------------------------------------------===// // 128-bit load pattern fragments // NOTE: all 128-bit integer vector loads are promoted to v2i64 def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>; def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>; def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>; // 256-bit load pattern fragments // NOTE: all 256-bit integer vector loads are promoted to v4i64 def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>; def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>; def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>; // 512-bit load pattern fragments def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>; def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>; def loadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (load node:$ptr))>; def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>; // 128-/256-/512-bit extload pattern fragments def extloadv2f32 : PatFrag<(ops node:$ptr), (v2f64 (extloadvf32 node:$ptr))>; def extloadv4f32 : PatFrag<(ops node:$ptr), (v4f64 (extloadvf32 node:$ptr))>; def extloadv8f32 : PatFrag<(ops node:$ptr), (v8f64 (extloadvf32 node:$ptr))>; // Like 'store', but always requires 128-bit vector alignment. def alignedstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'store', but always requires 256-bit vector alignment. def alignedstore256 : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 32; }]>; // Like 'store', but always requires 512-bit vector alignment. def alignedstore512 : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast(N)->getAlignment() >= 64; }]>; // Like 'load', but always requires 128-bit vector alignment. def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'X86vzload', but always requires 128-bit vector alignment. def alignedX86vzload : PatFrag<(ops node:$ptr), (X86vzload node:$ptr), [{ return cast(N)->getAlignment() >= 16; }]>; // Like 'load', but always requires 256-bit vector alignment. def alignedload256 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 32; }]>; // Like 'load', but always requires 512-bit vector alignment. def alignedload512 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 64; }]>; def alignedloadfsf32 : PatFrag<(ops node:$ptr), (f32 (alignedload node:$ptr))>; def alignedloadfsf64 : PatFrag<(ops node:$ptr), (f64 (alignedload node:$ptr))>; // 128-bit aligned load pattern fragments // NOTE: all 128-bit integer vector loads are promoted to v2i64 def alignedloadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (alignedload node:$ptr))>; def alignedloadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (alignedload node:$ptr))>; def alignedloadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (alignedload node:$ptr))>; // 256-bit aligned load pattern fragments // NOTE: all 256-bit integer vector loads are promoted to v4i64 def alignedloadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (alignedload256 node:$ptr))>; def alignedloadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (alignedload256 node:$ptr))>; def alignedloadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (alignedload256 node:$ptr))>; // 512-bit aligned load pattern fragments def alignedloadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (alignedload512 node:$ptr))>; def alignedloadv16i32 : PatFrag<(ops node:$ptr), (v16i32 (alignedload512 node:$ptr))>; def alignedloadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (alignedload512 node:$ptr))>; def alignedloadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (alignedload512 node:$ptr))>; // Like 'load', but uses special alignment checks suitable for use in // memory operands in most SSE instructions, which are required to // be naturally aligned on some targets but not on others. If the subtarget // allows unaligned accesses, match any load, though this may require // setting a feature bit in the processor (on startup, for example). // Opteron 10h and later implement such a feature. def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return Subtarget->hasVectorUAMem() || cast(N)->getAlignment() >= 16; }]>; def memop4 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return Subtarget->hasVectorUAMem() || cast(N)->getAlignment() >= 4; }]>; def memop8 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return Subtarget->hasVectorUAMem() || cast(N)->getAlignment() >= 8; }]>; def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>; def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>; // 128-bit memop pattern fragments // NOTE: all 128-bit integer vector loads are promoted to v2i64 def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>; def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>; def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>; // 256-bit memop pattern fragments // NOTE: all 256-bit integer vector loads are promoted to v4i64 def memopv8f32 : PatFrag<(ops node:$ptr), (v8f32 (memop node:$ptr))>; def memopv4f64 : PatFrag<(ops node:$ptr), (v4f64 (memop node:$ptr))>; def memopv4i64 : PatFrag<(ops node:$ptr), (v4i64 (memop node:$ptr))>; // 512-bit memop pattern fragments def memopv16f32 : PatFrag<(ops node:$ptr), (v16f32 (memop4 node:$ptr))>; def memopv8f64 : PatFrag<(ops node:$ptr), (v8f64 (memop8 node:$ptr))>; def memopv16i32 : PatFrag<(ops node:$ptr), (v16i32 (memop4 node:$ptr))>; def memopv8i64 : PatFrag<(ops node:$ptr), (v8i64 (memop8 node:$ptr))>; // SSSE3 uses MMX registers for some instructions. They aren't aligned on a // 16-byte boundary. // FIXME: 8 byte alignment for mmx reads is not required def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast(N)->getAlignment() >= 8; }]>; def memopmmx : PatFrag<(ops node:$ptr), (x86mmx (memop64 node:$ptr))>; // MOVNT Support // Like 'store', but requires the non-temporal bit to be set def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isNonTemporal(); return false; }]>; def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isNonTemporal() && !ST->isTruncatingStore() && ST->getAddressingMode() == ISD::UNINDEXED && ST->getAlignment() >= 16; return false; }]>; def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr), [{ if (StoreSDNode *ST = dyn_cast(N)) return ST->isNonTemporal() && ST->getAlignment() < 16; return false; }]>; // 128-bit bitconvert pattern fragments def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>; def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>; def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>; def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>; def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>; def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>; // 256-bit bitconvert pattern fragments def bc_v32i8 : PatFrag<(ops node:$in), (v32i8 (bitconvert node:$in))>; def bc_v16i16 : PatFrag<(ops node:$in), (v16i16 (bitconvert node:$in))>; def bc_v8i32 : PatFrag<(ops node:$in), (v8i32 (bitconvert node:$in))>; def bc_v4i64 : PatFrag<(ops node:$in), (v4i64 (bitconvert node:$in))>; // 512-bit bitconvert pattern fragments def bc_v16i32 : PatFrag<(ops node:$in), (v16i32 (bitconvert node:$in))>; def bc_v8i64 : PatFrag<(ops node:$in), (v8i64 (bitconvert node:$in))>; def bc_v8f64 : PatFrag<(ops node:$in), (v8f64 (bitconvert node:$in))>; def bc_v16f32 : PatFrag<(ops node:$in), (v16f32 (bitconvert node:$in))>; def vzmovl_v2i64 : PatFrag<(ops node:$src), (bitconvert (v2i64 (X86vzmovl (v2i64 (scalar_to_vector (loadi64 node:$src))))))>; def vzmovl_v4i32 : PatFrag<(ops node:$src), (bitconvert (v4i32 (X86vzmovl (v4i32 (scalar_to_vector (loadi32 node:$src))))))>; def vzload_v2i64 : PatFrag<(ops node:$src), (bitconvert (v2i64 (X86vzload node:$src)))>; def fp32imm0 : PatLeaf<(f32 fpimm), [{ return N->isExactlyValue(+0.0); }]>; def I8Imm : SDNodeXFormgetZExtValue()); }]>; def FROUND_NO_EXC : ImmLeaf; def FROUND_CURRENT : ImmLeaf; // BYTE_imm - Transform bit immediates into byte immediates. def BYTE_imm : SDNodeXForm> 3 return getI32Imm(N->getZExtValue() >> 3); }]>; // EXTRACT_get_vextract128_imm xform function: convert extract_subvector index // to VEXTRACTF128/VEXTRACTI128 imm. def EXTRACT_get_vextract128_imm : SDNodeXForm; // INSERT_get_vinsert128_imm xform function: convert insert_subvector index to // VINSERTF128/VINSERTI128 imm. def INSERT_get_vinsert128_imm : SDNodeXForm; // EXTRACT_get_vextract256_imm xform function: convert extract_subvector index // to VEXTRACTF64x4 imm. def EXTRACT_get_vextract256_imm : SDNodeXForm; // INSERT_get_vinsert256_imm xform function: convert insert_subvector index to // VINSERTF64x4 imm. def INSERT_get_vinsert256_imm : SDNodeXForm; def vextract128_extract : PatFrag<(ops node:$bigvec, node:$index), (extract_subvector node:$bigvec, node:$index), [{ return X86::isVEXTRACT128Index(N); }], EXTRACT_get_vextract128_imm>; def vinsert128_insert : PatFrag<(ops node:$bigvec, node:$smallvec, node:$index), (insert_subvector node:$bigvec, node:$smallvec, node:$index), [{ return X86::isVINSERT128Index(N); }], INSERT_get_vinsert128_imm>; def vextract256_extract : PatFrag<(ops node:$bigvec, node:$index), (extract_subvector node:$bigvec, node:$index), [{ return X86::isVEXTRACT256Index(N); }], EXTRACT_get_vextract256_imm>; def vinsert256_insert : PatFrag<(ops node:$bigvec, node:$smallvec, node:$index), (insert_subvector node:$bigvec, node:$smallvec, node:$index), [{ return X86::isVINSERT256Index(N); }], INSERT_get_vinsert256_imm>;