//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This simple pass provides alias and mod/ref information for global values // that do not have their address taken. For this simple (but very common) // case, we can provide pretty accurate and useful information. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "globalsmodref" #include "llvm/Analysis/Passes.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Instructions.h" #include "llvm/Constants.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CallGraph.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/SCCIterator.h" #include using namespace llvm; namespace { Statistic<> NumNonAddrTakenGlobalVars("globalsmodref-aa", "Number of global vars without address taken"); Statistic<> NumNonAddrTakenFunctions("globalsmodref-aa", "Number of functions without address taken"); class GlobalsModRef : public Pass, public AliasAnalysis { /// ModRefFns - One instance of this record is kept for each global without /// its address taken. struct ModRefFns { /// RefFns/ModFns - Sets of functions that and write globals. std::set RefFns, ModFns; }; /// NonAddressTakenGlobals - A map of globals that do not have their /// addresses taken to their record. std::map NonAddressTakenGlobals; /// FunctionInfo - For each function, keep track of what globals are /// modified or read. std::map, unsigned> FunctionInfo; public: bool run(Module &M) { InitializeAliasAnalysis(this); // set up super class AnalyzeGlobals(M); // find non-addr taken globals AnalyzeCallGraph(getAnalysis(), M); // Propagate on CG return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AliasAnalysis::getAnalysisUsage(AU); AU.addRequired(); AU.setPreservesAll(); // Does not transform code } //------------------------------------------------ // Implement the AliasAnalysis API // AliasResult alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size); ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); bool hasNoModRefInfoForCalls() const { return false; } virtual void deleteValue(Value *V); virtual void copyValue(Value *From, Value *To); private: void AnalyzeGlobals(Module &M); void AnalyzeCallGraph(CallGraph &CG, Module &M); bool AnalyzeUsesOfGlobal(Value *V, std::vector &Readers, std::vector &Writers); }; RegisterOpt X("globalsmodref-aa", "Simple mod/ref analysis for globals"); RegisterAnalysisGroup Y; } Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); } /// AnalyzeGlobalUses - Scan through the users of all of the internal /// GlobalValue's in the program. If none of them have their "Address taken" /// (really, their address passed to something nontrivial), record this fact, /// and record the functions that they are used directly in. void GlobalsModRef::AnalyzeGlobals(Module &M) { std::vector Readers, Writers; for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (I->hasInternalLinkage()) { if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) { // Remember that we are tracking this global, and the mod/ref fns ModRefFns &E = NonAddressTakenGlobals[I]; E.RefFns.insert(Readers.begin(), Readers.end()); E.ModFns.insert(Writers.begin(), Writers.end()); ++NumNonAddrTakenFunctions; } Readers.clear(); Writers.clear(); } for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) // FIXME: it is kinda dumb to track aliasing properties for constant // globals, it will never be particularly useful anyways, 'cause they can // never be modified (and the optimizer knows this already)! if (I->hasInternalLinkage()) { if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) { // Remember that we are tracking this global, and the mod/ref fns ModRefFns &E = NonAddressTakenGlobals[I]; E.RefFns.insert(Readers.begin(), Readers.end()); E.ModFns.insert(Writers.begin(), Writers.end()); ++NumNonAddrTakenGlobalVars; } Readers.clear(); Writers.clear(); } } /// AnalyzeUsesOfGlobal - Look at all of the users of the specified global value /// derived pointer. If this is used by anything complex (i.e., the address /// escapes), return true. Also, while we are at it, keep track of those /// functions that read and write to the value. bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V, std::vector &Readers, std::vector &Writers) { //if (!isa(V->getType())) return true; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) if (LoadInst *LI = dyn_cast(*UI)) { Readers.push_back(LI->getParent()->getParent()); } else if (StoreInst *SI = dyn_cast(*UI)) { if (V == SI->getOperand(0)) return true; // Storing the pointer Writers.push_back(SI->getParent()->getParent()); } else if (GetElementPtrInst *GEP = dyn_cast(*UI)) { if (AnalyzeUsesOfGlobal(GEP, Readers, Writers)) return true; } else if (CallInst *CI = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) if (CI->getOperand(i) == V) return true; } else if (CallInst *CI = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i) if (CI->getOperand(i) == V) return true; } else if (InvokeInst *II = dyn_cast(*UI)) { // Make sure that this is just the function being called, not that it is // passing into the function. for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i) if (II->getOperand(i) == V) return true; } else if (ConstantExpr *CE = dyn_cast(*UI)) { if (CE->getOpcode() == Instruction::GetElementPtr || CE->getOpcode() == Instruction::Cast) { if (AnalyzeUsesOfGlobal(CE, Readers, Writers)) return true; } else { return true; } } else if (ConstantPointerRef *CPR = dyn_cast(*UI)) { if (AnalyzeUsesOfGlobal(CPR, Readers, Writers)) return true; } else { return true; } return false; } /// AnalyzeCallGraph - At this point, we know the functions where globals are /// immediately stored to and read from. Propagate this information up the call /// graph to all callers. void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) { if (NonAddressTakenGlobals.empty()) return; // Don't bother, nothing to do. // Invert the NonAddressTakenGlobals map into the FunctionInfo map. for (std::map::iterator I = NonAddressTakenGlobals.begin(), E = NonAddressTakenGlobals.end(); I != E; ++I) { GlobalValue *GV = I->first; ModRefFns &MRInfo = I->second; for (std::set::iterator I = MRInfo.RefFns.begin(), E = MRInfo.RefFns.begin(); I != E; ++I) FunctionInfo[std::make_pair(*I, GV)] |= Ref; MRInfo.RefFns.clear(); for (std::set::iterator I = MRInfo.ModFns.begin(), E = MRInfo.ModFns.begin(); I != E; ++I) FunctionInfo[std::make_pair(*I, GV)] |= Mod; MRInfo.ModFns.clear(); } // We do a bottom-up SCC traversal of the call graph. In other words, we // visit all callees before callers (leaf-first). for (scc_iterator I = scc_begin(&CG), E = scc_end(&CG); I != E; ++I) { std::map ModRefProperties; const std::vector &SCC = *I; // Collect the mod/ref properties due to called functions. for (unsigned i = 0, e = SCC.size(); i != e; ++i) for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); CI != E; ++CI) { if (Function *Callee = (*CI)->getFunction()) { // Otherwise, combine the callee properties into our accumulated set. std::map, unsigned>::iterator CI = FunctionInfo.lower_bound(std::make_pair(Callee, (GlobalValue*)0)); for (;CI != FunctionInfo.end() && CI->first.first == Callee; ++CI) ModRefProperties[CI->first.second] |= CI->second; } else { // For now assume that external functions could mod/ref anything, // since they could call into an escaping function that mod/refs an // internal. FIXME: We need better tracking! for (std::map::iterator GI = NonAddressTakenGlobals.begin(), E = NonAddressTakenGlobals.end(); GI != E; ++GI) ModRefProperties[GI->first] = ModRef; goto Out; } } Out: // Set all functions in the CFG to have these properties. FIXME: it would // be better to use union find to only store these properties once, // PARTICULARLY if it's the universal set. for (unsigned i = 0, e = SCC.size(); i != e; ++i) if (Function *F = SCC[i]->getFunction()) { for (std::map::iterator I = ModRefProperties.begin(), E = ModRefProperties.end(); I != E; ++I) FunctionInfo[std::make_pair(F, I->first)] = I->second; } } } /// getUnderlyingObject - This traverses the use chain to figure out what object /// the specified value points to. If the value points to, or is derived from, /// a global object, return it. static const GlobalValue *getUnderlyingObject(const Value *V) { //if (!isa(V->getType())) return 0; // If we are at some type of object... return it. if (const GlobalValue *GV = dyn_cast(V)) return GV; // Traverse through different addressing mechanisms... if (const Instruction *I = dyn_cast(V)) { if (isa(I) || isa(I)) return getUnderlyingObject(I->getOperand(0)); } else if (const ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() == Instruction::Cast || CE->getOpcode() == Instruction::GetElementPtr) return getUnderlyingObject(CE->getOperand(0)); } else if (const ConstantPointerRef *CPR = dyn_cast(V)) { return CPR->getValue(); } return 0; } /// alias - If one of the pointers is to a global that we are tracking, and the /// other is some random pointer, we know there cannot be an alias, because the /// address of the global isn't taken. AliasAnalysis::AliasResult GlobalsModRef::alias(const Value *V1, unsigned V1Size, const Value *V2, unsigned V2Size) { GlobalValue *GV1 = const_cast(getUnderlyingObject(V1)); GlobalValue *GV2 = const_cast(getUnderlyingObject(V2)); // If the global's address is taken, pretend we don't know it's a pointer to // the global. if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0; if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0; if ((GV1 || GV2) && GV1 != GV2) return NoAlias; return AliasAnalysis::alias(V1, V1Size, V2, V2Size); } AliasAnalysis::ModRefResult GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) { unsigned Known = ModRef; // If we are asking for mod/ref info of a direct call with a pointer to a // global, return information if we have it. if (GlobalValue *GV = const_cast(getUnderlyingObject(P))) if (GV->hasInternalLinkage()) if (Function *F = CS.getCalledFunction()) { std::map, unsigned>::iterator it = FunctionInfo.find(std::make_pair(F, GV)); if (it != FunctionInfo.end()) Known = it->second; } if (Known == NoModRef) return NoModRef; // No need to query other mod/ref analyses return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, P, Size)); } //===----------------------------------------------------------------------===// // Methods to update the analysis as a result of the client transformation. // void GlobalsModRef::deleteValue(Value *V) { if (GlobalValue *GV = dyn_cast(V)) { std::map::iterator I = NonAddressTakenGlobals.find(GV); if (I != NonAddressTakenGlobals.end()) NonAddressTakenGlobals.erase(I); } } void GlobalsModRef::copyValue(Value *From, Value *To) { if (GlobalValue *FromGV = dyn_cast(From)) if (GlobalValue *ToGV = dyn_cast(To)) { std::map::iterator I = NonAddressTakenGlobals.find(FromGV); if (I != NonAddressTakenGlobals.end()) NonAddressTakenGlobals[ToGV] = I->second; } }