//===-- DelaySlotFiller.cpp - SPARC delay slot filler ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This is a simple local pass that attempts to fill delay slots with useful // instructions. If no instructions can be moved into the delay slot, then a // NOP is placed. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "delay-slot-filler" #include "Sparc.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(FilledSlots, "Number of delay slots filled"); static cl::opt DisableDelaySlotFiller( "disable-sparc-delay-filler", cl::init(false), cl::desc("Disable the Sparc delay slot filler."), cl::Hidden); namespace { struct Filler : public MachineFunctionPass { /// Target machine description which we query for reg. names, data /// layout, etc. /// TargetMachine &TM; const TargetInstrInfo *TII; static char ID; Filler(TargetMachine &tm) : MachineFunctionPass(ID), TM(tm), TII(tm.getInstrInfo()) { } virtual const char *getPassName() const { return "SPARC Delay Slot Filler"; } bool runOnMachineBasicBlock(MachineBasicBlock &MBB); bool runOnMachineFunction(MachineFunction &F) { bool Changed = false; for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) Changed |= runOnMachineBasicBlock(*FI); return Changed; } bool isDelayFiller(MachineBasicBlock &MBB, MachineBasicBlock::iterator candidate); void insertCallUses(MachineBasicBlock::iterator MI, SmallSet& RegUses); void insertDefsUses(MachineBasicBlock::iterator MI, SmallSet& RegDefs, SmallSet& RegUses); bool IsRegInSet(SmallSet& RegSet, unsigned Reg); bool delayHasHazard(MachineBasicBlock::iterator candidate, bool &sawLoad, bool &sawStore, SmallSet &RegDefs, SmallSet &RegUses); MachineBasicBlock::iterator findDelayInstr(MachineBasicBlock &MBB, MachineBasicBlock::iterator slot); bool needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize); }; char Filler::ID = 0; } // end of anonymous namespace /// createSparcDelaySlotFillerPass - Returns a pass that fills in delay /// slots in Sparc MachineFunctions /// FunctionPass *llvm::createSparcDelaySlotFillerPass(TargetMachine &tm) { return new Filler(tm); } /// runOnMachineBasicBlock - Fill in delay slots for the given basic block. /// We assume there is only one delay slot per delayed instruction. /// bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) { bool Changed = false; for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) if (I->getDesc().hasDelaySlot()) { MachineBasicBlock::iterator D = MBB.end(); MachineBasicBlock::iterator J = I; if (!DisableDelaySlotFiller) D = findDelayInstr(MBB, I); ++FilledSlots; Changed = true; if (D == MBB.end()) BuildMI(MBB, ++J, I->getDebugLoc(), TII->get(SP::NOP)); else MBB.splice(++J, &MBB, D); unsigned structSize = 0; if (needsUnimp(I, structSize)) { MachineBasicBlock::iterator J = I; ++J; //skip the delay filler. BuildMI(MBB, ++J, I->getDebugLoc(), TII->get(SP::UNIMP)).addImm(structSize); } } return Changed; } MachineBasicBlock::iterator Filler::findDelayInstr(MachineBasicBlock &MBB, MachineBasicBlock::iterator slot) { SmallSet RegDefs; SmallSet RegUses; bool sawLoad = false; bool sawStore = false; MachineBasicBlock::iterator I = slot; if (slot->getOpcode() == SP::RET) return MBB.end(); if (slot->getOpcode() == SP::RETL) { --I; if (I->getOpcode() != SP::RESTORErr) return MBB.end(); //change retl to ret slot->setDesc(TII->get(SP::RET)); return I; } //Call's delay filler can def some of call's uses. if (slot->getDesc().isCall()) insertCallUses(slot, RegUses); else insertDefsUses(slot, RegDefs, RegUses); bool done = false; while (!done) { done = (I == MBB.begin()); if (!done) --I; // skip debug value if (I->isDebugValue()) continue; if (I->hasUnmodeledSideEffects() || I->isInlineAsm() || I->isLabel() || I->getDesc().hasDelaySlot() || isDelayFiller(MBB, I)) break; if (delayHasHazard(I, sawLoad, sawStore, RegDefs, RegUses)) { insertDefsUses(I, RegDefs, RegUses); continue; } return I; } return MBB.end(); } bool Filler::delayHasHazard(MachineBasicBlock::iterator candidate, bool &sawLoad, bool &sawStore, SmallSet &RegDefs, SmallSet &RegUses) { if (candidate->isImplicitDef() || candidate->isKill()) return true; if (candidate->getDesc().mayLoad()) { sawLoad = true; if (sawStore) return true; } if (candidate->getDesc().mayStore()) { if (sawStore) return true; sawStore = true; if (sawLoad) return true; } for (unsigned i = 0, e = candidate->getNumOperands(); i!= e; ++i) { const MachineOperand &MO = candidate->getOperand(i); if (!MO.isReg()) continue; // skip unsigned Reg = MO.getReg(); if (MO.isDef()) { //check whether Reg is defined or used before delay slot. if (IsRegInSet(RegDefs, Reg) || IsRegInSet(RegUses, Reg)) return true; } if (MO.isUse()) { //check whether Reg is defined before delay slot. if (IsRegInSet(RegDefs, Reg)) return true; } } return false; } void Filler::insertCallUses(MachineBasicBlock::iterator MI, SmallSet& RegUses) { switch(MI->getOpcode()) { default: llvm_unreachable("Unknown opcode."); case SP::CALL: break; case SP::JMPLrr: case SP::JMPLri: assert(MI->getNumOperands() >= 2); const MachineOperand &Reg = MI->getOperand(0); assert(Reg.isReg() && "JMPL first operand is not a register."); assert(Reg.isUse() && "JMPL first operand is not a use."); RegUses.insert(Reg.getReg()); const MachineOperand &RegOrImm = MI->getOperand(1); if (RegOrImm.isImm()) break; assert(RegOrImm.isReg() && "JMPLrr second operand is not a register."); assert(RegOrImm.isUse() && "JMPLrr second operand is not a use."); RegUses.insert(RegOrImm.getReg()); break; } } //Insert Defs and Uses of MI into the sets RegDefs and RegUses. void Filler::insertDefsUses(MachineBasicBlock::iterator MI, SmallSet& RegDefs, SmallSet& RegUses) { for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (MO.isDef()) RegDefs.insert(Reg); if (MO.isUse()) RegUses.insert(Reg); } } //returns true if the Reg or its alias is in the RegSet. bool Filler::IsRegInSet(SmallSet& RegSet, unsigned Reg) { if (RegSet.count(Reg)) return true; // check Aliased Registers for (const unsigned *Alias = TM.getRegisterInfo()->getAliasSet(Reg); *Alias; ++ Alias) if (RegSet.count(*Alias)) return true; return false; } // return true if the candidate is a delay filler. bool Filler::isDelayFiller(MachineBasicBlock &MBB, MachineBasicBlock::iterator candidate) { if (candidate == MBB.begin()) return false; if (candidate->getOpcode() == SP::UNIMP) return true; const TargetInstrDesc &prevdesc = (--candidate)->getDesc(); return prevdesc.hasDelaySlot(); } bool Filler::needsUnimp(MachineBasicBlock::iterator I, unsigned &StructSize) { if (!I->getDesc().isCall()) return false; unsigned structSizeOpNum = 0; switch (I->getOpcode()) { default: llvm_unreachable("Unknown call opcode."); case SP::CALL: structSizeOpNum = 1; break; case SP::JMPLrr: case SP::JMPLri: structSizeOpNum = 2; break; } const MachineOperand &MO = I->getOperand(structSizeOpNum); if (!MO.isImm()) return false; StructSize = MO.getImm(); return true; }