//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a fast scheduler. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "pre-RA-sched" #include "ScheduleDAGSDNodes.h" #include "llvm/InlineAsm.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumUnfolds, "Number of nodes unfolded"); STATISTIC(NumDups, "Number of duplicated nodes"); STATISTIC(NumPRCopies, "Number of physical copies"); static RegisterScheduler fastDAGScheduler("fast", "Fast suboptimal list scheduling", createFastDAGScheduler); namespace { /// FastPriorityQueue - A degenerate priority queue that considers /// all nodes to have the same priority. /// struct FastPriorityQueue { SmallVector Queue; bool empty() const { return Queue.empty(); } void push(SUnit *U) { Queue.push_back(U); } SUnit *pop() { if (empty()) return NULL; SUnit *V = Queue.back(); Queue.pop_back(); return V; } }; //===----------------------------------------------------------------------===// /// ScheduleDAGFast - The actual "fast" list scheduler implementation. /// class ScheduleDAGFast : public ScheduleDAGSDNodes { private: /// AvailableQueue - The priority queue to use for the available SUnits. FastPriorityQueue AvailableQueue; /// LiveRegDefs - A set of physical registers and their definition /// that are "live". These nodes must be scheduled before any other nodes that /// modifies the registers can be scheduled. unsigned NumLiveRegs; std::vector LiveRegDefs; std::vector LiveRegCycles; public: ScheduleDAGFast(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} void Schedule(); /// AddPred - adds a predecessor edge to SUnit SU. /// This returns true if this is a new predecessor. void AddPred(SUnit *SU, const SDep &D) { SU->addPred(D); } /// RemovePred - removes a predecessor edge from SUnit SU. /// This returns true if an edge was removed. void RemovePred(SUnit *SU, const SDep &D) { SU->removePred(D); } private: void ReleasePred(SUnit *SU, SDep *PredEdge); void ReleasePredecessors(SUnit *SU, unsigned CurCycle); void ScheduleNodeBottomUp(SUnit*, unsigned); SUnit *CopyAndMoveSuccessors(SUnit*); void InsertCopiesAndMoveSuccs(SUnit*, unsigned, const TargetRegisterClass*, const TargetRegisterClass*, SmallVector&); bool DelayForLiveRegsBottomUp(SUnit*, SmallVector&); void ListScheduleBottomUp(); /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies. bool ForceUnitLatencies() const { return true; } }; } // end anonymous namespace /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGFast::Schedule() { DEBUG(dbgs() << "********** List Scheduling **********\n"); NumLiveRegs = 0; LiveRegDefs.resize(TRI->getNumRegs(), NULL); LiveRegCycles.resize(TRI->getNumRegs(), 0); // Build the scheduling graph. BuildSchedGraph(NULL); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); // Execute the actual scheduling loop. ListScheduleBottomUp(); } //===----------------------------------------------------------------------===// // Bottom-Up Scheduling //===----------------------------------------------------------------------===// /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to /// the AvailableQueue if the count reaches zero. Also update its cycle bound. void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { SUnit *PredSU = PredEdge->getSUnit(); #ifndef NDEBUG if (PredSU->NumSuccsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; PredSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --PredSU->NumSuccsLeft; // If all the node's successors are scheduled, this node is ready // to be scheduled. Ignore the special EntrySU node. if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { PredSU->isAvailable = true; AvailableQueue.push(PredSU); } } void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { // Bottom up: release predecessors for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { ReleasePred(SU, &*I); if (I->isAssignedRegDep()) { // This is a physical register dependency and it's impossible or // expensive to copy the register. Make sure nothing that can // clobber the register is scheduled between the predecessor and // this node. if (!LiveRegDefs[I->getReg()]) { ++NumLiveRegs; LiveRegDefs[I->getReg()] = I->getSUnit(); LiveRegCycles[I->getReg()] = CurCycle; } } } } /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending /// count of its predecessors. If a predecessor pending count is zero, add it to /// the Available queue. void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); DEBUG(SU->dump(this)); assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); SU->setHeightToAtLeast(CurCycle); Sequence.push_back(SU); ReleasePredecessors(SU, CurCycle); // Release all the implicit physical register defs that are live. for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isAssignedRegDep()) { if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) { assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); assert(LiveRegDefs[I->getReg()] == SU && "Physical register dependency violated?"); --NumLiveRegs; LiveRegDefs[I->getReg()] = NULL; LiveRegCycles[I->getReg()] = 0; } } } SU->isScheduled = true; } /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled /// successors to the newly created node. SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { if (SU->getNode()->getGluedNode()) return NULL; SDNode *N = SU->getNode(); if (!N) return NULL; SUnit *NewSU; bool TryUnfold = false; for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { EVT VT = N->getValueType(i); if (VT == MVT::Glue) return NULL; else if (VT == MVT::Other) TryUnfold = true; } for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { const SDValue &Op = N->getOperand(i); EVT VT = Op.getNode()->getValueType(Op.getResNo()); if (VT == MVT::Glue) return NULL; } if (TryUnfold) { SmallVector NewNodes; if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) return NULL; DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n"); assert(NewNodes.size() == 2 && "Expected a load folding node!"); N = NewNodes[1]; SDNode *LoadNode = NewNodes[0]; unsigned NumVals = N->getNumValues(); unsigned OldNumVals = SU->getNode()->getNumValues(); for (unsigned i = 0; i != NumVals; ++i) DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), SDValue(LoadNode, 1)); SUnit *NewSU = NewSUnit(N); assert(N->getNodeId() == -1 && "Node already inserted!"); N->setNodeId(NewSU->NodeNum); const TargetInstrDesc &TID = TII->get(N->getMachineOpcode()); for (unsigned i = 0; i != TID.getNumOperands(); ++i) { if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { NewSU->isTwoAddress = true; break; } } if (TID.isCommutable()) NewSU->isCommutable = true; // LoadNode may already exist. This can happen when there is another // load from the same location and producing the same type of value // but it has different alignment or volatileness. bool isNewLoad = true; SUnit *LoadSU; if (LoadNode->getNodeId() != -1) { LoadSU = &SUnits[LoadNode->getNodeId()]; isNewLoad = false; } else { LoadSU = NewSUnit(LoadNode); LoadNode->setNodeId(LoadSU->NodeNum); } SDep ChainPred; SmallVector ChainSuccs; SmallVector LoadPreds; SmallVector NodePreds; SmallVector NodeSuccs; for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isCtrl()) ChainPred = *I; else if (I->getSUnit()->getNode() && I->getSUnit()->getNode()->isOperandOf(LoadNode)) LoadPreds.push_back(*I); else NodePreds.push_back(*I); } for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isCtrl()) ChainSuccs.push_back(*I); else NodeSuccs.push_back(*I); } if (ChainPred.getSUnit()) { RemovePred(SU, ChainPred); if (isNewLoad) AddPred(LoadSU, ChainPred); } for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { const SDep &Pred = LoadPreds[i]; RemovePred(SU, Pred); if (isNewLoad) { AddPred(LoadSU, Pred); } } for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { const SDep &Pred = NodePreds[i]; RemovePred(SU, Pred); AddPred(NewSU, Pred); } for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { SDep D = NodeSuccs[i]; SUnit *SuccDep = D.getSUnit(); D.setSUnit(SU); RemovePred(SuccDep, D); D.setSUnit(NewSU); AddPred(SuccDep, D); } for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { SDep D = ChainSuccs[i]; SUnit *SuccDep = D.getSUnit(); D.setSUnit(SU); RemovePred(SuccDep, D); if (isNewLoad) { D.setSUnit(LoadSU); AddPred(SuccDep, D); } } if (isNewLoad) { AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency)); } ++NumUnfolds; if (NewSU->NumSuccsLeft == 0) { NewSU->isAvailable = true; return NewSU; } SU = NewSU; } DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n"); NewSU = Clone(SU); // New SUnit has the exact same predecessors. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (!I->isArtificial()) AddPred(NewSU, *I); // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector, 4> DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isArtificial()) continue; SUnit *SuccSU = I->getSUnit(); if (SuccSU->isScheduled) { SDep D = *I; D.setSUnit(NewSU); AddPred(SuccSU, D); D.setSUnit(SU); DelDeps.push_back(std::make_pair(SuccSU, D)); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) RemovePred(DelDeps[i].first, DelDeps[i].second); ++NumDups; return NewSU; } /// InsertCopiesAndMoveSuccs - Insert register copies and move all /// scheduled successors of the given SUnit to the last copy. void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC, SmallVector &Copies) { SUnit *CopyFromSU = NewSUnit(static_cast(NULL)); CopyFromSU->CopySrcRC = SrcRC; CopyFromSU->CopyDstRC = DestRC; SUnit *CopyToSU = NewSUnit(static_cast(NULL)); CopyToSU->CopySrcRC = DestRC; CopyToSU->CopyDstRC = SrcRC; // Only copy scheduled successors. Cut them from old node's successor // list and move them over. SmallVector, 4> DelDeps; for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { if (I->isArtificial()) continue; SUnit *SuccSU = I->getSUnit(); if (SuccSU->isScheduled) { SDep D = *I; D.setSUnit(CopyToSU); AddPred(SuccSU, D); DelDeps.push_back(std::make_pair(SuccSU, *I)); } } for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { RemovePred(DelDeps[i].first, DelDeps[i].second); } AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg)); AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0)); Copies.push_back(CopyFromSU); Copies.push_back(CopyToSU); ++NumPRCopies; } /// getPhysicalRegisterVT - Returns the ValueType of the physical register /// definition of the specified node. /// FIXME: Move to SelectionDAG? static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, const TargetInstrInfo *TII) { const TargetInstrDesc &TID = TII->get(N->getMachineOpcode()); assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!"); unsigned NumRes = TID.getNumDefs(); for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) { if (Reg == *ImpDef) break; ++NumRes; } return N->getValueType(NumRes); } /// CheckForLiveRegDef - Return true and update live register vector if the /// specified register def of the specified SUnit clobbers any "live" registers. static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, std::vector &LiveRegDefs, SmallSet &RegAdded, SmallVector &LRegs, const TargetRegisterInfo *TRI) { bool Added = false; if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != SU) { if (RegAdded.insert(Reg)) { LRegs.push_back(Reg); Added = true; } } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) { if (RegAdded.insert(*Alias)) { LRegs.push_back(*Alias); Added = true; } } return Added; } /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay /// scheduling of the given node to satisfy live physical register dependencies. /// If the specific node is the last one that's available to schedule, do /// whatever is necessary (i.e. backtracking or cloning) to make it possible. bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, SmallVector &LRegs){ if (NumLiveRegs == 0) return false; SmallSet RegAdded; // If this node would clobber any "live" register, then it's not ready. for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->isAssignedRegDep()) { CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs, RegAdded, LRegs, TRI); } } for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { if (Node->getOpcode() == ISD::INLINEASM) { // Inline asm can clobber physical defs. unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) --NumOps; // Ignore the glue operand. for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { unsigned Flags = cast(Node->getOperand(i))->getZExtValue(); unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); ++i; // Skip the ID value. if (InlineAsm::isRegDefKind(Flags) || InlineAsm::isRegDefEarlyClobberKind(Flags)) { // Check for def of register or earlyclobber register. for (; NumVals; --NumVals, ++i) { unsigned Reg = cast(Node->getOperand(i))->getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); } } else i += NumVals; } continue; } if (!Node->isMachineOpcode()) continue; const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode()); if (!TID.ImplicitDefs) continue; for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) { CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); } } return !LRegs.empty(); } /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up /// schedulers. void ScheduleDAGFast::ListScheduleBottomUp() { unsigned CurCycle = 0; // Release any predecessors of the special Exit node. ReleasePredecessors(&ExitSU, CurCycle); // Add root to Available queue. if (!SUnits.empty()) { SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); RootSU->isAvailable = true; AvailableQueue.push(RootSU); } // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. SmallVector NotReady; DenseMap > LRegsMap; Sequence.reserve(SUnits.size()); while (!AvailableQueue.empty()) { bool Delayed = false; LRegsMap.clear(); SUnit *CurSU = AvailableQueue.pop(); while (CurSU) { SmallVector LRegs; if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) break; Delayed = true; LRegsMap.insert(std::make_pair(CurSU, LRegs)); CurSU->isPending = true; // This SU is not in AvailableQueue right now. NotReady.push_back(CurSU); CurSU = AvailableQueue.pop(); } // All candidates are delayed due to live physical reg dependencies. // Try code duplication or inserting cross class copies // to resolve it. if (Delayed && !CurSU) { if (!CurSU) { // Try duplicating the nodes that produces these // "expensive to copy" values to break the dependency. In case even // that doesn't work, insert cross class copies. SUnit *TrySU = NotReady[0]; SmallVector &LRegs = LRegsMap[TrySU]; assert(LRegs.size() == 1 && "Can't handle this yet!"); unsigned Reg = LRegs[0]; SUnit *LRDef = LiveRegDefs[Reg]; EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); // If cross copy register class is the same as RC, then it must be // possible copy the value directly. Do not try duplicate the def. // If cross copy register class is not the same as RC, then it's // possible to copy the value but it require cross register class copies // and it is expensive. // If cross copy register class is null, then it's not possible to copy // the value at all. SUnit *NewDef = 0; if (DestRC != RC) { NewDef = CopyAndMoveSuccessors(LRDef); if (!DestRC && !NewDef) report_fatal_error("Can't handle live physical " "register dependency!"); } if (!NewDef) { // Issue copies, these can be expensive cross register class copies. SmallVector Copies; InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum << " to SU #" << Copies.front()->NodeNum << "\n"); AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); NewDef = Copies.back(); } DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum << " to SU #" << TrySU->NodeNum << "\n"); LiveRegDefs[Reg] = NewDef; AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); TrySU->isAvailable = false; CurSU = NewDef; } if (!CurSU) { llvm_unreachable("Unable to resolve live physical register dependencies!"); } } // Add the nodes that aren't ready back onto the available list. for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { NotReady[i]->isPending = false; // May no longer be available due to backtracking. if (NotReady[i]->isAvailable) AvailableQueue.push(NotReady[i]); } NotReady.clear(); if (CurSU) ScheduleNodeBottomUp(CurSU, CurCycle); ++CurCycle; } // Reverse the order since it is bottom up. std::reverse(Sequence.begin(), Sequence.end()); #ifndef NDEBUG VerifySchedule(/*isBottomUp=*/true); #endif } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// llvm::ScheduleDAGSDNodes * llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { return new ScheduleDAGFast(*IS->MF); }