//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=// // // This file implements the bison parser for LLVM assembly languages files. // //===------------------------------------------------------------------------=// %{ #include "ParserInternals.h" #include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/GlobalVariable.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/Argument.h" #include "Support/STLExtras.h" #include "Support/DepthFirstIterator.h" #include #include // Get definition of pair class #include #include using std::list; using std::vector; using std::pair; using std::map; using std::pair; using std::make_pair; using std::cerr; using std::string; int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit int yylex(); // declaration" of xxx warnings. int yyparse(); static Module *ParserResult; string CurFilename; // DEBUG_UPREFS - Define this symbol if you want to enable debugging output // relating to upreferences in the input stream. // //#define DEBUG_UPREFS 1 #ifdef DEBUG_UPREFS #define UR_OUT(X) cerr << X #else #define UR_OUT(X) #endif // This contains info used when building the body of a method. It is destroyed // when the method is completed. // typedef vector ValueList; // Numbered defs static void ResolveDefinitions(vector &LateResolvers, vector *FutureLateResolvers = 0); static struct PerModuleInfo { Module *CurrentModule; vector Values; // Module level numbered definitions vector LateResolveValues; vector Types; map LateResolveTypes; // GlobalRefs - This maintains a mapping between 's and forward // references to global values. Global values may be referenced before they // are defined, and if so, the temporary object that they represent is held // here. This is used for forward references of ConstantPointerRefs. // typedef map, GlobalVariable*> GlobalRefsType; GlobalRefsType GlobalRefs; void ModuleDone() { // If we could not resolve some methods at method compilation time (calls to // methods before they are defined), resolve them now... Types are resolved // when the constant pool has been completely parsed. // ResolveDefinitions(LateResolveValues); // Check to make sure that all global value forward references have been // resolved! // if (!GlobalRefs.empty()) { string UndefinedReferences = "Unresolved global references exist:\n"; for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); I != E; ++I) { UndefinedReferences += " " + I->first.first->getDescription() + " " + I->first.second.getName() + "\n"; } ThrowException(UndefinedReferences); } Values.clear(); // Clear out method local definitions Types.clear(); CurrentModule = 0; } // DeclareNewGlobalValue - Called every type a new GV has been defined. This // is used to remove things from the forward declaration map, resolving them // to the correct thing as needed. // void DeclareNewGlobalValue(GlobalValue *GV, ValID D) { // Check to see if there is a forward reference to this global variable... // if there is, eliminate it and patch the reference to use the new def'n. GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D)); if (I != GlobalRefs.end()) { GlobalVariable *OldGV = I->second; // Get the placeholder... I->first.second.destroy(); // Free string memory if neccesary // Loop over all of the uses of the GlobalValue. The only thing they are // allowed to be at this point is ConstantPointerRef's. assert(OldGV->use_size() == 1 && "Only one reference should exist!"); while (!OldGV->use_empty()) { User *U = OldGV->use_back(); // Must be a ConstantPointerRef... ConstantPointerRef *CPPR = cast(U); assert(CPPR->getValue() == OldGV && "Something isn't happy"); // Change the const pool reference to point to the real global variable // now. This should drop a use from the OldGV. CPPR->mutateReference(GV); } // Remove GV from the module... CurrentModule->getGlobalList().remove(OldGV); delete OldGV; // Delete the old placeholder // Remove the map entry for the global now that it has been created... GlobalRefs.erase(I); } } } CurModule; static struct PerFunctionInfo { Function *CurrentFunction; // Pointer to current method being created vector Values; // Keep track of numbered definitions vector LateResolveValues; vector Types; map LateResolveTypes; bool isDeclare; // Is this method a forward declararation? inline PerFunctionInfo() { CurrentFunction = 0; isDeclare = false; } inline ~PerFunctionInfo() {} inline void FunctionStart(Function *M) { CurrentFunction = M; } void FunctionDone() { // If we could not resolve some blocks at parsing time (forward branches) // resolve the branches now... ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); Values.clear(); // Clear out method local definitions Types.clear(); CurrentFunction = 0; isDeclare = false; } } CurMeth; // Info for the current method... static bool inFunctionScope() { return CurMeth.CurrentFunction != 0; } //===----------------------------------------------------------------------===// // Code to handle definitions of all the types //===----------------------------------------------------------------------===// static int InsertValue(Value *D, vector &ValueTab = CurMeth.Values) { if (D->hasName()) return -1; // Is this a numbered definition? // Yes, insert the value into the value table... unsigned type = D->getType()->getUniqueID(); if (ValueTab.size() <= type) ValueTab.resize(type+1, ValueList()); //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D); ValueTab[type].push_back(D); return ValueTab[type].size()-1; } // TODO: FIXME when Type are not const static void InsertType(const Type *Ty, vector &Types) { Types.push_back(Ty); } static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) { switch (D.Type) { case 0: { // Is it a numbered definition? unsigned Num = (unsigned)D.Num; // Module constants occupy the lowest numbered slots... if (Num < CurModule.Types.size()) return CurModule.Types[Num]; Num -= CurModule.Types.size(); // Check that the number is within bounds... if (Num <= CurMeth.Types.size()) return CurMeth.Types[Num]; break; } case 1: { // Is it a named definition? string Name(D.Name); SymbolTable *SymTab = 0; if (inFunctionScope()) SymTab = CurMeth.CurrentFunction->getSymbolTable(); Value *N = SymTab ? SymTab->lookup(Type::TypeTy, Name) : 0; if (N == 0) { // Symbol table doesn't automatically chain yet... because the method // hasn't been added to the module... // SymTab = CurModule.CurrentModule->getSymbolTable(); if (SymTab) N = SymTab->lookup(Type::TypeTy, Name); if (N == 0) break; } D.destroy(); // Free old strdup'd memory... return cast(N); } default: ThrowException("Invalid symbol type reference!"); } // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // if (DoNotImprovise) return 0; // Do we just want a null to be returned? map &LateResolver = inFunctionScope() ? CurMeth.LateResolveTypes : CurModule.LateResolveTypes; map::iterator I = LateResolver.find(D); if (I != LateResolver.end()) { return I->second; } Type *Typ = OpaqueType::get(); LateResolver.insert(make_pair(D, Typ)); return Typ; } static Value *lookupInSymbolTable(const Type *Ty, const string &Name) { SymbolTable *SymTab = inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTable() : 0; return SymTab ? SymTab->lookup(Ty, Name) : 0; } // getValNonImprovising - Look up the value specified by the provided type and // the provided ValID. If the value exists and has already been defined, return // it. Otherwise return null. // static Value *getValNonImprovising(const Type *Ty, const ValID &D) { if (isa(Ty)) ThrowException("Functions are not values and " "must be referenced as pointers"); switch (D.Type) { case ValID::NumberVal: { // Is it a numbered definition? unsigned type = Ty->getUniqueID(); unsigned Num = (unsigned)D.Num; // Module constants occupy the lowest numbered slots... if (type < CurModule.Values.size()) { if (Num < CurModule.Values[type].size()) return CurModule.Values[type][Num]; Num -= CurModule.Values[type].size(); } // Make sure that our type is within bounds if (CurMeth.Values.size() <= type) return 0; // Check that the number is within bounds... if (CurMeth.Values[type].size() <= Num) return 0; return CurMeth.Values[type][Num]; } case ValID::NameVal: { // Is it a named definition? Value *N = lookupInSymbolTable(Ty, string(D.Name)); if (N == 0) return 0; D.destroy(); // Free old strdup'd memory... return N; } // Check to make sure that "Ty" is an integral type, and that our // value will fit into the specified type... case ValID::ConstSIntVal: // Is it a constant pool reference?? if (Ty == Type::BoolTy) { // Special handling for boolean data return ConstantBool::get(D.ConstPool64 != 0); } else { if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) ThrowException("Symbolic constant pool value '" + itostr(D.ConstPool64) + "' is invalid for type '" + Ty->getDescription() + "'!"); return ConstantSInt::get(Ty, D.ConstPool64); } case ValID::ConstUIntVal: // Is it an unsigned const pool reference? if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) { if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) { ThrowException("Integral constant pool reference is invalid!"); } else { // This is really a signed reference. Transmogrify. return ConstantSInt::get(Ty, D.ConstPool64); } } else { return ConstantUInt::get(Ty, D.UConstPool64); } case ValID::ConstFPVal: // Is it a floating point const pool reference? if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP)) ThrowException("FP constant invalid for type!!"); return ConstantFP::get(Ty, D.ConstPoolFP); case ValID::ConstNullVal: // Is it a null value? if (!Ty->isPointerType()) ThrowException("Cannot create a a non pointer null!"); return ConstantPointerNull::get(cast(Ty)); default: assert(0 && "Unhandled case!"); return 0; } // End of switch assert(0 && "Unhandled case!"); return 0; } // getVal - This function is identical to getValNonImprovising, except that if a // value is not already defined, it "improvises" by creating a placeholder var // that looks and acts just like the requested variable. When the value is // defined later, all uses of the placeholder variable are replaced with the // real thing. // static Value *getVal(const Type *Ty, const ValID &D) { assert(Ty != Type::TypeTy && "Should use getTypeVal for types!"); // See if the value has already been defined... Value *V = getValNonImprovising(Ty, D); if (V) return V; // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // Value *d = 0; switch (Ty->getPrimitiveID()) { case Type::LabelTyID: d = new BBPlaceHolder(Ty, D); break; default: d = new ValuePlaceHolder(Ty, D); break; } assert(d != 0 && "How did we not make something?"); if (inFunctionScope()) InsertValue(d, CurMeth.LateResolveValues); else InsertValue(d, CurModule.LateResolveValues); return d; } //===----------------------------------------------------------------------===// // Code to handle forward references in instructions //===----------------------------------------------------------------------===// // // This code handles the late binding needed with statements that reference // values not defined yet... for example, a forward branch, or the PHI node for // a loop body. // // This keeps a table (CurMeth.LateResolveValues) of all such forward references // and back patchs after we are done. // // ResolveDefinitions - If we could not resolve some defs at parsing // time (forward branches, phi functions for loops, etc...) resolve the // defs now... // static void ResolveDefinitions(vector &LateResolvers, vector *FutureLateResolvers = 0) { // Loop over LateResolveDefs fixing up stuff that couldn't be resolved for (unsigned ty = 0; ty < LateResolvers.size(); ty++) { while (!LateResolvers[ty].empty()) { Value *V = LateResolvers[ty].back(); assert(!isa(V) && "Types should be in LateResolveTypes!"); LateResolvers[ty].pop_back(); ValID &DID = getValIDFromPlaceHolder(V); Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID); if (TheRealValue) { V->replaceAllUsesWith(TheRealValue); delete V; } else if (FutureLateResolvers) { // Functions have their unresolved items forwarded to the module late // resolver table InsertValue(V, *FutureLateResolvers); } else { if (DID.Type == 1) ThrowException("Reference to an invalid definition: '" +DID.getName()+ "' of type '" + V->getType()->getDescription() + "'", getLineNumFromPlaceHolder(V)); else ThrowException("Reference to an invalid definition: #" + itostr(DID.Num) + " of type '" + V->getType()->getDescription() + "'", getLineNumFromPlaceHolder(V)); } } } LateResolvers.clear(); } // ResolveTypeTo - A brand new type was just declared. This means that (if // name is not null) things referencing Name can be resolved. Otherwise, things // refering to the number can be resolved. Do this now. // static void ResolveTypeTo(char *Name, const Type *ToTy) { vector &Types = inFunctionScope() ? CurMeth.Types : CurModule.Types; ValID D; if (Name) D = ValID::create(Name); else D = ValID::create((int)Types.size()); map &LateResolver = inFunctionScope() ? CurMeth.LateResolveTypes : CurModule.LateResolveTypes; map::iterator I = LateResolver.find(D); if (I != LateResolver.end()) { cast(I->second.get())->refineAbstractTypeTo(ToTy); LateResolver.erase(I); } } // ResolveTypes - At this point, all types should be resolved. Any that aren't // are errors. // static void ResolveTypes(map &LateResolveTypes) { if (!LateResolveTypes.empty()) { const ValID &DID = LateResolveTypes.begin()->first; if (DID.Type == ValID::NameVal) ThrowException("Reference to an invalid type: '" +DID.getName() + "'"); else ThrowException("Reference to an invalid type: #" + itostr(DID.Num)); } } // setValueName - Set the specified value to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is freed by this function. // // This function returns true if the value has already been defined, but is // allowed to be redefined in the specified context. If the name is a new name // for the typeplane, false is returned. // static bool setValueName(Value *V, char *NameStr) { if (NameStr == 0) return false; string Name(NameStr); // Copy string free(NameStr); // Free old string if (V->getType() == Type::VoidTy) ThrowException("Can't assign name '" + Name + "' to a null valued instruction!"); SymbolTable *ST = inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTableSure() : CurModule.CurrentModule->getSymbolTableSure(); Value *Existing = ST->lookup(V->getType(), Name); if (Existing) { // Inserting a name that is already defined??? // There is only one case where this is allowed: when we are refining an // opaque type. In this case, Existing will be an opaque type. if (const Type *Ty = dyn_cast(Existing)) { if (OpaqueType *OpTy = dyn_cast(Ty)) { // We ARE replacing an opaque type! OpTy->refineAbstractTypeTo(cast(V)); return true; } } // Otherwise, we are a simple redefinition of a value, check to see if it // is defined the same as the old one... if (const Type *Ty = dyn_cast(Existing)) { if (Ty == cast(V)) return true; // Yes, it's equal. // cerr << "Type: " << Ty->getDescription() << " != " // << cast(V)->getDescription() << "!\n"; } else if (GlobalVariable *EGV = dyn_cast(Existing)) { // We are allowed to redefine a global variable in two circumstances: // 1. If at least one of the globals is uninitialized or // 2. If both initializers have the same value. // // This can only be done if the const'ness of the vars is the same. // if (GlobalVariable *GV = dyn_cast(V)) { if (EGV->isConstant() == GV->isConstant() && (!EGV->hasInitializer() || !GV->hasInitializer() || EGV->getInitializer() == GV->getInitializer())) { // Make sure the existing global version gets the initializer! if (GV->hasInitializer() && !EGV->hasInitializer()) EGV->setInitializer(GV->getInitializer()); delete GV; // Destroy the duplicate! return true; // They are equivalent! } } } ThrowException("Redefinition of value named '" + Name + "' in the '" + V->getType()->getDescription() + "' type plane!"); } V->setName(Name, ST); return false; } //===----------------------------------------------------------------------===// // Code for handling upreferences in type names... // // TypeContains - Returns true if Ty contains E in it. // static bool TypeContains(const Type *Ty, const Type *E) { return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty); } static vector > UpRefs; static PATypeHolder HandleUpRefs(const Type *ty) { PATypeHolder Ty(ty); UR_OUT("Type '" << ty->getDescription() << "' newly formed. Resolving upreferences.\n" << UpRefs.size() << " upreferences active!\n"); for (unsigned i = 0; i < UpRefs.size(); ) { UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " << UpRefs[i].second->getDescription() << ") = " << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl); if (TypeContains(Ty, UpRefs[i].second)) { unsigned Level = --UpRefs[i].first; // Decrement level of upreference UR_OUT(" Uplevel Ref Level = " << Level << endl); if (Level == 0) { // Upreference should be resolved! UR_OUT(" * Resolving upreference for " << UpRefs[i].second->getDescription() << endl; string OldName = UpRefs[i].second->getDescription()); UpRefs[i].second->refineAbstractTypeTo(Ty); UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... UR_OUT(" * Type '" << OldName << "' refined upreference to: " << (const void*)Ty << ", " << Ty->getDescription() << endl); continue; } } ++i; // Otherwise, no resolve, move on... } // FIXME: TODO: this should return the updated type return Ty; } //===----------------------------------------------------------------------===// // RunVMAsmParser - Define an interface to this parser //===----------------------------------------------------------------------===// // Module *RunVMAsmParser(const string &Filename, FILE *F) { llvmAsmin = F; CurFilename = Filename; llvmAsmlineno = 1; // Reset the current line number... CurModule.CurrentModule = new Module(); // Allocate a new module to read yyparse(); // Parse the file. Module *Result = ParserResult; llvmAsmin = stdin; // F is about to go away, don't use it anymore... ParserResult = 0; return Result; } %} %union { Module *ModuleVal; Function *FunctionVal; std::pair *ArgVal; BasicBlock *BasicBlockVal; TerminatorInst *TermInstVal; Instruction *InstVal; Constant *ConstVal; const Type *PrimType; PATypeHolder *TypeVal; Value *ValueVal; std::list > *ArgList; std::vector *ValueList; std::list *TypeList; std::list > *PHIList; // Represent the RHS of PHI node std::vector > *JumpTable; std::vector *ConstVector; int64_t SInt64Val; uint64_t UInt64Val; int SIntVal; unsigned UIntVal; double FPVal; bool BoolVal; char *StrVal; // This memory is strdup'd! ValID ValIDVal; // strdup'd memory maybe! Instruction::UnaryOps UnaryOpVal; Instruction::BinaryOps BinaryOpVal; Instruction::TermOps TermOpVal; Instruction::MemoryOps MemOpVal; Instruction::OtherOps OtherOpVal; } %type Module FunctionList %type Function FunctionProto FunctionHeader BasicBlockList %type BasicBlock InstructionList %type BBTerminatorInst %type Inst InstVal MemoryInst %type ConstVal %type ConstVector %type ArgList ArgListH %type ArgVal %type PHIList %type ValueRefList ValueRefListE // For call param lists %type IndexList // For GEP derived indices %type TypeListI ArgTypeListI %type JumpTable %type GlobalType OptInternal // GLOBAL or CONSTANT? Intern? // ValueRef - Unresolved reference to a definition or BB %type ValueRef ConstValueRef SymbolicValueRef %type ResolvedVal // pair // Tokens and types for handling constant integer values // // ESINT64VAL - A negative number within long long range %token ESINT64VAL // EUINT64VAL - A positive number within uns. long long range %token EUINT64VAL %type EINT64VAL %token SINTVAL // Signed 32 bit ints... %token UINTVAL // Unsigned 32 bit ints... %type INTVAL %token FPVAL // Float or Double constant // Built in types... %type Types TypesV UpRTypes UpRTypesV %type SIntType UIntType IntType FPType PrimType // Classifications %token VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG %token FLOAT DOUBLE TYPE LABEL %token VAR_ID LABELSTR STRINGCONSTANT %type OptVAR_ID OptAssign %token IMPLEMENTATION TRUE FALSE BEGINTOK END DECLARE GLOBAL CONSTANT UNINIT %token TO EXCEPT DOTDOTDOT STRING NULL_TOK CONST INTERNAL OPAQUE // Basic Block Terminating Operators %token RET BR SWITCH // Unary Operators %type UnaryOps // all the unary operators %token NOT // Binary Operators %type BinaryOps // all the binary operators %token ADD SUB MUL DIV REM AND OR XOR %token SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators // Memory Instructions %token MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR // Other Operators %type ShiftOps %token PHI CALL INVOKE CAST SHL SHR %start Module %% // Handle constant integer size restriction and conversion... // INTVAL : SINTVAL INTVAL : UINTVAL { if ($1 > (uint32_t)INT32_MAX) // Outside of my range! ThrowException("Value too large for type!"); $$ = (int32_t)$1; } EINT64VAL : ESINT64VAL // These have same type and can't cause problems... EINT64VAL : EUINT64VAL { if ($1 > (uint64_t)INT64_MAX) // Outside of my range! ThrowException("Value too large for type!"); $$ = (int64_t)$1; } // Operations that are notably excluded from this list include: // RET, BR, & SWITCH because they end basic blocks and are treated specially. // UnaryOps : NOT BinaryOps : ADD | SUB | MUL | DIV | REM | AND | OR | XOR BinaryOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE ShiftOps : SHL | SHR // These are some types that allow classification if we only want a particular // thing... for example, only a signed, unsigned, or integral type. SIntType : LONG | INT | SHORT | SBYTE UIntType : ULONG | UINT | USHORT | UBYTE IntType : SIntType | UIntType FPType : FLOAT | DOUBLE // OptAssign - Value producing statements have an optional assignment component OptAssign : VAR_ID '=' { $$ = $1; } | /*empty*/ { $$ = 0; } OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; } //===----------------------------------------------------------------------===// // Types includes all predefined types... except void, because it can only be // used in specific contexts (method returning void for example). To have // access to it, a user must explicitly use TypesV. // // TypesV includes all of 'Types', but it also includes the void type. TypesV : Types | VOID { $$ = new PATypeHolder($1); } UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); } Types : UpRTypes { if (UpRefs.size()) ThrowException("Invalid upreference in type: " + (*$1)->getDescription()); $$ = $1; } // Derived types are added later... // PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL UpRTypes : OPAQUE { $$ = new PATypeHolder(OpaqueType::get()); } | PrimType { $$ = new PATypeHolder($1); } UpRTypes : ValueRef { // Named types are also simple types... $$ = new PATypeHolder(getTypeVal($1)); } // Include derived types in the Types production. // UpRTypes : '\\' EUINT64VAL { // Type UpReference if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!"); OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder UpRefs.push_back(make_pair((unsigned)$2, OT)); // Add to vector... $$ = new PATypeHolder(OT); UR_OUT("New Upreference!\n"); } | UpRTypesV '(' ArgTypeListI ')' { // Function derived type? vector Params; mapto($3->begin(), $3->end(), std::back_inserter(Params), std::mem_fun_ref(&PATypeHandle::get)); bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg))); delete $3; // Delete the argument list delete $1; // Delete the old type handle } | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type? $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2))); delete $4; } | '{' TypeListI '}' { // Structure type? vector Elements; mapto($2->begin(), $2->end(), std::back_inserter(Elements), std::mem_fun_ref(&PATypeHandle::get)); $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements))); delete $2; } | '{' '}' { // Empty structure type? $$ = new PATypeHolder(StructType::get(vector())); } | UpRTypes '*' { // Pointer type? $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1))); delete $1; } // TypeList - Used for struct declarations and as a basis for method type // declaration type lists // TypeListI : UpRTypes { $$ = new list(); $$->push_back(*$1); delete $1; } | TypeListI ',' UpRTypes { ($$=$1)->push_back(*$3); delete $3; } // ArgTypeList - List of types for a method type declaration... ArgTypeListI : TypeListI | TypeListI ',' DOTDOTDOT { ($$=$1)->push_back(Type::VoidTy); } | DOTDOTDOT { ($$ = new list())->push_back(Type::VoidTy); } | /*empty*/ { $$ = new list(); } // ConstVal - The various declarations that go into the constant pool. This // includes all forward declarations of types, constants, and functions. // ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) ThrowException("Cannot make array constant with type: '" + (*$1)->getDescription() + "'!"); const Type *ETy = ATy->getElementType(); int NumElements = ATy->getNumElements(); // Verify that we have the correct size... if (NumElements != -1 && NumElements != (int)$3->size()) ThrowException("Type mismatch: constant sized array initialized with " + utostr($3->size()) + " arguments, but has size of " + itostr(NumElements) + "!"); // Verify all elements are correct type! for (unsigned i = 0; i < $3->size(); i++) { if (ETy != (*$3)[i]->getType()) ThrowException("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '"+ (*$3)[i]->getType()->getDescription() + "'."); } $$ = ConstantArray::get(ATy, *$3); delete $1; delete $3; } | Types '[' ']' { const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) ThrowException("Cannot make array constant with type: '" + (*$1)->getDescription() + "'!"); int NumElements = ATy->getNumElements(); if (NumElements != -1 && NumElements != 0) ThrowException("Type mismatch: constant sized array initialized with 0" " arguments, but has size of " + itostr(NumElements) +"!"); $$ = ConstantArray::get(ATy, vector()); delete $1; } | Types 'c' STRINGCONSTANT { const ArrayType *ATy = dyn_cast($1->get()); if (ATy == 0) ThrowException("Cannot make array constant with type: '" + (*$1)->getDescription() + "'!"); int NumElements = ATy->getNumElements(); const Type *ETy = ATy->getElementType(); char *EndStr = UnEscapeLexed($3, true); if (NumElements != -1 && NumElements != (EndStr-$3)) ThrowException("Can't build string constant of size " + itostr((int)(EndStr-$3)) + " when array has size " + itostr(NumElements) + "!"); vector Vals; if (ETy == Type::SByteTy) { for (char *C = $3; C != EndStr; ++C) Vals.push_back(ConstantSInt::get(ETy, *C)); } else if (ETy == Type::UByteTy) { for (char *C = $3; C != EndStr; ++C) Vals.push_back(ConstantUInt::get(ETy, *C)); } else { free($3); ThrowException("Cannot build string arrays of non byte sized elements!"); } free($3); $$ = ConstantArray::get(ATy, Vals); delete $1; } | Types '{' ConstVector '}' { const StructType *STy = dyn_cast($1->get()); if (STy == 0) ThrowException("Cannot make struct constant with type: '" + (*$1)->getDescription() + "'!"); // FIXME: TODO: Check to see that the constants are compatible with the type // initializer! $$ = ConstantStruct::get(STy, *$3); delete $1; delete $3; } | Types NULL_TOK { const PointerType *PTy = dyn_cast($1->get()); if (PTy == 0) ThrowException("Cannot make null pointer constant with type: '" + (*$1)->getDescription() + "'!"); $$ = ConstantPointerNull::get(PTy); delete $1; } | Types SymbolicValueRef { const PointerType *Ty = dyn_cast($1->get()); if (Ty == 0) ThrowException("Global const reference must be a pointer type!"); Value *V = getValNonImprovising(Ty, $2); // If this is an initializer for a constant pointer, which is referencing a // (currently) undefined variable, create a stub now that shall be replaced // in the future with the right type of variable. // if (V == 0) { assert(isa(Ty) && "Globals may only be used as pointers!"); const PointerType *PT = cast(Ty); // First check to see if the forward references value is already created! PerModuleInfo::GlobalRefsType::iterator I = CurModule.GlobalRefs.find(make_pair(PT, $2)); if (I != CurModule.GlobalRefs.end()) { V = I->second; // Placeholder already exists, use it... } else { // TODO: Include line number info by creating a subclass of // TODO: GlobalVariable here that includes the said information! // Create a placeholder for the global variable reference... GlobalVariable *GV = new GlobalVariable(PT->getElementType(), false, true); // Keep track of the fact that we have a forward ref to recycle it CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV)); // Must temporarily push this value into the module table... CurModule.CurrentModule->getGlobalList().push_back(GV); V = GV; } } GlobalValue *GV = cast(V); $$ = ConstantPointerRef::get(GV); delete $1; // Free the type handle } ConstVal : SIntType EINT64VAL { // integral constants if (!ConstantSInt::isValueValidForType($1, $2)) ThrowException("Constant value doesn't fit in type!"); $$ = ConstantSInt::get($1, $2); } | UIntType EUINT64VAL { // integral constants if (!ConstantUInt::isValueValidForType($1, $2)) ThrowException("Constant value doesn't fit in type!"); $$ = ConstantUInt::get($1, $2); } | BOOL TRUE { // Boolean constants $$ = ConstantBool::True; } | BOOL FALSE { // Boolean constants $$ = ConstantBool::False; } | FPType FPVAL { // Float & Double constants $$ = ConstantFP::get($1, $2); } // ConstVector - A list of comma seperated constants. ConstVector : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); } | ConstVal { $$ = new vector(); $$->push_back($1); } // GlobalType - Match either GLOBAL or CONSTANT for global declarations... GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; } // ConstPool - Constants with optional names assigned to them. ConstPool : ConstPool OptAssign CONST ConstVal { if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); } InsertValue($4); } | ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool // Eagerly resolve types. This is not an optimization, this is a // requirement that is due to the fact that we could have this: // // %list = type { %list * } // %list = type { %list * } ; repeated type decl // // If types are not resolved eagerly, then the two types will not be // determined to be the same type! // ResolveTypeTo($2, $4->get()); // TODO: FIXME when Type are not const if (!setValueName(const_cast($4->get()), $2)) { // If this is not a redefinition of a type... if (!$2) { InsertType($4->get(), inFunctionScope() ? CurMeth.Types : CurModule.Types); } } delete $4; } | ConstPool FunctionProto { // Function prototypes can be in const pool } | ConstPool OptAssign OptInternal GlobalType ConstVal { const Type *Ty = $5->getType(); // Global declarations appear in Constant Pool Constant *Initializer = $5; if (Initializer == 0) ThrowException("Global value initializer is not a constant!"); GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer); if (!setValueName(GV, $2)) { // If not redefining... CurModule.CurrentModule->getGlobalList().push_back(GV); int Slot = InsertValue(GV, CurModule.Values); if (Slot != -1) { CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); } else { CurModule.DeclareNewGlobalValue(GV, ValID::create( (char*)GV->getName().c_str())); } } } | ConstPool OptAssign OptInternal UNINIT GlobalType Types { const Type *Ty = *$6; // Global declarations appear in Constant Pool GlobalVariable *GV = new GlobalVariable(Ty, $5, $3); if (!setValueName(GV, $2)) { // If not redefining... CurModule.CurrentModule->getGlobalList().push_back(GV); int Slot = InsertValue(GV, CurModule.Values); if (Slot != -1) { CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot)); } else { assert(GV->hasName() && "Not named and not numbered!?"); CurModule.DeclareNewGlobalValue(GV, ValID::create( (char*)GV->getName().c_str())); } } delete $6; } | /* empty: end of list */ { } //===----------------------------------------------------------------------===// // Rules to match Modules //===----------------------------------------------------------------------===// // Module rule: Capture the result of parsing the whole file into a result // variable... // Module : FunctionList { $$ = ParserResult = $1; CurModule.ModuleDone(); } // FunctionList - A list of methods, preceeded by a constant pool. // FunctionList : FunctionList Function { $$ = $1; assert($2->getParent() == 0 && "Function already in module!"); $1->getFunctionList().push_back($2); CurMeth.FunctionDone(); } | FunctionList FunctionProto { $$ = $1; } | ConstPool IMPLEMENTATION { $$ = CurModule.CurrentModule; // Resolve circular types before we parse the body of the module ResolveTypes(CurModule.LateResolveTypes); } //===----------------------------------------------------------------------===// // Rules to match Function Headers //===----------------------------------------------------------------------===// OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; } ArgVal : Types OptVAR_ID { $$ = new pair(new Argument(*$1), $2); delete $1; // Delete the type handle.. } ArgListH : ArgVal ',' ArgListH { $$ = $3; $3->push_front(*$1); delete $1; } | ArgVal { $$ = new list >(); $$->push_front(*$1); delete $1; } | DOTDOTDOT { $$ = new list >(); $$->push_front(pair(new Argument(Type::VoidTy), 0)); } ArgList : ArgListH { $$ = $1; } | /* empty */ { $$ = 0; } FunctionHeaderH : OptInternal TypesV STRINGCONSTANT '(' ArgList ')' { UnEscapeLexed($3); string FunctionName($3); vector ParamTypeList; if ($5) for (list >::iterator I = $5->begin(); I != $5->end(); ++I) ParamTypeList.push_back(I->first->getType()); bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy; if (isVarArg) ParamTypeList.pop_back(); const FunctionType *MT = FunctionType::get(*$2, ParamTypeList, isVarArg); const PointerType *PMT = PointerType::get(MT); delete $2; Function *M = 0; if (SymbolTable *ST = CurModule.CurrentModule->getSymbolTable()) { // Is the function already in symtab? if (Value *V = ST->lookup(PMT, FunctionName)) { M = cast(V); // Yes it is. If this is the case, either we need to be a forward decl, // or it needs to be. if (!CurMeth.isDeclare && !M->isExternal()) ThrowException("Redefinition of method '" + FunctionName + "'!"); // If we found a preexisting method prototype, remove it from the module, // so that we don't get spurious conflicts with global & local variables. // CurModule.CurrentModule->getFunctionList().remove(M); } } if (M == 0) { // Not already defined? M = new Function(MT, $1, FunctionName); InsertValue(M, CurModule.Values); CurModule.DeclareNewGlobalValue(M, ValID::create($3)); } free($3); // Free strdup'd memory! CurMeth.FunctionStart(M); // Add all of the arguments we parsed to the method... if ($5 && !CurMeth.isDeclare) { // Is null if empty... Function::ArgumentListType &ArgList = M->getArgumentList(); for (list >::iterator I = $5->begin(); I != $5->end(); ++I) { if (setValueName(I->first, I->second)) { // Insert into symtab... assert(0 && "No arg redef allowed!"); } InsertValue(I->first); ArgList.push_back(I->first); } delete $5; // We're now done with the argument list } else if ($5) { // If we are a declaration, we should free the memory for the argument list! for (list >::iterator I = $5->begin(), E = $5->end(); I != E; ++I) { if (I->second) free(I->second); // Free the memory for the name... delete I->first; // Free the unused function argument } delete $5; // Free the memory for the list itself } } FunctionHeader : FunctionHeaderH ConstPool BEGINTOK { $$ = CurMeth.CurrentFunction; // Resolve circular types before we parse the body of the method. ResolveTypes(CurMeth.LateResolveTypes); } Function : BasicBlockList END { $$ = $1; } FunctionProto : DECLARE { CurMeth.isDeclare = true; } FunctionHeaderH { $$ = CurMeth.CurrentFunction; assert($$->getParent() == 0 && "Function already in module!"); CurModule.CurrentModule->getFunctionList().push_back($$); CurMeth.FunctionDone(); } //===----------------------------------------------------------------------===// // Rules to match Basic Blocks //===----------------------------------------------------------------------===// ConstValueRef : ESINT64VAL { // A reference to a direct constant $$ = ValID::create($1); } | EUINT64VAL { $$ = ValID::create($1); } | FPVAL { // Perhaps it's an FP constant? $$ = ValID::create($1); } | TRUE { $$ = ValID::create((int64_t)1); } | FALSE { $$ = ValID::create((int64_t)0); } | NULL_TOK { $$ = ValID::createNull(); } /* | STRINGCONSTANT { // Quoted strings work too... especially for methods $$ = ValID::create_conststr($1); } */ // SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value. // SymbolicValueRef : INTVAL { // Is it an integer reference...? $$ = ValID::create($1); } | VAR_ID { // Is it a named reference...? $$ = ValID::create($1); } // ValueRef - A reference to a definition... either constant or symbolic ValueRef : SymbolicValueRef | ConstValueRef // ResolvedVal - a pair. This is used only in cases where the // type immediately preceeds the value reference, and allows complex constant // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') ResolvedVal : Types ValueRef { $$ = getVal(*$1, $2); delete $1; } BasicBlockList : BasicBlockList BasicBlock { ($$ = $1)->getBasicBlocks().push_back($2); } | FunctionHeader BasicBlock { // Do not allow methods with 0 basic blocks ($$ = $1)->getBasicBlocks().push_back($2); } // Basic blocks are terminated by branching instructions: // br, br/cc, switch, ret // BasicBlock : InstructionList OptAssign BBTerminatorInst { if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); } InsertValue($3); $1->getInstList().push_back($3); InsertValue($1); $$ = $1; } | LABELSTR InstructionList OptAssign BBTerminatorInst { if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); } InsertValue($4); $2->getInstList().push_back($4); if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); } InsertValue($2); $$ = $2; } InstructionList : InstructionList Inst { $1->getInstList().push_back($2); $$ = $1; } | /* empty */ { $$ = new BasicBlock(); } BBTerminatorInst : RET ResolvedVal { // Return with a result... $$ = new ReturnInst($2); } | RET VOID { // Return with no result... $$ = new ReturnInst(); } | BR LABEL ValueRef { // Unconditional Branch... $$ = new BranchInst(cast(getVal(Type::LabelTy, $3))); } // Conditional Branch... | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { $$ = new BranchInst(cast(getVal(Type::LabelTy, $6)), cast(getVal(Type::LabelTy, $9)), getVal(Type::BoolTy, $3)); } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { SwitchInst *S = new SwitchInst(getVal($2, $3), cast(getVal(Type::LabelTy, $6))); $$ = S; vector >::iterator I = $8->begin(), E = $8->end(); for (; I != E; ++I) S->dest_push_back(I->first, I->second); } | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal EXCEPT ResolvedVal { const PointerType *PMTy; const FunctionType *Ty; if (!(PMTy = dyn_cast($2->get())) || !(Ty = dyn_cast(PMTy->getElementType()))) { // Pull out the types of all of the arguments... vector ParamTypes; if ($5) { for (vector::iterator I = $5->begin(), E = $5->end(); I!=E; ++I) ParamTypes.push_back((*I)->getType()); } bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; if (isVarArg) ParamTypes.pop_back(); Ty = FunctionType::get($2->get(), ParamTypes, isVarArg); PMTy = PointerType::get(Ty); } delete $2; Value *V = getVal(PMTy, $3); // Get the method we're calling... BasicBlock *Normal = dyn_cast($8); BasicBlock *Except = dyn_cast($10); if (Normal == 0 || Except == 0) ThrowException("Invoke instruction without label destinations!"); // Create the call node... if (!$5) { // Has no arguments? $$ = new InvokeInst(V, Normal, Except, vector()); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! // FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin(); FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end(); vector::iterator ArgI = $5->begin(), ArgE = $5->end(); for (; ArgI != ArgE && I != E; ++ArgI, ++I) if ((*ArgI)->getType() != *I) ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + (*I)->getDescription() + "'!"); if (I != E || (ArgI != ArgE && !Ty->isVarArg())) ThrowException("Invalid number of parameters detected!"); $$ = new InvokeInst(V, Normal, Except, *$5); } delete $5; } JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { $$ = $1; Constant *V = cast(getValNonImprovising($2, $3)); if (V == 0) ThrowException("May only switch on a constant pool value!"); $$->push_back(make_pair(V, cast(getVal($5, $6)))); } | IntType ConstValueRef ',' LABEL ValueRef { $$ = new vector >(); Constant *V = cast(getValNonImprovising($1, $2)); if (V == 0) ThrowException("May only switch on a constant pool value!"); $$->push_back(make_pair(V, cast(getVal($4, $5)))); } Inst : OptAssign InstVal { // Is this definition named?? if so, assign the name... if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); } InsertValue($2); $$ = $2; } PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes $$ = new list >(); $$->push_back(make_pair(getVal(*$1, $3), cast(getVal(Type::LabelTy, $5)))); delete $1; } | PHIList ',' '[' ValueRef ',' ValueRef ']' { $$ = $1; $1->push_back(make_pair(getVal($1->front().first->getType(), $4), cast(getVal(Type::LabelTy, $6)))); } ValueRefList : ResolvedVal { // Used for call statements, and memory insts... $$ = new vector(); $$->push_back($1); } | ValueRefList ',' ResolvedVal { $$ = $1; $1->push_back($3); } // ValueRefListE - Just like ValueRefList, except that it may also be empty! ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; } InstVal : BinaryOps Types ValueRef ',' ValueRef { $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5)); if ($$ == 0) ThrowException("binary operator returned null!"); delete $2; } | UnaryOps ResolvedVal { $$ = UnaryOperator::create($1, $2); if ($$ == 0) ThrowException("unary operator returned null!"); } | ShiftOps ResolvedVal ',' ResolvedVal { if ($4->getType() != Type::UByteTy) ThrowException("Shift amount must be ubyte!"); $$ = new ShiftInst($1, $2, $4); } | CAST ResolvedVal TO Types { $$ = new CastInst($2, *$4); delete $4; } | PHI PHIList { const Type *Ty = $2->front().first->getType(); $$ = new PHINode(Ty); while ($2->begin() != $2->end()) { if ($2->front().first->getType() != Ty) ThrowException("All elements of a PHI node must be of the same type!"); cast($$)->addIncoming($2->front().first, $2->front().second); $2->pop_front(); } delete $2; // Free the list... } | CALL TypesV ValueRef '(' ValueRefListE ')' { const PointerType *PMTy; const FunctionType *Ty; if (!(PMTy = dyn_cast($2->get())) || !(Ty = dyn_cast(PMTy->getElementType()))) { // Pull out the types of all of the arguments... vector ParamTypes; if ($5) { for (vector::iterator I = $5->begin(), E = $5->end(); I!=E; ++I) ParamTypes.push_back((*I)->getType()); } bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; if (isVarArg) ParamTypes.pop_back(); Ty = FunctionType::get($2->get(), ParamTypes, isVarArg); PMTy = PointerType::get(Ty); } delete $2; Value *V = getVal(PMTy, $3); // Get the method we're calling... // Create the call node... if (!$5) { // Has no arguments? $$ = new CallInst(V, vector()); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! // FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin(); FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end(); vector::iterator ArgI = $5->begin(), ArgE = $5->end(); for (; ArgI != ArgE && I != E; ++ArgI, ++I) if ((*ArgI)->getType() != *I) ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" + (*I)->getDescription() + "'!"); if (I != E || (ArgI != ArgE && !Ty->isVarArg())) ThrowException("Invalid number of parameters detected!"); $$ = new CallInst(V, *$5); } delete $5; } | MemoryInst { $$ = $1; } // IndexList - List of indices for GEP based instructions... IndexList : ',' ValueRefList { $$ = $2; } | /* empty */ { $$ = new vector(); } MemoryInst : MALLOC Types { $$ = new MallocInst(PointerType::get(*$2)); delete $2; } | MALLOC Types ',' UINT ValueRef { const Type *Ty = PointerType::get(*$2); $$ = new MallocInst(Ty, getVal($4, $5)); delete $2; } | ALLOCA Types { $$ = new AllocaInst(PointerType::get(*$2)); delete $2; } | ALLOCA Types ',' UINT ValueRef { const Type *Ty = PointerType::get(*$2); Value *ArrSize = getVal($4, $5); $$ = new AllocaInst(Ty, ArrSize); delete $2; } | FREE ResolvedVal { if (!$2->getType()->isPointerType()) ThrowException("Trying to free nonpointer type " + $2->getType()->getDescription() + "!"); $$ = new FreeInst($2); } | LOAD Types ValueRef IndexList { if (!(*$2)->isPointerType()) ThrowException("Can't load from nonpointer type: " + (*$2)->getDescription()); if (LoadInst::getIndexedType(*$2, *$4) == 0) ThrowException("Invalid indices for load instruction!"); $$ = new LoadInst(getVal(*$2, $3), *$4); delete $4; // Free the vector... delete $2; } | STORE ResolvedVal ',' Types ValueRef IndexList { if (!(*$4)->isPointerType()) ThrowException("Can't store to a nonpointer type: " + (*$4)->getDescription()); const Type *ElTy = StoreInst::getIndexedType(*$4, *$6); if (ElTy == 0) ThrowException("Can't store into that field list!"); if (ElTy != $2->getType()) ThrowException("Can't store '" + $2->getType()->getDescription() + "' into space of type '" + ElTy->getDescription() + "'!"); $$ = new StoreInst($2, getVal(*$4, $5), *$6); delete $4; delete $6; } | GETELEMENTPTR Types ValueRef IndexList { if (!(*$2)->isPointerType()) ThrowException("getelementptr insn requires pointer operand!"); if (!GetElementPtrInst::getIndexedType(*$2, *$4, true)) ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!"); $$ = new GetElementPtrInst(getVal(*$2, $3), *$4); delete $2; delete $4; } %% int yyerror(const char *ErrorMsg) { ThrowException(string("Parse error: ") + ErrorMsg); return 0; }