//===- ReadInst.cpp - Code to read an instruction from bytecode -----------===// // // This file defines the mechanism to read an instruction from a bytecode // stream. // // Note that this library should be as fast as possible, reentrant, and // threadsafe!! // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/iTerminators.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iOther.h" struct RawInst { // The raw fields out of the bytecode stream... unsigned NumOperands; unsigned Opcode; unsigned Type; RawInst(const unsigned char *&Buf, const unsigned char *EndBuf, std::vector &Args); }; RawInst::RawInst(const unsigned char *&Buf, const unsigned char *EndBuf, std::vector &Args) { unsigned Op, Typ; if (read(Buf, EndBuf, Op)) throw std::string("Error reading from buffer."); // bits Instruction format: Common to all formats // -------------------------- // 01-00: Opcode type, fixed to 1. // 07-02: Opcode Opcode = (Op >> 2) & 63; Args.resize((Op >> 0) & 03); switch (Args.size()) { case 1: // bits Instruction format: // -------------------------- // 19-08: Resulting type plane // 31-20: Operand #1 (if set to (2^12-1), then zero operands) // Type = (Op >> 8) & 4095; Args[0] = (Op >> 20) & 4095; if (Args[0] == 4095) // Handle special encoding for 0 operands... Args.resize(0); break; case 2: // bits Instruction format: // -------------------------- // 15-08: Resulting type plane // 23-16: Operand #1 // 31-24: Operand #2 // Type = (Op >> 8) & 255; Args[0] = (Op >> 16) & 255; Args[1] = (Op >> 24) & 255; break; case 3: // bits Instruction format: // -------------------------- // 13-08: Resulting type plane // 19-14: Operand #1 // 25-20: Operand #2 // 31-26: Operand #3 // Type = (Op >> 8) & 63; Args[0] = (Op >> 14) & 63; Args[1] = (Op >> 20) & 63; Args[2] = (Op >> 26) & 63; break; case 0: Buf -= 4; // Hrm, try this again... if (read_vbr(Buf, EndBuf, Opcode)) throw std::string("Error reading from buffer."); Opcode >>= 2; if (read_vbr(Buf, EndBuf, Type)) throw std::string("Error reading from buffer."); unsigned NumOperands; if (read_vbr(Buf, EndBuf, NumOperands)) throw std::string("Error reading from buffer."); Args.resize(NumOperands); if (NumOperands == 0) throw std::string("Zero-argument instruction found; this is invalid."); for (unsigned i = 0; i != NumOperands; ++i) if (read_vbr(Buf, EndBuf, Args[i])) throw std::string("Error reading from buffer"); if (align32(Buf, EndBuf)) throw std::string("Unaligned bytecode buffer."); break; } } Instruction *BytecodeParser::ParseInstruction(const unsigned char *&Buf, const unsigned char *EndBuf) { std::vector Args; RawInst RI(Buf, EndBuf, Args); const Type *InstTy = getType(RI.Type); if (RI.Opcode >= Instruction::BinaryOpsBegin && RI.Opcode < Instruction::BinaryOpsEnd && Args.size() == 2) return BinaryOperator::create((Instruction::BinaryOps)RI.Opcode, getValue(InstTy, Args[0]), getValue(InstTy, Args[1])); switch (RI.Opcode) { case Instruction::VarArg: return new VarArgInst(getValue(InstTy, Args[0]), getType(Args[1])); case Instruction::Cast: return new CastInst(getValue(InstTy, Args[0]), getType(Args[1])); case Instruction::PHINode: { if (Args.size() == 0 || (Args.size() & 1)) throw std::string("Invalid phi node encountered!\n"); PHINode *PN = new PHINode(InstTy); for (unsigned i = 0, e = Args.size(); i != e; i += 2) PN->addIncoming(getValue(InstTy, Args[i]), getBasicBlock(Args[i+1])); return PN; } case Instruction::Shl: case Instruction::Shr: return new ShiftInst((Instruction::OtherOps)RI.Opcode, getValue(InstTy, Args[0]), getValue(Type::UByteTyID, Args[1])); case Instruction::Ret: if (Args.size() == 0) return new ReturnInst(); else if (Args.size() == 1) return new ReturnInst(getValue(InstTy, Args[0])); break; case Instruction::Br: if (Args.size() == 1) return new BranchInst(getBasicBlock(Args[0])); else if (Args.size() == 3) return new BranchInst(getBasicBlock(Args[0]), getBasicBlock(Args[1]), getValue(Type::BoolTyID , Args[2])); throw std::string("Invalid number of operands for a 'br' instruction!"); case Instruction::Switch: { if (Args.size() & 1) throw std::string("Switch statement with odd number of arguments!"); SwitchInst *I = new SwitchInst(getValue(InstTy, Args[0]), getBasicBlock(Args[1])); for (unsigned i = 2, e = Args.size(); i != e; i += 2) I->addCase(cast(getValue(InstTy, Args[i])), getBasicBlock(Args[i+1])); return I; } case Instruction::Call: { if (Args.size() == 0) throw std::string("Invalid call instruction encountered!"); Value *F = getValue(InstTy, Args[0]); // Check to make sure we have a pointer to function type const PointerType *PTy = dyn_cast(F->getType()); if (PTy == 0) throw std::string("Call to non function pointer value!"); const FunctionType *FTy = dyn_cast(PTy->getElementType()); if (FTy == 0) throw std::string("Call to non function pointer value!"); std::vector Params; const FunctionType::ParamTypes &PL = FTy->getParamTypes(); if (!FTy->isVarArg()) { FunctionType::ParamTypes::const_iterator It = PL.begin(); for (unsigned i = 1, e = Args.size(); i != e; ++i) { if (It == PL.end()) throw std::string("Invalid call instruction!"); Params.push_back(getValue(*It++, Args[i])); } if (It != PL.end()) throw std::string("Invalid call instruction!"); } else { // FIXME: Args[1] is currently just a dummy padding field! if (Args.size() & 1) // Must be pairs of type/value throw std::string("Invalid call instruction!"); for (unsigned i = 2, e = Args.size(); i != e; i += 2) Params.push_back(getValue(getType(Args[i]), Args[i+1])); } return new CallInst(F, Params); } case Instruction::Invoke: { if (Args.size() < 3) throw std::string("Invalid invoke instruction!"); Value *F = getValue(InstTy, Args[0]); // Check to make sure we have a pointer to function type const PointerType *PTy = dyn_cast(F->getType()); if (PTy == 0) throw std::string("Invoke to non function pointer value!"); const FunctionType *FTy = dyn_cast(PTy->getElementType()); if (FTy == 0) throw std::string("Invoke to non function pointer value!"); std::vector Params; BasicBlock *Normal, *Except; const FunctionType::ParamTypes &PL = FTy->getParamTypes(); if (!FTy->isVarArg()) { Normal = getBasicBlock(Args[1]); Except = getBasicBlock(Args[2]); FunctionType::ParamTypes::const_iterator It = PL.begin(); for (unsigned i = 3, e = Args.size(); i != e; ++i) { if (It == PL.end()) throw std::string("Invalid invoke instruction!"); Params.push_back(getValue(*It++, Args[i])); } if (It != PL.end()) throw std::string("Invalid invoke instruction!"); } else { // FIXME: Args[1] is a dummy padding field if (Args.size() < 6) throw std::string("Invalid invoke instruction!"); if (Args[2] != Type::LabelTyID || Args[4] != Type::LabelTyID) throw std::string("Invalid invoke instruction!"); Normal = getBasicBlock(Args[3]); Except = getBasicBlock(Args[5]); if (Args.size() & 1) // Must be pairs of type/value throw std::string("Invalid invoke instruction!"); for (unsigned i = 6; i < Args.size(); i += 2) Params.push_back(getValue(Args[i], Args[i+1])); } return new InvokeInst(F, Normal, Except, Params); } case Instruction::Malloc: if (Args.size() > 2) throw std::string("Invalid malloc instruction!"); if (!isa(InstTy)) throw std::string("Invalid malloc instruction!"); return new MallocInst(cast(InstTy)->getElementType(), Args.size() ? getValue(Type::UIntTyID, Args[0]) : 0); case Instruction::Alloca: if (Args.size() > 2) throw std::string("Invalid alloca instruction!"); if (!isa(InstTy)) throw std::string("Invalid alloca instruction!"); return new AllocaInst(cast(InstTy)->getElementType(), Args.size() ? getValue(Type::UIntTyID, Args[0]) : 0); case Instruction::Free: if (!isa(InstTy)) throw std::string("Invalid free instruction!"); return new FreeInst(getValue(InstTy, Args[0])); case Instruction::GetElementPtr: { if (Args.size() == 0 || !isa(InstTy)) throw std::string("Invalid getelementptr instruction!"); std::vector Idx; const Type *NextTy = InstTy; for (unsigned i = 1, e = Args.size(); i != e; ++i) { const CompositeType *TopTy = dyn_cast_or_null(NextTy); if (!TopTy) throw std::string("Invalid getelementptr instruction!"); Idx.push_back(getValue(TopTy->getIndexType(), Args[i])); NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true); } return new GetElementPtrInst(getValue(InstTy, Args[0]), Idx); } case 62: // volatile load case Instruction::Load: if (Args.size() != 1 || !isa(InstTy)) throw std::string("Invalid load instruction!"); return new LoadInst(getValue(InstTy, Args[0]), "", RI.Opcode == 62); case 63: // volatile store case Instruction::Store: { if (!isa(InstTy) || Args.size() != 2) throw std::string("Invalid store instruction!"); Value *Ptr = getValue(InstTy, Args[1]); const Type *ValTy = cast(Ptr->getType())->getElementType(); return new StoreInst(getValue(ValTy, Args[0]), Ptr, RI.Opcode == 63); } case Instruction::Unwind: if (Args.size() != 0) throw std::string("Invalid unwind instruction!"); return new UnwindInst(); } // end switch(RI.Opcode) std::cerr << "Unrecognized instruction! " << RI.Opcode << " ADDR = 0x" << (void*)Buf << "\n"; throw std::string("Unrecognized instruction!"); }