//===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/PPCMCTargetDesc.h" #include "MCTargetDesc/PPCMCExpr.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { static unsigned RRegs[32] = { PPC::R0, PPC::R1, PPC::R2, PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, PPC::R11, PPC::R12, PPC::R13, PPC::R14, PPC::R15, PPC::R16, PPC::R17, PPC::R18, PPC::R19, PPC::R20, PPC::R21, PPC::R22, PPC::R23, PPC::R24, PPC::R25, PPC::R26, PPC::R27, PPC::R28, PPC::R29, PPC::R30, PPC::R31 }; static unsigned RRegsNoR0[32] = { PPC::ZERO, PPC::R1, PPC::R2, PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, PPC::R11, PPC::R12, PPC::R13, PPC::R14, PPC::R15, PPC::R16, PPC::R17, PPC::R18, PPC::R19, PPC::R20, PPC::R21, PPC::R22, PPC::R23, PPC::R24, PPC::R25, PPC::R26, PPC::R27, PPC::R28, PPC::R29, PPC::R30, PPC::R31 }; static unsigned XRegs[32] = { PPC::X0, PPC::X1, PPC::X2, PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, PPC::X11, PPC::X12, PPC::X13, PPC::X14, PPC::X15, PPC::X16, PPC::X17, PPC::X18, PPC::X19, PPC::X20, PPC::X21, PPC::X22, PPC::X23, PPC::X24, PPC::X25, PPC::X26, PPC::X27, PPC::X28, PPC::X29, PPC::X30, PPC::X31 }; static unsigned XRegsNoX0[32] = { PPC::ZERO8, PPC::X1, PPC::X2, PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, PPC::X11, PPC::X12, PPC::X13, PPC::X14, PPC::X15, PPC::X16, PPC::X17, PPC::X18, PPC::X19, PPC::X20, PPC::X21, PPC::X22, PPC::X23, PPC::X24, PPC::X25, PPC::X26, PPC::X27, PPC::X28, PPC::X29, PPC::X30, PPC::X31 }; static unsigned FRegs[32] = { PPC::F0, PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13, PPC::F14, PPC::F15, PPC::F16, PPC::F17, PPC::F18, PPC::F19, PPC::F20, PPC::F21, PPC::F22, PPC::F23, PPC::F24, PPC::F25, PPC::F26, PPC::F27, PPC::F28, PPC::F29, PPC::F30, PPC::F31 }; static unsigned VRegs[32] = { PPC::V0, PPC::V1, PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13, PPC::V14, PPC::V15, PPC::V16, PPC::V17, PPC::V18, PPC::V19, PPC::V20, PPC::V21, PPC::V22, PPC::V23, PPC::V24, PPC::V25, PPC::V26, PPC::V27, PPC::V28, PPC::V29, PPC::V30, PPC::V31 }; static unsigned CRBITRegs[32] = { PPC::CR0LT, PPC::CR0GT, PPC::CR0EQ, PPC::CR0UN, PPC::CR1LT, PPC::CR1GT, PPC::CR1EQ, PPC::CR1UN, PPC::CR2LT, PPC::CR2GT, PPC::CR2EQ, PPC::CR2UN, PPC::CR3LT, PPC::CR3GT, PPC::CR3EQ, PPC::CR3UN, PPC::CR4LT, PPC::CR4GT, PPC::CR4EQ, PPC::CR4UN, PPC::CR5LT, PPC::CR5GT, PPC::CR5EQ, PPC::CR5UN, PPC::CR6LT, PPC::CR6GT, PPC::CR6EQ, PPC::CR6UN, PPC::CR7LT, PPC::CR7GT, PPC::CR7EQ, PPC::CR7UN }; static unsigned CRRegs[8] = { PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3, PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7 }; struct PPCOperand; class PPCAsmParser : public MCTargetAsmParser { MCSubtargetInfo &STI; MCAsmParser &Parser; bool IsPPC64; MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool isPPC64() const { return IsPPC64; } bool MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal); virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); const MCExpr *ExtractModifierFromExpr(const MCExpr *E, PPCMCExpr::VariantKind &Variant); bool ParseExpression(const MCExpr *&EVal); bool ParseOperand(SmallVectorImpl &Operands); bool ParseDirectiveWord(unsigned Size, SMLoc L); bool ParseDirectiveTC(unsigned Size, SMLoc L); bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, SmallVectorImpl &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm); void ProcessInstruction(MCInst &Inst, const SmallVectorImpl &Ops); /// @name Auto-generated Match Functions /// { #define GET_ASSEMBLER_HEADER #include "PPCGenAsmMatcher.inc" /// } public: PPCAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser) : MCTargetAsmParser(), STI(_STI), Parser(_Parser) { // Check for 64-bit vs. 32-bit pointer mode. Triple TheTriple(STI.getTargetTriple()); IsPPC64 = TheTriple.getArch() == Triple::ppc64; // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); virtual bool ParseDirective(AsmToken DirectiveID); }; /// PPCOperand - Instances of this class represent a parsed PowerPC machine /// instruction. struct PPCOperand : public MCParsedAsmOperand { enum KindTy { Token, Immediate, Expression } Kind; SMLoc StartLoc, EndLoc; bool IsPPC64; struct TokOp { const char *Data; unsigned Length; }; struct ImmOp { int64_t Val; }; struct ExprOp { const MCExpr *Val; }; union { struct TokOp Tok; struct ImmOp Imm; struct ExprOp Expr; }; PPCOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} public: PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { Kind = o.Kind; StartLoc = o.StartLoc; EndLoc = o.EndLoc; IsPPC64 = o.IsPPC64; switch (Kind) { case Token: Tok = o.Tok; break; case Immediate: Imm = o.Imm; break; case Expression: Expr = o.Expr; break; } } /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } /// isPPC64 - True if this operand is for an instruction in 64-bit mode. bool isPPC64() const { return IsPPC64; } int64_t getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } const MCExpr *getExpr() const { assert(Kind == Expression && "Invalid access!"); return Expr.Val; } unsigned getReg() const { assert(isRegNumber() && "Invalid access!"); return (unsigned) Imm.Val; } unsigned getCCReg() const { assert(isCCRegNumber() && "Invalid access!"); return (unsigned) Imm.Val; } unsigned getCRBitMask() const { assert(isCRBitMask() && "Invalid access!"); return 7 - countTrailingZeros(Imm.Val); } bool isToken() const { return Kind == Token; } bool isImm() const { return Kind == Immediate || Kind == Expression; } bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } bool isU16Imm() const { return Kind == Expression || (Kind == Immediate && isUInt<16>(getImm())); } bool isS16Imm() const { return Kind == Expression || (Kind == Immediate && isInt<16>(getImm())); } bool isS16ImmX4() const { return Kind == Expression || (Kind == Immediate && isInt<16>(getImm()) && (getImm() & 3) == 0); } bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } bool isCCRegNumber() const { return Kind == Immediate && isUInt<3>(getImm()); } bool isCRBitMask() const { return Kind == Immediate && isUInt<8>(getImm()) && isPowerOf2_32(getImm()); } bool isMem() const { return false; } bool isReg() const { return false; } void addRegOperands(MCInst &Inst, unsigned N) const { llvm_unreachable("addRegOperands"); } void addRegGPRCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(RRegs[getReg()])); } void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(RRegsNoR0[getReg()])); } void addRegG8RCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(XRegs[getReg()])); } void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(XRegsNoX0[getReg()])); } void addRegGxRCOperands(MCInst &Inst, unsigned N) const { if (isPPC64()) addRegG8RCOperands(Inst, N); else addRegGPRCOperands(Inst, N); } void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { if (isPPC64()) addRegG8RCNoX0Operands(Inst, N); else addRegGPRCNoR0Operands(Inst, N); } void addRegF4RCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()])); } void addRegF8RCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(FRegs[getReg()])); } void addRegVRRCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(VRegs[getReg()])); } void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(CRBITRegs[getReg()])); } void addRegCRRCOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(CRRegs[getCCReg()])); } void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(CRRegs[getCRBitMask()])); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); if (Kind == Immediate) Inst.addOperand(MCOperand::CreateImm(getImm())); else Inst.addOperand(MCOperand::CreateExpr(getExpr())); } StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } virtual void print(raw_ostream &OS) const; static PPCOperand *CreateToken(StringRef Str, SMLoc S, bool IsPPC64) { PPCOperand *Op = new PPCOperand(Token); Op->Tok.Data = Str.data(); Op->Tok.Length = Str.size(); Op->StartLoc = S; Op->EndLoc = S; Op->IsPPC64 = IsPPC64; return Op; } static PPCOperand *CreateImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { PPCOperand *Op = new PPCOperand(Immediate); Op->Imm.Val = Val; Op->StartLoc = S; Op->EndLoc = E; Op->IsPPC64 = IsPPC64; return Op; } static PPCOperand *CreateExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { PPCOperand *Op = new PPCOperand(Expression); Op->Expr.Val = Val; Op->StartLoc = S; Op->EndLoc = E; Op->IsPPC64 = IsPPC64; return Op; } }; } // end anonymous namespace. void PPCOperand::print(raw_ostream &OS) const { switch (Kind) { case Token: OS << "'" << getToken() << "'"; break; case Immediate: OS << getImm(); break; case Expression: getExpr()->print(OS); break; } } void PPCAsmParser:: ProcessInstruction(MCInst &Inst, const SmallVectorImpl &Operands) { switch (Inst.getOpcode()) { case PPC::SLWI: { MCInst TmpInst; int64_t N = Inst.getOperand(2).getImm(); TmpInst.setOpcode(PPC::RLWINM); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(MCOperand::CreateImm(N)); TmpInst.addOperand(MCOperand::CreateImm(0)); TmpInst.addOperand(MCOperand::CreateImm(31 - N)); Inst = TmpInst; break; } case PPC::SRWI: { MCInst TmpInst; int64_t N = Inst.getOperand(2).getImm(); TmpInst.setOpcode(PPC::RLWINM); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(MCOperand::CreateImm(32 - N)); TmpInst.addOperand(MCOperand::CreateImm(N)); TmpInst.addOperand(MCOperand::CreateImm(31)); Inst = TmpInst; break; } case PPC::SLDI: { MCInst TmpInst; int64_t N = Inst.getOperand(2).getImm(); TmpInst.setOpcode(PPC::RLDICR); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(MCOperand::CreateImm(N)); TmpInst.addOperand(MCOperand::CreateImm(63 - N)); Inst = TmpInst; break; } case PPC::SRDI: { MCInst TmpInst; int64_t N = Inst.getOperand(2).getImm(); TmpInst.setOpcode(PPC::RLDICL); TmpInst.addOperand(Inst.getOperand(0)); TmpInst.addOperand(Inst.getOperand(1)); TmpInst.addOperand(MCOperand::CreateImm(64 - N)); TmpInst.addOperand(MCOperand::CreateImm(N)); Inst = TmpInst; break; } } } bool PPCAsmParser:: MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, SmallVectorImpl &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { default: break; case Match_Success: // Post-process instructions (typically extended mnemonics) ProcessInstruction(Inst, Operands); Inst.setLoc(IDLoc); Out.EmitInstruction(Inst); return false; case Match_MissingFeature: return Error(IDLoc, "instruction use requires an option to be enabled"); case Match_MnemonicFail: return Error(IDLoc, "unrecognized instruction mnemonic"); case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((PPCOperand*)Operands[ErrorInfo])->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } } llvm_unreachable("Implement any new match types added!"); } bool PPCAsmParser:: MatchRegisterName(const AsmToken &Tok, unsigned &RegNo, int64_t &IntVal) { if (Tok.is(AsmToken::Identifier)) { StringRef Name = Tok.getString(); if (Name.equals_lower("lr")) { RegNo = isPPC64()? PPC::LR8 : PPC::LR; IntVal = 8; return false; } else if (Name.equals_lower("ctr")) { RegNo = isPPC64()? PPC::CTR8 : PPC::CTR; IntVal = 9; return false; } else if (Name.substr(0, 1).equals_lower("r") && !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { RegNo = isPPC64()? XRegs[IntVal] : RRegs[IntVal]; return false; } else if (Name.substr(0, 1).equals_lower("f") && !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { RegNo = FRegs[IntVal]; return false; } else if (Name.substr(0, 1).equals_lower("v") && !Name.substr(1).getAsInteger(10, IntVal) && IntVal < 32) { RegNo = VRegs[IntVal]; return false; } else if (Name.substr(0, 2).equals_lower("cr") && !Name.substr(2).getAsInteger(10, IntVal) && IntVal < 8) { RegNo = CRRegs[IntVal]; return false; } } return true; } bool PPCAsmParser:: ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { const AsmToken &Tok = Parser.getTok(); StartLoc = Tok.getLoc(); EndLoc = Tok.getEndLoc(); RegNo = 0; int64_t IntVal; if (!MatchRegisterName(Tok, RegNo, IntVal)) { Parser.Lex(); // Eat identifier token. return false; } return Error(StartLoc, "invalid register name"); } /// Extract @l/@ha modifier from expression. Recursively scan /// the expression and check for VK_PPC_LO / VK_PPC_HA /// symbol variants. If all symbols with modifier use the same /// variant, return the corresponding PPCMCExpr::VariantKind, /// and a modified expression using the default symbol variant. /// Otherwise, return NULL. const MCExpr *PPCAsmParser:: ExtractModifierFromExpr(const MCExpr *E, PPCMCExpr::VariantKind &Variant) { MCContext &Context = getParser().getContext(); Variant = PPCMCExpr::VK_PPC_None; switch (E->getKind()) { case MCExpr::Target: case MCExpr::Constant: return 0; case MCExpr::SymbolRef: { const MCSymbolRefExpr *SRE = cast(E); switch (SRE->getKind()) { case MCSymbolRefExpr::VK_PPC_LO: Variant = PPCMCExpr::VK_PPC_LO; break; case MCSymbolRefExpr::VK_PPC_HA: Variant = PPCMCExpr::VK_PPC_HA; break; default: return 0; } return MCSymbolRefExpr::Create(&SRE->getSymbol(), Context); } case MCExpr::Unary: { const MCUnaryExpr *UE = cast(E); const MCExpr *Sub = ExtractModifierFromExpr(UE->getSubExpr(), Variant); if (!Sub) return 0; return MCUnaryExpr::Create(UE->getOpcode(), Sub, Context); } case MCExpr::Binary: { const MCBinaryExpr *BE = cast(E); PPCMCExpr::VariantKind LHSVariant, RHSVariant; const MCExpr *LHS = ExtractModifierFromExpr(BE->getLHS(), LHSVariant); const MCExpr *RHS = ExtractModifierFromExpr(BE->getRHS(), RHSVariant); if (!LHS && !RHS) return 0; if (!LHS) LHS = BE->getLHS(); if (!RHS) RHS = BE->getRHS(); if (LHSVariant == PPCMCExpr::VK_PPC_None) Variant = RHSVariant; else if (RHSVariant == PPCMCExpr::VK_PPC_None) Variant = LHSVariant; else if (LHSVariant == RHSVariant) Variant = LHSVariant; else return 0; return MCBinaryExpr::Create(BE->getOpcode(), LHS, RHS, Context); } } llvm_unreachable("Invalid expression kind!"); } /// Parse an expression. This differs from the default "parseExpression" /// in that it handles complex @l/@ha modifiers. bool PPCAsmParser:: ParseExpression(const MCExpr *&EVal) { if (getParser().parseExpression(EVal)) return true; PPCMCExpr::VariantKind Variant; const MCExpr *E = ExtractModifierFromExpr(EVal, Variant); if (E) EVal = PPCMCExpr::Create(Variant, E, getParser().getContext()); return false; } bool PPCAsmParser:: ParseOperand(SmallVectorImpl &Operands) { SMLoc S = Parser.getTok().getLoc(); SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); const MCExpr *EVal; PPCOperand *Op; // Attempt to parse the next token as an immediate switch (getLexer().getKind()) { // Special handling for register names. These are interpreted // as immediates corresponding to the register number. case AsmToken::Percent: Parser.Lex(); // Eat the '%'. unsigned RegNo; int64_t IntVal; if (!MatchRegisterName(Parser.getTok(), RegNo, IntVal)) { Parser.Lex(); // Eat the identifier token. Op = PPCOperand::CreateImm(IntVal, S, E, isPPC64()); Operands.push_back(Op); return false; } return Error(S, "invalid register name"); // All other expressions case AsmToken::LParen: case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Integer: case AsmToken::Identifier: case AsmToken::Dot: case AsmToken::Dollar: if (!ParseExpression(EVal)) break; /* fall through */ default: return Error(S, "unknown operand"); } if (const MCConstantExpr *CE = dyn_cast(EVal)) Op = PPCOperand::CreateImm(CE->getValue(), S, E, isPPC64()); else Op = PPCOperand::CreateExpr(EVal, S, E, isPPC64()); // Push the parsed operand into the list of operands Operands.push_back(Op); // Check for D-form memory operands if (getLexer().is(AsmToken::LParen)) { Parser.Lex(); // Eat the '('. S = Parser.getTok().getLoc(); int64_t IntVal; switch (getLexer().getKind()) { case AsmToken::Percent: Parser.Lex(); // Eat the '%'. unsigned RegNo; if (MatchRegisterName(Parser.getTok(), RegNo, IntVal)) return Error(S, "invalid register name"); Parser.Lex(); // Eat the identifier token. break; case AsmToken::Integer: if (getParser().parseAbsoluteExpression(IntVal) || IntVal < 0 || IntVal > 31) return Error(S, "invalid register number"); break; default: return Error(S, "invalid memory operand"); } if (getLexer().isNot(AsmToken::RParen)) return Error(Parser.getTok().getLoc(), "missing ')'"); E = Parser.getTok().getLoc(); Parser.Lex(); // Eat the ')'. Op = PPCOperand::CreateImm(IntVal, S, E, isPPC64()); Operands.push_back(Op); } return false; } /// Parse an instruction mnemonic followed by its operands. bool PPCAsmParser:: ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands) { // The first operand is the token for the instruction name. // If the instruction ends in a '.', we need to create a separate // token for it, to match what TableGen is doing. size_t Dot = Name.find('.'); StringRef Mnemonic = Name.slice(0, Dot); Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); if (Dot != StringRef::npos) { SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); StringRef DotStr = Name.slice(Dot, StringRef::npos); Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); } // If there are no more operands then finish if (getLexer().is(AsmToken::EndOfStatement)) return false; // Parse the first operand if (ParseOperand(Operands)) return true; while (getLexer().isNot(AsmToken::EndOfStatement) && getLexer().is(AsmToken::Comma)) { // Consume the comma token getLexer().Lex(); // Parse the next operand if (ParseOperand(Operands)) return true; } return false; } /// ParseDirective parses the PPC specific directives bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(4, DirectiveID.getLoc()); if (IDVal == ".tc") return ParseDirectiveTC(isPPC64()? 8 : 4, DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool PPCAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().parseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size); if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } /// ParseDirectiveTC /// ::= .tc [ symbol (, expression)* ] bool PPCAsmParser::ParseDirectiveTC(unsigned Size, SMLoc L) { // Skip TC symbol, which is only used with XCOFF. while (getLexer().isNot(AsmToken::EndOfStatement) && getLexer().isNot(AsmToken::Comma)) Parser.Lex(); if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); // Align to word size. getParser().getStreamer().EmitValueToAlignment(Size); // Emit expressions. return ParseDirectiveWord(Size, L); } /// Force static initialization. extern "C" void LLVMInitializePowerPCAsmParser() { RegisterMCAsmParser A(ThePPC32Target); RegisterMCAsmParser B(ThePPC64Target); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "PPCGenAsmMatcher.inc"