//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visit functions for load, store and alloca. // //===----------------------------------------------------------------------===// #include "InstCombine.h" #include "llvm/IntrinsicInst.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumDeadStore, "Number of dead stores eliminated"); Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 if (AI.isArrayAllocation()) { // Check C != 1 if (const ConstantInt *C = dyn_cast(AI.getArraySize())) { const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); assert(isa(AI) && "Unknown type of allocation inst!"); AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName()); New->setAlignment(AI.getAlignment()); // Scan to the end of the allocation instructions, to skip over a block of // allocas if possible...also skip interleaved debug info // BasicBlock::iterator It = New; while (isa(*It) || isa(*It)) ++It; // Now that I is pointing to the first non-allocation-inst in the block, // insert our getelementptr instruction... // Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext())); Value *Idx[2]; Idx[0] = NullIdx; Idx[1] = NullIdx; Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2, New->getName()+".sub", It); // Now make everything use the getelementptr instead of the original // allocation. return ReplaceInstUsesWith(AI, V); } else if (isa(AI.getArraySize())) { return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); } } if (TD && isa(AI) && AI.getAllocatedType()->isSized()) { // If alloca'ing a zero byte object, replace the alloca with a null pointer. // Note that we only do this for alloca's, because malloc should allocate // and return a unique pointer, even for a zero byte allocation. if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); // If the alignment is 0 (unspecified), assign it the preferred alignment. if (AI.getAlignment() == 0) AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); } return 0; } /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, const TargetData *TD) { User *CI = cast(LI.getOperand(0)); Value *CastOp = CI->getOperand(0); const PointerType *DestTy = cast(CI->getType()); const Type *DestPTy = DestTy->getElementType(); if (const PointerType *SrcTy = dyn_cast(CastOp->getType())) { // If the address spaces don't match, don't eliminate the cast. if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) return 0; const Type *SrcPTy = SrcTy->getElementType(); if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() || DestPTy->isVectorTy()) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (const ArrayType *ASrcTy = dyn_cast(SrcPTy)) if (Constant *CSrc = dyn_cast(CastOp)) if (ASrcTy->getNumElements() != 0) { Value *Idxs[2]; Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext())); Idxs[1] = Idxs[0]; CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); SrcTy = cast(CastOp->getType()); SrcPTy = SrcTy->getElementType(); } if (IC.getTargetData() && (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() || SrcPTy->isVectorTy()) && // Do not allow turning this into a load of an integer, which is then // casted to a pointer, this pessimizes pointer analysis a lot. (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) && IC.getTargetData()->getTypeSizeInBits(SrcPTy) == IC.getTargetData()->getTypeSizeInBits(DestPTy)) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the load, cast // the result of the loaded value. LoadInst *NewLoad = IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName()); NewLoad->setAlignment(LI.getAlignment()); // Now cast the result of the load. return new BitCastInst(NewLoad, LI.getType()); } } } return 0; } Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); // Attempt to improve the alignment. if (TD) { unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType())); if (KnownAlign > (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) : LI.getAlignment())) LI.setAlignment(KnownAlign); } // load (cast X) --> cast (load X) iff safe. if (isa(Op)) if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) return Res; // None of the following transforms are legal for volatile loads. if (LI.isVolatile()) return 0; // Do really simple store-to-load forwarding and load CSE, to catch cases // where there are several consequtive memory accesses to the same location, // separated by a few arithmetic operations. BasicBlock::iterator BBI = &LI; if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) return ReplaceInstUsesWith(LI, AvailableVal); // load(gep null, ...) -> unreachable if (GetElementPtrInst *GEPI = dyn_cast(Op)) { const Value *GEPI0 = GEPI->getOperand(0); // TODO: Consider a target hook for valid address spaces for this xform. if (isa(GEPI0) && GEPI->getPointerAddressSpace() == 0){ // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } // load null/undef -> unreachable // TODO: Consider a target hook for valid address spaces for this xform. if (isa(Op) || (isa(Op) && LI.getPointerAddressSpace() == 0)) { // Insert a new store to null instruction before the load to indicate that // this code is not reachable. We do this instead of inserting an // unreachable instruction directly because we cannot modify the CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } // Instcombine load (constantexpr_cast global) -> cast (load global) if (ConstantExpr *CE = dyn_cast(Op)) if (CE->isCast()) if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) return Res; if (Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and // exposes redundancy in the code. // // Note that we cannot do the transformation unless we know that the // introduced loads cannot trap! Something like this is valid as long as // the condition is always false: load (select bool %C, int* null, int* %G), // but it would not be valid if we transformed it to load from null // unconditionally. // if (SelectInst *SI = dyn_cast(Op)) { // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). unsigned Align = LI.getAlignment(); if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) && isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) { LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), SI->getOperand(1)->getName()+".val"); LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), SI->getOperand(2)->getName()+".val"); V1->setAlignment(Align); V2->setAlignment(Align); return SelectInst::Create(SI->getCondition(), V1, V2); } // load (select (cond, null, P)) -> load P if (Constant *C = dyn_cast(SI->getOperand(1))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(2)); return &LI; } // load (select (cond, P, null)) -> load P if (Constant *C = dyn_cast(SI->getOperand(2))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(1)); return &LI; } } } return 0; } /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P /// when possible. This makes it generally easy to do alias analysis and/or /// SROA/mem2reg of the memory object. static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { User *CI = cast(SI.getOperand(1)); Value *CastOp = CI->getOperand(0); const Type *DestPTy = cast(CI->getType())->getElementType(); const PointerType *SrcTy = dyn_cast(CastOp->getType()); if (SrcTy == 0) return 0; const Type *SrcPTy = SrcTy->getElementType(); if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy()) return 0; /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" /// to its first element. This allows us to handle things like: /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) /// on 32-bit hosts. SmallVector NewGEPIndices; // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) { // Index through pointer. Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext())); NewGEPIndices.push_back(Zero); while (1) { if (const StructType *STy = dyn_cast(SrcPTy)) { if (!STy->getNumElements()) /* Struct can be empty {} */ break; NewGEPIndices.push_back(Zero); SrcPTy = STy->getElementType(0); } else if (const ArrayType *ATy = dyn_cast(SrcPTy)) { NewGEPIndices.push_back(Zero); SrcPTy = ATy->getElementType(); } else { break; } } SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); } if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy()) return 0; // If the pointers point into different address spaces or if they point to // values with different sizes, we can't do the transformation. if (!IC.getTargetData() || SrcTy->getAddressSpace() != cast(CI->getType())->getAddressSpace() || IC.getTargetData()->getTypeSizeInBits(SrcPTy) != IC.getTargetData()->getTypeSizeInBits(DestPTy)) return 0; // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before // the store, cast the value to be stored. Value *NewCast; Value *SIOp0 = SI.getOperand(0); Instruction::CastOps opcode = Instruction::BitCast; const Type* CastSrcTy = SIOp0->getType(); const Type* CastDstTy = SrcPTy; if (CastDstTy->isPointerTy()) { if (CastSrcTy->isIntegerTy()) opcode = Instruction::IntToPtr; } else if (CastDstTy->isIntegerTy()) { if (SIOp0->getType()->isPointerTy()) opcode = Instruction::PtrToInt; } // SIOp0 is a pointer to aggregate and this is a store to the first field, // emit a GEP to index into its first field. if (!NewGEPIndices.empty()) CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(), NewGEPIndices.end()); NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"); return new StoreInst(NewCast, CastOp); } /// equivalentAddressValues - Test if A and B will obviously have the same /// value. This includes recognizing that %t0 and %t1 will have the same /// value in code like this: /// %t0 = getelementptr \@a, 0, 3 /// store i32 0, i32* %t0 /// %t1 = getelementptr \@a, 0, 3 /// %t2 = load i32* %t1 /// static bool equivalentAddressValues(Value *A, Value *B) { // Test if the values are trivially equivalent. if (A == B) return true; // Test if the values come form identical arithmetic instructions. // This uses isIdenticalToWhenDefined instead of isIdenticalTo because // its only used to compare two uses within the same basic block, which // means that they'll always either have the same value or one of them // will have an undefined value. if (isa(A) || isa(A) || isa(A) || isa(A)) if (Instruction *BI = dyn_cast(B)) if (cast(A)->isIdenticalToWhenDefined(BI)) return true; // Otherwise they may not be equivalent. return false; } // If this instruction has two uses, one of which is a llvm.dbg.declare, // return the llvm.dbg.declare. DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) { if (!V->hasNUses(2)) return 0; for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) { if (DbgDeclareInst *DI = dyn_cast(UI)) return DI; if (isa(UI) && UI->hasOneUse()) { if (DbgDeclareInst *DI = dyn_cast(UI->use_begin())) return DI; } } return 0; } Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); // If the RHS is an alloca with a single use, zapify the store, making the // alloca dead. // If the RHS is an alloca with a two uses, the other one being a // llvm.dbg.declare, zapify the store and the declare, making the // alloca dead. We must do this to prevent declares from affecting // codegen. if (!SI.isVolatile()) { if (Ptr->hasOneUse()) { if (isa(Ptr)) return EraseInstFromFunction(SI); if (GetElementPtrInst *GEP = dyn_cast(Ptr)) { if (isa(GEP->getOperand(0))) { if (GEP->getOperand(0)->hasOneUse()) return EraseInstFromFunction(SI); if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) { EraseInstFromFunction(*DI); return EraseInstFromFunction(SI); } } } } if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) { EraseInstFromFunction(*DI); return EraseInstFromFunction(SI); } } // Attempt to improve the alignment. if (TD) { unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType())); if (KnownAlign > (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) : SI.getAlignment())) SI.setAlignment(KnownAlign); } // Do really simple DSE, to catch cases where there are several consecutive // stores to the same location, separated by a few arithmetic operations. This // situation often occurs with bitfield accesses. BasicBlock::iterator BBI = &SI; for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; --ScanInsts) { --BBI; // Don't count debug info directives, lest they affect codegen, // and we skip pointer-to-pointer bitcasts, which are NOPs. if (isa(BBI) || (isa(BBI) && BBI->getType()->isPointerTy())) { ScanInsts++; continue; } if (StoreInst *PrevSI = dyn_cast(BBI)) { // Prev store isn't volatile, and stores to the same location? if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1), SI.getOperand(1))) { ++NumDeadStore; ++BBI; EraseInstFromFunction(*PrevSI); continue; } break; } // If this is a load, we have to stop. However, if the loaded value is from // the pointer we're loading and is producing the pointer we're storing, // then *this* store is dead (X = load P; store X -> P). if (LoadInst *LI = dyn_cast(BBI)) { if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && !SI.isVolatile()) return EraseInstFromFunction(SI); // Otherwise, this is a load from some other location. Stores before it // may not be dead. break; } // Don't skip over loads or things that can modify memory. if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) break; } if (SI.isVolatile()) return 0; // Don't hack volatile stores. // store X, null -> turns into 'unreachable' in SimplifyCFG if (isa(Ptr) && SI.getPointerAddressSpace() == 0) { if (!isa(Val)) { SI.setOperand(0, UndefValue::get(Val->getType())); if (Instruction *U = dyn_cast(Val)) Worklist.Add(U); // Dropped a use. } return 0; // Do not modify these! } // store undef, Ptr -> noop if (isa(Val)) return EraseInstFromFunction(SI); // If the pointer destination is a cast, see if we can fold the cast into the // source instead. if (isa(Ptr)) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; if (ConstantExpr *CE = dyn_cast(Ptr)) if (CE->isCast()) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; // If this store is the last instruction in the basic block (possibly // excepting debug info instructions), and if the block ends with an // unconditional branch, try to move it to the successor block. BBI = &SI; do { ++BBI; } while (isa(BBI) || (isa(BBI) && BBI->getType()->isPointerTy())); if (BranchInst *BI = dyn_cast(BBI)) if (BI->isUnconditional()) if (SimplifyStoreAtEndOfBlock(SI)) return 0; // xform done! return 0; } /// SimplifyStoreAtEndOfBlock - Turn things like: /// if () { *P = v1; } else { *P = v2 } /// into a phi node with a store in the successor. /// /// Simplify things like: /// *P = v1; if () { *P = v2; } /// into a phi node with a store in the successor. /// bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { BasicBlock *StoreBB = SI.getParent(); // Check to see if the successor block has exactly two incoming edges. If // so, see if the other predecessor contains a store to the same location. // if so, insert a PHI node (if needed) and move the stores down. BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); // Determine whether Dest has exactly two predecessors and, if so, compute // the other predecessor. pred_iterator PI = pred_begin(DestBB); BasicBlock *OtherBB = 0; if (*PI != StoreBB) OtherBB = *PI; ++PI; if (PI == pred_end(DestBB)) return false; if (*PI != StoreBB) { if (OtherBB) return false; OtherBB = *PI; } if (++PI != pred_end(DestBB)) return false; // Bail out if all the relevant blocks aren't distinct (this can happen, // for example, if SI is in an infinite loop) if (StoreBB == DestBB || OtherBB == DestBB) return false; // Verify that the other block ends in a branch and is not otherwise empty. BasicBlock::iterator BBI = OtherBB->getTerminator(); BranchInst *OtherBr = dyn_cast(BBI); if (!OtherBr || BBI == OtherBB->begin()) return false; // If the other block ends in an unconditional branch, check for the 'if then // else' case. there is an instruction before the branch. StoreInst *OtherStore = 0; if (OtherBr->isUnconditional()) { --BBI; // Skip over debugging info. while (isa(BBI) || (isa(BBI) && BBI->getType()->isPointerTy())) { if (BBI==OtherBB->begin()) return false; --BBI; } // If this isn't a store, isn't a store to the same location, or if the // alignments differ, bail out. OtherStore = dyn_cast(BBI); if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || OtherStore->getAlignment() != SI.getAlignment()) return false; } else { // Otherwise, the other block ended with a conditional branch. If one of the // destinations is StoreBB, then we have the if/then case. if (OtherBr->getSuccessor(0) != StoreBB && OtherBr->getSuccessor(1) != StoreBB) return false; // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an // if/then triangle. See if there is a store to the same ptr as SI that // lives in OtherBB. for (;; --BBI) { // Check to see if we find the matching store. if ((OtherStore = dyn_cast(BBI))) { if (OtherStore->getOperand(1) != SI.getOperand(1) || OtherStore->getAlignment() != SI.getAlignment()) return false; break; } // If we find something that may be using or overwriting the stored // value, or if we run out of instructions, we can't do the xform. if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || BBI == OtherBB->begin()) return false; } // In order to eliminate the store in OtherBr, we have to // make sure nothing reads or overwrites the stored value in // StoreBB. for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { // FIXME: This should really be AA driven. if (I->mayReadFromMemory() || I->mayWriteToMemory()) return false; } } // Insert a PHI node now if we need it. Value *MergedVal = OtherStore->getOperand(0); if (MergedVal != SI.getOperand(0)) { PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge"); PN->reserveOperandSpace(2); PN->addIncoming(SI.getOperand(0), SI.getParent()); PN->addIncoming(OtherStore->getOperand(0), OtherBB); MergedVal = InsertNewInstBefore(PN, DestBB->front()); } // Advance to a place where it is safe to insert the new store and // insert it. BBI = DestBB->getFirstNonPHI(); InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), OtherStore->isVolatile(), SI.getAlignment()), *BBI); // Nuke the old stores. EraseInstFromFunction(SI); EraseInstFromFunction(*OtherStore); return true; }