//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief /// This file declares a class to represent arbitrary precision floating point /// values and provide a variety of arithmetic operations on them. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_APFLOAT_H #define LLVM_ADT_APFLOAT_H #include "llvm/ADT/APInt.h" namespace llvm { struct fltSemantics; class APSInt; class StringRef; /// Enum that represents what fraction of the LSB truncated bits of an fp number /// represent. /// /// This essentially combines the roles of guard and sticky bits. enum lostFraction { // Example of truncated bits: lfExactlyZero, // 000000 lfLessThanHalf, // 0xxxxx x's not all zero lfExactlyHalf, // 100000 lfMoreThanHalf // 1xxxxx x's not all zero }; /// \brief A self-contained host- and target-independent arbitrary-precision /// floating-point software implementation. /// /// APFloat uses bignum integer arithmetic as provided by static functions in /// the APInt class. The library will work with bignum integers whose parts are /// any unsigned type at least 16 bits wide, but 64 bits is recommended. /// /// Written for clarity rather than speed, in particular with a view to use in /// the front-end of a cross compiler so that target arithmetic can be correctly /// performed on the host. Performance should nonetheless be reasonable, /// particularly for its intended use. It may be useful as a base /// implementation for a run-time library during development of a faster /// target-specific one. /// /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all /// implemented operations. Currently implemented operations are add, subtract, /// multiply, divide, fused-multiply-add, conversion-to-float, /// conversion-to-integer and conversion-from-integer. New rounding modes /// (e.g. away from zero) can be added with three or four lines of code. /// /// Four formats are built-in: IEEE single precision, double precision, /// quadruple precision, and x87 80-bit extended double (when operating with /// full extended precision). Adding a new format that obeys IEEE semantics /// only requires adding two lines of code: a declaration and definition of the /// format. /// /// All operations return the status of that operation as an exception bit-mask, /// so multiple operations can be done consecutively with their results or-ed /// together. The returned status can be useful for compiler diagnostics; e.g., /// inexact, underflow and overflow can be easily diagnosed on constant folding, /// and compiler optimizers can determine what exceptions would be raised by /// folding operations and optimize, or perhaps not optimize, accordingly. /// /// At present, underflow tininess is detected after rounding; it should be /// straight forward to add support for the before-rounding case too. /// /// The library reads hexadecimal floating point numbers as per C99, and /// correctly rounds if necessary according to the specified rounding mode. /// Syntax is required to have been validated by the caller. It also converts /// floating point numbers to hexadecimal text as per the C99 %a and %A /// conversions. The output precision (or alternatively the natural minimal /// precision) can be specified; if the requested precision is less than the /// natural precision the output is correctly rounded for the specified rounding /// mode. /// /// It also reads decimal floating point numbers and correctly rounds according /// to the specified rounding mode. /// /// Conversion to decimal text is not currently implemented. /// /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit /// signed exponent, and the significand as an array of integer parts. After /// normalization of a number of precision P the exponent is within the range of /// the format, and if the number is not denormal the P-th bit of the /// significand is set as an explicit integer bit. For denormals the most /// significant bit is shifted right so that the exponent is maintained at the /// format's minimum, so that the smallest denormal has just the least /// significant bit of the significand set. The sign of zeroes and infinities /// is significant; the exponent and significand of such numbers is not stored, /// but has a known implicit (deterministic) value: 0 for the significands, 0 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and /// significand are deterministic, although not really meaningful, and preserved /// in non-conversion operations. The exponent is implicitly all 1 bits. /// /// APFloat does not provide any exception handling beyond default exception /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause /// by encoding Signaling NaNs with the first bit of its trailing significand as /// 0. /// /// TODO /// ==== /// /// Some features that may or may not be worth adding: /// /// Binary to decimal conversion (hard). /// /// Optional ability to detect underflow tininess before rounding. /// /// New formats: x87 in single and double precision mode (IEEE apart from /// extended exponent range) (hard). /// /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. /// class APFloat { public: /// A signed type to represent a floating point numbers unbiased exponent. typedef signed short ExponentType; /// \name Floating Point Semantics. /// @{ static const fltSemantics IEEEhalf; static const fltSemantics IEEEsingle; static const fltSemantics IEEEdouble; static const fltSemantics IEEEquad; static const fltSemantics PPCDoubleDouble; static const fltSemantics x87DoubleExtended; /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with /// anything real. static const fltSemantics Bogus; /// @} static unsigned int semanticsPrecision(const fltSemantics &); /// IEEE-754R 5.11: Floating Point Comparison Relations. enum cmpResult { cmpLessThan, cmpEqual, cmpGreaterThan, cmpUnordered }; /// IEEE-754R 4.3: Rounding-direction attributes. enum roundingMode { rmNearestTiesToEven, rmTowardPositive, rmTowardNegative, rmTowardZero, rmNearestTiesToAway }; /// IEEE-754R 7: Default exception handling. /// /// opUnderflow or opOverflow are always returned or-ed with opInexact. enum opStatus { opOK = 0x00, opInvalidOp = 0x01, opDivByZero = 0x02, opOverflow = 0x04, opUnderflow = 0x08, opInexact = 0x10 }; /// Category of internally-represented number. enum fltCategory { fcInfinity, fcNaN, fcNormal, fcZero }; /// Convenience enum used to construct an uninitialized APFloat. enum uninitializedTag { uninitialized }; /// \name Constructors /// @{ APFloat(const fltSemantics &); // Default construct to 0.0 APFloat(const fltSemantics &, StringRef); APFloat(const fltSemantics &, integerPart); APFloat(const fltSemantics &, uninitializedTag); APFloat(const fltSemantics &, const APInt &); explicit APFloat(double d); explicit APFloat(float f); APFloat(const APFloat &); APFloat(APFloat &&); ~APFloat(); /// @} /// \brief Returns whether this instance allocated memory. bool needsCleanup() const { return partCount() > 1; } /// \name Convenience "constructors" /// @{ /// Factory for Positive and Negative Zero. /// /// \param Negative True iff the number should be negative. static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeZero(Negative); return Val; } /// Factory for Positive and Negative Infinity. /// /// \param Negative True iff the number should be negative. static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { APFloat Val(Sem, uninitialized); Val.makeInf(Negative); return Val; } /// Factory for QNaN values. /// /// \param Negative - True iff the NaN generated should be negative. /// \param type - The unspecified fill bits for creating the NaN, 0 by /// default. The value is truncated as necessary. static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, unsigned type = 0) { if (type) { APInt fill(64, type); return getQNaN(Sem, Negative, &fill); } else { return getQNaN(Sem, Negative, nullptr); } } /// Factory for QNaN values. static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, const APInt *payload = nullptr) { return makeNaN(Sem, false, Negative, payload); } /// Factory for SNaN values. static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, const APInt *payload = nullptr) { return makeNaN(Sem, true, Negative, payload); } /// Returns the largest finite number in the given semantics. /// /// \param Negative - True iff the number should be negative static APFloat getLargest(const fltSemantics &Sem, bool Negative = false); /// Returns the smallest (by magnitude) finite number in the given semantics. /// Might be denormalized, which implies a relative loss of precision. /// /// \param Negative - True iff the number should be negative static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false); /// Returns the smallest (by magnitude) normalized finite number in the given /// semantics. /// /// \param Negative - True iff the number should be negative static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative = false); /// Returns a float which is bitcasted from an all one value int. /// /// \param BitWidth - Select float type /// \param isIEEE - If 128 bit number, select between PPC and IEEE static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false); /// @} /// Used to insert APFloat objects, or objects that contain APFloat objects, /// into FoldingSets. void Profile(FoldingSetNodeID &NID) const; /// \name Arithmetic /// @{ opStatus add(const APFloat &, roundingMode); opStatus subtract(const APFloat &, roundingMode); opStatus multiply(const APFloat &, roundingMode); opStatus divide(const APFloat &, roundingMode); /// IEEE remainder. opStatus remainder(const APFloat &); /// C fmod, or llvm frem. opStatus mod(const APFloat &, roundingMode); opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode); opStatus roundToIntegral(roundingMode); /// IEEE-754R 5.3.1: nextUp/nextDown. opStatus next(bool nextDown); /// \brief Operator+ overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. APFloat operator+(const APFloat &RHS) const { APFloat Result = *this; Result.add(RHS, rmNearestTiesToEven); return Result; } /// \brief Operator- overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. APFloat operator-(const APFloat &RHS) const { APFloat Result = *this; Result.subtract(RHS, rmNearestTiesToEven); return Result; } /// \brief Operator* overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. APFloat operator*(const APFloat &RHS) const { APFloat Result = *this; Result.multiply(RHS, rmNearestTiesToEven); return Result; } /// \brief Operator/ overload which provides the default /// \c nmNearestTiesToEven rounding mode and *no* error checking. APFloat operator/(const APFloat &RHS) const { APFloat Result = *this; Result.divide(RHS, rmNearestTiesToEven); return Result; } /// @} /// \name Sign operations. /// @{ void changeSign(); void clearSign(); void copySign(const APFloat &); /// \brief A static helper to produce a copy of an APFloat value with its sign /// copied from some other APFloat. static APFloat copySign(APFloat Value, const APFloat &Sign) { Value.copySign(Sign); return Value; } /// @} /// \name Conversions /// @{ opStatus convert(const fltSemantics &, roundingMode, bool *); opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const; opStatus convertToInteger(APSInt &, roundingMode, bool *) const; opStatus convertFromAPInt(const APInt &, bool, roundingMode); opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, bool, roundingMode); opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, bool, roundingMode); opStatus convertFromString(StringRef, roundingMode); APInt bitcastToAPInt() const; double convertToDouble() const; float convertToFloat() const; /// @} /// The definition of equality is not straightforward for floating point, so /// we won't use operator==. Use one of the following, or write whatever it /// is you really mean. bool operator==(const APFloat &) const = delete; /// IEEE comparison with another floating point number (NaNs compare /// unordered, 0==-0). cmpResult compare(const APFloat &) const; /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). bool bitwiseIsEqual(const APFloat &) const; /// Write out a hexadecimal representation of the floating point value to DST, /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. /// Return the number of characters written, excluding the terminating NUL. unsigned int convertToHexString(char *dst, unsigned int hexDigits, bool upperCase, roundingMode) const; /// \name IEEE-754R 5.7.2 General operations. /// @{ /// IEEE-754R isSignMinus: Returns true if and only if the current value is /// negative. /// /// This applies to zeros and NaNs as well. bool isNegative() const { return sign; } /// IEEE-754R isNormal: Returns true if and only if the current value is normal. /// /// This implies that the current value of the float is not zero, subnormal, /// infinite, or NaN following the definition of normality from IEEE-754R. bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } /// Returns true if and only if the current value is zero, subnormal, or /// normal. /// /// This means that the value is not infinite or NaN. bool isFinite() const { return !isNaN() && !isInfinity(); } /// Returns true if and only if the float is plus or minus zero. bool isZero() const { return category == fcZero; } /// IEEE-754R isSubnormal(): Returns true if and only if the float is a /// denormal. bool isDenormal() const; /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. bool isInfinity() const { return category == fcInfinity; } /// Returns true if and only if the float is a quiet or signaling NaN. bool isNaN() const { return category == fcNaN; } /// Returns true if and only if the float is a signaling NaN. bool isSignaling() const; /// @} /// \name Simple Queries /// @{ fltCategory getCategory() const { return category; } const fltSemantics &getSemantics() const { return *semantics; } bool isNonZero() const { return category != fcZero; } bool isFiniteNonZero() const { return isFinite() && !isZero(); } bool isPosZero() const { return isZero() && !isNegative(); } bool isNegZero() const { return isZero() && isNegative(); } /// Returns true if and only if the number has the smallest possible non-zero /// magnitude in the current semantics. bool isSmallest() const; /// Returns true if and only if the number has the largest possible finite /// magnitude in the current semantics. bool isLargest() const; /// @} APFloat &operator=(const APFloat &); APFloat &operator=(APFloat &&); /// \brief Overload to compute a hash code for an APFloat value. /// /// Note that the use of hash codes for floating point values is in general /// frought with peril. Equality is hard to define for these values. For /// example, should negative and positive zero hash to different codes? Are /// they equal or not? This hash value implementation specifically /// emphasizes producing different codes for different inputs in order to /// be used in canonicalization and memoization. As such, equality is /// bitwiseIsEqual, and 0 != -0. friend hash_code hash_value(const APFloat &Arg); /// Converts this value into a decimal string. /// /// \param FormatPrecision The maximum number of digits of /// precision to output. If there are fewer digits available, /// zero padding will not be used unless the value is /// integral and small enough to be expressed in /// FormatPrecision digits. 0 means to use the natural /// precision of the number. /// \param FormatMaxPadding The maximum number of zeros to /// consider inserting before falling back to scientific /// notation. 0 means to always use scientific notation. /// /// Number Precision MaxPadding Result /// ------ --------- ---------- ------ /// 1.01E+4 5 2 10100 /// 1.01E+4 4 2 1.01E+4 /// 1.01E+4 5 1 1.01E+4 /// 1.01E-2 5 2 0.0101 /// 1.01E-2 4 2 0.0101 /// 1.01E-2 4 1 1.01E-2 void toString(SmallVectorImpl &Str, unsigned FormatPrecision = 0, unsigned FormatMaxPadding = 3) const; /// If this value has an exact multiplicative inverse, store it in inv and /// return true. bool getExactInverse(APFloat *inv) const; /// \brief Enumeration of \c ilogb error results. enum IlogbErrorKinds { IEK_Zero = INT_MIN+1, IEK_NaN = INT_MIN, IEK_Inf = INT_MAX }; /// \brief Returns the exponent of the internal representation of the APFloat. /// /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). /// For special APFloat values, this returns special error codes: /// /// NaN -> \c IEK_NaN /// 0 -> \c IEK_Zero /// Inf -> \c IEK_Inf /// friend int ilogb(const APFloat &Arg) { if (Arg.isNaN()) return IEK_NaN; if (Arg.isZero()) return IEK_Zero; if (Arg.isInfinity()) return IEK_Inf; return Arg.exponent; } /// \brief Returns: X * 2^Exp for integral exponents. friend APFloat scalbn(APFloat X, int Exp); private: /// \name Simple Queries /// @{ integerPart *significandParts(); const integerPart *significandParts() const; unsigned int partCount() const; /// @} /// \name Significand operations. /// @{ integerPart addSignificand(const APFloat &); integerPart subtractSignificand(const APFloat &, integerPart); lostFraction addOrSubtractSignificand(const APFloat &, bool subtract); lostFraction multiplySignificand(const APFloat &, const APFloat *); lostFraction divideSignificand(const APFloat &); void incrementSignificand(); void initialize(const fltSemantics *); void shiftSignificandLeft(unsigned int); lostFraction shiftSignificandRight(unsigned int); unsigned int significandLSB() const; unsigned int significandMSB() const; void zeroSignificand(); /// Return true if the significand excluding the integral bit is all ones. bool isSignificandAllOnes() const; /// Return true if the significand excluding the integral bit is all zeros. bool isSignificandAllZeros() const; /// @} /// \name Arithmetic on special values. /// @{ opStatus addOrSubtractSpecials(const APFloat &, bool subtract); opStatus divideSpecials(const APFloat &); opStatus multiplySpecials(const APFloat &); opStatus modSpecials(const APFloat &); /// @} /// \name Special value setters. /// @{ void makeLargest(bool Neg = false); void makeSmallest(bool Neg = false); void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = nullptr); static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative, const APInt *fill); void makeInf(bool Neg = false); void makeZero(bool Neg = false); /// @} /// \name Miscellany /// @{ bool convertFromStringSpecials(StringRef str); opStatus normalize(roundingMode, lostFraction); opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract); cmpResult compareAbsoluteValue(const APFloat &) const; opStatus handleOverflow(roundingMode); bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const; opStatus convertFromUnsignedParts(const integerPart *, unsigned int, roundingMode); opStatus convertFromHexadecimalString(StringRef, roundingMode); opStatus convertFromDecimalString(StringRef, roundingMode); char *convertNormalToHexString(char *, unsigned int, bool, roundingMode) const; opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, roundingMode); /// @} APInt convertHalfAPFloatToAPInt() const; APInt convertFloatAPFloatToAPInt() const; APInt convertDoubleAPFloatToAPInt() const; APInt convertQuadrupleAPFloatToAPInt() const; APInt convertF80LongDoubleAPFloatToAPInt() const; APInt convertPPCDoubleDoubleAPFloatToAPInt() const; void initFromAPInt(const fltSemantics *Sem, const APInt &api); void initFromHalfAPInt(const APInt &api); void initFromFloatAPInt(const APInt &api); void initFromDoubleAPInt(const APInt &api); void initFromQuadrupleAPInt(const APInt &api); void initFromF80LongDoubleAPInt(const APInt &api); void initFromPPCDoubleDoubleAPInt(const APInt &api); void assign(const APFloat &); void copySignificand(const APFloat &); void freeSignificand(); /// The semantics that this value obeys. const fltSemantics *semantics; /// A binary fraction with an explicit integer bit. /// /// The significand must be at least one bit wider than the target precision. union Significand { integerPart part; integerPart *parts; } significand; /// The signed unbiased exponent of the value. ExponentType exponent; /// What kind of floating point number this is. /// /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. /// Using the extra bit keeps it from failing under VisualStudio. fltCategory category : 3; /// Sign bit of the number. unsigned int sign : 1; }; /// See friend declarations above. /// /// These additional declarations are required in order to compile LLVM with IBM /// xlC compiler. hash_code hash_value(const APFloat &Arg); APFloat scalbn(APFloat X, int Exp); /// \brief Returns the absolute value of the argument. inline APFloat abs(APFloat X) { X.clearSign(); return X; } /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if /// both are not NaN. If either argument is a NaN, returns the other argument. LLVM_READONLY inline APFloat minnum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return B; if (B.isNaN()) return A; return (B.compare(A) == APFloat::cmpLessThan) ? B : A; } /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if /// both are not NaN. If either argument is a NaN, returns the other argument. LLVM_READONLY inline APFloat maxnum(const APFloat &A, const APFloat &B) { if (A.isNaN()) return B; if (B.isNaN()) return A; return (A.compare(B) == APFloat::cmpLessThan) ? B : A; } } // namespace llvm #endif // LLVM_ADT_APFLOAT_H