//===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MachObjectWriter.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCMachOSymbolFlags.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachO.h" #include "llvm/Target/TargetAsmBackend.h" // FIXME: Gross. #include "../Target/X86/X86FixupKinds.h" #include using namespace llvm; static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: llvm_unreachable("invalid fixup kind!"); case X86::reloc_pcrel_1byte: case FK_Data_1: return 0; case FK_Data_2: return 1; case X86::reloc_pcrel_4byte: case X86::reloc_riprel_4byte: case X86::reloc_riprel_4byte_movq_load: case FK_Data_4: return 2; case FK_Data_8: return 3; } } static bool isFixupKindPCRel(unsigned Kind) { switch (Kind) { default: return false; case X86::reloc_pcrel_1byte: case X86::reloc_pcrel_4byte: case X86::reloc_riprel_4byte: case X86::reloc_riprel_4byte_movq_load: return true; } } static bool isFixupKindRIPRel(unsigned Kind) { return Kind == X86::reloc_riprel_4byte || Kind == X86::reloc_riprel_4byte_movq_load; } static bool doesSymbolRequireExternRelocation(MCSymbolData *SD) { // Undefined symbols are always extern. if (SD->Symbol->isUndefined()) return true; // References to weak definitions require external relocation entries; the // definition may not always be the one in the same object file. if (SD->getFlags() & SF_WeakDefinition) return true; // Otherwise, we can use an internal relocation. return false; } namespace { class MachObjectWriterImpl { // See . enum { Header_Magic32 = 0xFEEDFACE, Header_Magic64 = 0xFEEDFACF }; enum { Header32Size = 28, Header64Size = 32, SegmentLoadCommand32Size = 56, SegmentLoadCommand64Size = 72, Section32Size = 68, Section64Size = 80, SymtabLoadCommandSize = 24, DysymtabLoadCommandSize = 80, Nlist32Size = 12, Nlist64Size = 16, RelocationInfoSize = 8 }; enum HeaderFileType { HFT_Object = 0x1 }; enum HeaderFlags { HF_SubsectionsViaSymbols = 0x2000 }; enum LoadCommandType { LCT_Segment = 0x1, LCT_Symtab = 0x2, LCT_Dysymtab = 0xb, LCT_Segment64 = 0x19 }; // See . enum SymbolTypeType { STT_Undefined = 0x00, STT_Absolute = 0x02, STT_Section = 0x0e }; enum SymbolTypeFlags { // If any of these bits are set, then the entry is a stab entry number (see // . Otherwise the other masks apply. STF_StabsEntryMask = 0xe0, STF_TypeMask = 0x0e, STF_External = 0x01, STF_PrivateExtern = 0x10 }; /// IndirectSymbolFlags - Flags for encoding special values in the indirect /// symbol entry. enum IndirectSymbolFlags { ISF_Local = 0x80000000, ISF_Absolute = 0x40000000 }; /// RelocationFlags - Special flags for addresses. enum RelocationFlags { RF_Scattered = 0x80000000 }; enum RelocationInfoType { RIT_Vanilla = 0, RIT_Pair = 1, RIT_Difference = 2, RIT_PreboundLazyPointer = 3, RIT_LocalDifference = 4, RIT_TLV = 5 }; /// X86_64 uses its own relocation types. enum RelocationInfoTypeX86_64 { RIT_X86_64_Unsigned = 0, RIT_X86_64_Signed = 1, RIT_X86_64_Branch = 2, RIT_X86_64_GOTLoad = 3, RIT_X86_64_GOT = 4, RIT_X86_64_Subtractor = 5, RIT_X86_64_Signed1 = 6, RIT_X86_64_Signed2 = 7, RIT_X86_64_Signed4 = 8, RIT_X86_64_TLV = 9 }; /// MachSymbolData - Helper struct for containing some precomputed information /// on symbols. struct MachSymbolData { MCSymbolData *SymbolData; uint64_t StringIndex; uint8_t SectionIndex; // Support lexicographic sorting. bool operator<(const MachSymbolData &RHS) const { return SymbolData->getSymbol().getName() < RHS.SymbolData->getSymbol().getName(); } }; /// @name Relocation Data /// @{ struct MachRelocationEntry { uint32_t Word0; uint32_t Word1; }; llvm::DenseMap > Relocations; llvm::DenseMap IndirectSymBase; /// @} /// @name Symbol Table Data /// @{ SmallString<256> StringTable; std::vector LocalSymbolData; std::vector ExternalSymbolData; std::vector UndefinedSymbolData; /// @} MachObjectWriter *Writer; raw_ostream &OS; unsigned Is64Bit : 1; public: MachObjectWriterImpl(MachObjectWriter *_Writer, bool _Is64Bit) : Writer(_Writer), OS(Writer->getStream()), Is64Bit(_Is64Bit) { } void Write8(uint8_t Value) { Writer->Write8(Value); } void Write16(uint16_t Value) { Writer->Write16(Value); } void Write32(uint32_t Value) { Writer->Write32(Value); } void Write64(uint64_t Value) { Writer->Write64(Value); } void WriteZeros(unsigned N) { Writer->WriteZeros(N); } void WriteBytes(StringRef Str, unsigned ZeroFillSize = 0) { Writer->WriteBytes(Str, ZeroFillSize); } void WriteHeader(unsigned NumLoadCommands, unsigned LoadCommandsSize, bool SubsectionsViaSymbols) { uint32_t Flags = 0; if (SubsectionsViaSymbols) Flags |= HF_SubsectionsViaSymbols; // struct mach_header (28 bytes) or // struct mach_header_64 (32 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(Is64Bit ? Header_Magic64 : Header_Magic32); // FIXME: Support cputype. Write32(Is64Bit ? MachO::CPUTypeX86_64 : MachO::CPUTypeI386); // FIXME: Support cpusubtype. Write32(MachO::CPUSubType_I386_ALL); Write32(HFT_Object); Write32(NumLoadCommands); // Object files have a single load command, the // segment. Write32(LoadCommandsSize); Write32(Flags); if (Is64Bit) Write32(0); // reserved assert(OS.tell() - Start == Is64Bit ? Header64Size : Header32Size); } /// WriteSegmentLoadCommand - Write a segment load command. /// /// \arg NumSections - The number of sections in this segment. /// \arg SectionDataSize - The total size of the sections. void WriteSegmentLoadCommand(unsigned NumSections, uint64_t VMSize, uint64_t SectionDataStartOffset, uint64_t SectionDataSize) { // struct segment_command (56 bytes) or // struct segment_command_64 (72 bytes) uint64_t Start = OS.tell(); (void) Start; unsigned SegmentLoadCommandSize = Is64Bit ? SegmentLoadCommand64Size : SegmentLoadCommand32Size; Write32(Is64Bit ? LCT_Segment64 : LCT_Segment); Write32(SegmentLoadCommandSize + NumSections * (Is64Bit ? Section64Size : Section32Size)); WriteBytes("", 16); if (Is64Bit) { Write64(0); // vmaddr Write64(VMSize); // vmsize Write64(SectionDataStartOffset); // file offset Write64(SectionDataSize); // file size } else { Write32(0); // vmaddr Write32(VMSize); // vmsize Write32(SectionDataStartOffset); // file offset Write32(SectionDataSize); // file size } Write32(0x7); // maxprot Write32(0x7); // initprot Write32(NumSections); Write32(0); // flags assert(OS.tell() - Start == SegmentLoadCommandSize); } void WriteSection(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCSectionData &SD, uint64_t FileOffset, uint64_t RelocationsStart, unsigned NumRelocations) { uint64_t SectionSize = Layout.getSectionSize(&SD); // The offset is unused for virtual sections. if (Asm.getBackend().isVirtualSection(SD.getSection())) { assert(Layout.getSectionFileSize(&SD) == 0 && "Invalid file size!"); FileOffset = 0; } // struct section (68 bytes) or // struct section_64 (80 bytes) uint64_t Start = OS.tell(); (void) Start; const MCSectionMachO &Section = cast(SD.getSection()); WriteBytes(Section.getSectionName(), 16); WriteBytes(Section.getSegmentName(), 16); if (Is64Bit) { Write64(Layout.getSectionAddress(&SD)); // address Write64(SectionSize); // size } else { Write32(Layout.getSectionAddress(&SD)); // address Write32(SectionSize); // size } Write32(FileOffset); unsigned Flags = Section.getTypeAndAttributes(); if (SD.hasInstructions()) Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS; assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); Write32(Log2_32(SD.getAlignment())); Write32(NumRelocations ? RelocationsStart : 0); Write32(NumRelocations); Write32(Flags); Write32(IndirectSymBase.lookup(&SD)); // reserved1 Write32(Section.getStubSize()); // reserved2 if (Is64Bit) Write32(0); // reserved3 assert(OS.tell() - Start == Is64Bit ? Section64Size : Section32Size); } void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, uint32_t StringTableOffset, uint32_t StringTableSize) { // struct symtab_command (24 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Symtab); Write32(SymtabLoadCommandSize); Write32(SymbolOffset); Write32(NumSymbols); Write32(StringTableOffset); Write32(StringTableSize); assert(OS.tell() - Start == SymtabLoadCommandSize); } void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol, uint32_t NumLocalSymbols, uint32_t FirstExternalSymbol, uint32_t NumExternalSymbols, uint32_t FirstUndefinedSymbol, uint32_t NumUndefinedSymbols, uint32_t IndirectSymbolOffset, uint32_t NumIndirectSymbols) { // struct dysymtab_command (80 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Dysymtab); Write32(DysymtabLoadCommandSize); Write32(FirstLocalSymbol); Write32(NumLocalSymbols); Write32(FirstExternalSymbol); Write32(NumExternalSymbols); Write32(FirstUndefinedSymbol); Write32(NumUndefinedSymbols); Write32(0); // tocoff Write32(0); // ntoc Write32(0); // modtaboff Write32(0); // nmodtab Write32(0); // extrefsymoff Write32(0); // nextrefsyms Write32(IndirectSymbolOffset); Write32(NumIndirectSymbols); Write32(0); // extreloff Write32(0); // nextrel Write32(0); // locreloff Write32(0); // nlocrel assert(OS.tell() - Start == DysymtabLoadCommandSize); } void WriteNlist(MachSymbolData &MSD, const MCAsmLayout &Layout) { MCSymbolData &Data = *MSD.SymbolData; const MCSymbol &Symbol = Data.getSymbol(); uint8_t Type = 0; uint16_t Flags = Data.getFlags(); uint32_t Address = 0; // Set the N_TYPE bits. See . // // FIXME: Are the prebound or indirect fields possible here? if (Symbol.isUndefined()) Type = STT_Undefined; else if (Symbol.isAbsolute()) Type = STT_Absolute; else Type = STT_Section; // FIXME: Set STAB bits. if (Data.isPrivateExtern()) Type |= STF_PrivateExtern; // Set external bit. if (Data.isExternal() || Symbol.isUndefined()) Type |= STF_External; // Compute the symbol address. if (Symbol.isDefined()) { if (Symbol.isAbsolute()) { Address = cast(Symbol.getVariableValue())->getValue(); } else { Address = Layout.getSymbolAddress(&Data); } } else if (Data.isCommon()) { // Common symbols are encoded with the size in the address // field, and their alignment in the flags. Address = Data.getCommonSize(); // Common alignment is packed into the 'desc' bits. if (unsigned Align = Data.getCommonAlignment()) { unsigned Log2Size = Log2_32(Align); assert((1U << Log2Size) == Align && "Invalid 'common' alignment!"); if (Log2Size > 15) report_fatal_error("invalid 'common' alignment '" + Twine(Align) + "'"); // FIXME: Keep this mask with the SymbolFlags enumeration. Flags = (Flags & 0xF0FF) | (Log2Size << 8); } } // struct nlist (12 bytes) Write32(MSD.StringIndex); Write8(Type); Write8(MSD.SectionIndex); // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' // value. Write16(Flags); if (Is64Bit) Write64(Address); else Write32(Address); } // FIXME: We really need to improve the relocation validation. Basically, we // want to implement a separate computation which evaluates the relocation // entry as the linker would, and verifies that the resultant fixup value is // exactly what the encoder wanted. This will catch several classes of // problems: // // - Relocation entry bugs, the two algorithms are unlikely to have the same // exact bug. // // - Relaxation issues, where we forget to relax something. // // - Input errors, where something cannot be correctly encoded. 'as' allows // these through in many cases. void RecordX86_64Relocation(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind()); unsigned IsRIPRel = isFixupKindRIPRel(Fixup.getKind()); unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind()); // See . uint32_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset(); uint32_t FixupAddress = Layout.getFragmentAddress(Fragment) + Fixup.getOffset(); int64_t Value = 0; unsigned Index = 0; unsigned IsExtern = 0; unsigned Type = 0; Value = Target.getConstant(); if (IsPCRel) { // Compensate for the relocation offset, Darwin x86_64 relocations only // have the addend and appear to have attempted to define it to be the // actual expression addend without the PCrel bias. However, instructions // with data following the relocation are not accomodated for (see comment // below regarding SIGNED{1,2,4}), so it isn't exactly that either. Value += 1LL << Log2Size; } if (Target.isAbsolute()) { // constant // SymbolNum of 0 indicates the absolute section. Type = RIT_X86_64_Unsigned; Index = 0; // FIXME: I believe this is broken, I don't think the linker can // understand it. I think it would require a local relocation, but I'm not // sure if that would work either. The official way to get an absolute // PCrel relocation is to use an absolute symbol (which we don't support // yet). if (IsPCRel) { IsExtern = 1; Type = RIT_X86_64_Branch; } } else if (Target.getSymB()) { // A - B + constant const MCSymbol *A = &Target.getSymA()->getSymbol(); MCSymbolData &A_SD = Asm.getSymbolData(*A); const MCSymbolData *A_Base = Asm.getAtom(Layout, &A_SD); const MCSymbol *B = &Target.getSymB()->getSymbol(); MCSymbolData &B_SD = Asm.getSymbolData(*B); const MCSymbolData *B_Base = Asm.getAtom(Layout, &B_SD); // Neither symbol can be modified. if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None || Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None) report_fatal_error("unsupported relocation of modified symbol"); // We don't support PCrel relocations of differences. Darwin 'as' doesn't // implement most of these correctly. if (IsPCRel) report_fatal_error("unsupported pc-relative relocation of difference"); // We don't currently support any situation where one or both of the // symbols would require a local relocation. This is almost certainly // unused and may not be possible to encode correctly. if (!A_Base || !B_Base) report_fatal_error("unsupported local relocations in difference"); // Darwin 'as' doesn't emit correct relocations for this (it ends up with // a single SIGNED relocation); reject it for now. if (A_Base == B_Base) report_fatal_error("unsupported relocation with identical base"); Value += Layout.getSymbolAddress(&A_SD) - Layout.getSymbolAddress(A_Base); Value -= Layout.getSymbolAddress(&B_SD) - Layout.getSymbolAddress(B_Base); Index = A_Base->getIndex(); IsExtern = 1; Type = RIT_X86_64_Unsigned; MachRelocationEntry MRE; MRE.Word0 = FixupOffset; MRE.Word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (IsExtern << 27) | (Type << 28)); Relocations[Fragment->getParent()].push_back(MRE); Index = B_Base->getIndex(); IsExtern = 1; Type = RIT_X86_64_Subtractor; } else { const MCSymbol *Symbol = &Target.getSymA()->getSymbol(); MCSymbolData &SD = Asm.getSymbolData(*Symbol); const MCSymbolData *Base = Asm.getAtom(Layout, &SD); // Relocations inside debug sections always use local relocations when // possible. This seems to be done because the debugger doesn't fully // understand x86_64 relocation entries, and expects to find values that // have already been fixed up. if (Symbol->isInSection()) { const MCSectionMachO &Section = static_cast( Fragment->getParent()->getSection()); if (Section.hasAttribute(MCSectionMachO::S_ATTR_DEBUG)) Base = 0; } // x86_64 almost always uses external relocations, except when there is no // symbol to use as a base address (a local symbol with no preceeding // non-local symbol). if (Base) { Index = Base->getIndex(); IsExtern = 1; // Add the local offset, if needed. if (Base != &SD) Value += Layout.getSymbolAddress(&SD) - Layout.getSymbolAddress(Base); } else if (Symbol->isInSection()) { // The index is the section ordinal (1-based). Index = SD.getFragment()->getParent()->getOrdinal() + 1; IsExtern = 0; Value += Layout.getSymbolAddress(&SD); if (IsPCRel) Value -= FixupAddress + (1 << Log2Size); } else { report_fatal_error("unsupported relocation of undefined symbol '" + Symbol->getName() + "'"); } MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind(); if (IsPCRel) { if (IsRIPRel) { if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) { // x86_64 distinguishes movq foo@GOTPCREL so that the linker can // rewrite the movq to an leaq at link time if the symbol ends up in // the same linkage unit. if (unsigned(Fixup.getKind()) == X86::reloc_riprel_4byte_movq_load) Type = RIT_X86_64_GOTLoad; else Type = RIT_X86_64_GOT; } else if (Modifier == MCSymbolRefExpr::VK_TLVP) { Type = RIT_X86_64_TLV; } else if (Modifier != MCSymbolRefExpr::VK_None) { report_fatal_error("unsupported symbol modifier in relocation"); } else { Type = RIT_X86_64_Signed; // The Darwin x86_64 relocation format has a problem where it cannot // encode an address (L + ) which is outside the atom // containing L. Generally, this shouldn't occur but it does // happen when we have a RIPrel instruction with data following the // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel // adjustment Darwin x86_64 uses, the offset is still negative and // the linker has no way to recognize this. // // To work around this, Darwin uses several special relocation types // to indicate the offsets. However, the specification or // implementation of these seems to also be incomplete; they should // adjust the addend as well based on the actual encoded instruction // (the additional bias), but instead appear to just look at the // final offset. switch (-(Target.getConstant() + (1LL << Log2Size))) { case 1: Type = RIT_X86_64_Signed1; break; case 2: Type = RIT_X86_64_Signed2; break; case 4: Type = RIT_X86_64_Signed4; break; } } } else { if (Modifier != MCSymbolRefExpr::VK_None) report_fatal_error("unsupported symbol modifier in branch " "relocation"); Type = RIT_X86_64_Branch; } } else { if (Modifier == MCSymbolRefExpr::VK_GOT) { Type = RIT_X86_64_GOT; } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) { // GOTPCREL is allowed as a modifier on non-PCrel instructions, in // which case all we do is set the PCrel bit in the relocation entry; // this is used with exception handling, for example. The source is // required to include any necessary offset directly. Type = RIT_X86_64_GOT; IsPCRel = 1; } else if (Modifier == MCSymbolRefExpr::VK_TLVP) { report_fatal_error("TLVP symbol modifier should have been rip-rel"); } else if (Modifier != MCSymbolRefExpr::VK_None) report_fatal_error("unsupported symbol modifier in relocation"); else Type = RIT_X86_64_Unsigned; } } // x86_64 always writes custom values into the fixups. FixedValue = Value; // struct relocation_info (8 bytes) MachRelocationEntry MRE; MRE.Word0 = FixupOffset; MRE.Word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (IsExtern << 27) | (Type << 28)); Relocations[Fragment->getParent()].push_back(MRE); } void RecordScatteredRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset(); unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind()); unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind()); unsigned Type = RIT_Vanilla; // See . const MCSymbol *A = &Target.getSymA()->getSymbol(); MCSymbolData *A_SD = &Asm.getSymbolData(*A); if (!A_SD->getFragment()) report_fatal_error("symbol '" + A->getName() + "' can not be undefined in a subtraction expression"); uint32_t Value = Layout.getSymbolAddress(A_SD); uint32_t Value2 = 0; if (const MCSymbolRefExpr *B = Target.getSymB()) { MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol()); if (!B_SD->getFragment()) report_fatal_error("symbol '" + B->getSymbol().getName() + "' can not be undefined in a subtraction expression"); // Select the appropriate difference relocation type. // // Note that there is no longer any semantic difference between these two // relocation types from the linkers point of view, this is done solely // for pedantic compatibility with 'as'. Type = A_SD->isExternal() ? RIT_Difference : RIT_LocalDifference; Value2 = Layout.getSymbolAddress(B_SD); } // Relocations are written out in reverse order, so the PAIR comes first. if (Type == RIT_Difference || Type == RIT_LocalDifference) { MachRelocationEntry MRE; MRE.Word0 = ((0 << 0) | (RIT_Pair << 24) | (Log2Size << 28) | (IsPCRel << 30) | RF_Scattered); MRE.Word1 = Value2; Relocations[Fragment->getParent()].push_back(MRE); } MachRelocationEntry MRE; MRE.Word0 = ((FixupOffset << 0) | (Type << 24) | (Log2Size << 28) | (IsPCRel << 30) | RF_Scattered); MRE.Word1 = Value; Relocations[Fragment->getParent()].push_back(MRE); } void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { if (Is64Bit) { RecordX86_64Relocation(Asm, Layout, Fragment, Fixup, Target, FixedValue); return; } unsigned IsPCRel = isFixupKindPCRel(Fixup.getKind()); unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind()); // If this is a difference or a defined symbol plus an offset, then we need // a scattered relocation entry. // Differences always require scattered relocations. if (Target.getSymB()) return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup, Target, FixedValue); // Get the symbol data, if any. MCSymbolData *SD = 0; if (Target.getSymA()) SD = &Asm.getSymbolData(Target.getSymA()->getSymbol()); // If this is an internal relocation with an offset, it also needs a // scattered relocation entry. uint32_t Offset = Target.getConstant(); if (IsPCRel) Offset += 1 << Log2Size; if (Offset && SD && !doesSymbolRequireExternRelocation(SD)) return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup, Target, FixedValue); // See . uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset(); uint32_t Value = 0; unsigned Index = 0; unsigned IsExtern = 0; unsigned Type = 0; if (Target.isAbsolute()) { // constant // SymbolNum of 0 indicates the absolute section. // // FIXME: Currently, these are never generated (see code below). I cannot // find a case where they are actually emitted. Type = RIT_Vanilla; Value = 0; } else { // Check whether we need an external or internal relocation. if (doesSymbolRequireExternRelocation(SD)) { IsExtern = 1; Index = SD->getIndex(); // For external relocations, make sure to offset the fixup value to // compensate for the addend of the symbol address, if it was // undefined. This occurs with weak definitions, for example. if (!SD->Symbol->isUndefined()) FixedValue -= Layout.getSymbolAddress(SD); Value = 0; } else { // The index is the section ordinal (1-based). Index = SD->getFragment()->getParent()->getOrdinal() + 1; Value = Layout.getSymbolAddress(SD); } Type = RIT_Vanilla; } // struct relocation_info (8 bytes) MachRelocationEntry MRE; MRE.Word0 = FixupOffset; MRE.Word1 = ((Index << 0) | (IsPCRel << 24) | (Log2Size << 25) | (IsExtern << 27) | (Type << 28)); Relocations[Fragment->getParent()].push_back(MRE); } void BindIndirectSymbols(MCAssembler &Asm) { // This is the point where 'as' creates actual symbols for indirect symbols // (in the following two passes). It would be easier for us to do this // sooner when we see the attribute, but that makes getting the order in the // symbol table much more complicated than it is worth. // // FIXME: Revisit this when the dust settles. // Bind non lazy symbol pointers first. unsigned IndirectIndex = 0; for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) { const MCSectionMachO &Section = cast(it->SectionData->getSection()); if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) continue; // Initialize the section indirect symbol base, if necessary. if (!IndirectSymBase.count(it->SectionData)) IndirectSymBase[it->SectionData] = IndirectIndex; Asm.getOrCreateSymbolData(*it->Symbol); } // Then lazy symbol pointers and symbol stubs. IndirectIndex = 0; for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) { const MCSectionMachO &Section = cast(it->SectionData->getSection()); if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS && Section.getType() != MCSectionMachO::S_SYMBOL_STUBS) continue; // Initialize the section indirect symbol base, if necessary. if (!IndirectSymBase.count(it->SectionData)) IndirectSymBase[it->SectionData] = IndirectIndex; // Set the symbol type to undefined lazy, but only on construction. // // FIXME: Do not hardcode. bool Created; MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created); if (Created) Entry.setFlags(Entry.getFlags() | 0x0001); } } /// ComputeSymbolTable - Compute the symbol table data /// /// \param StringTable [out] - The string table data. /// \param StringIndexMap [out] - Map from symbol names to offsets in the /// string table. void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable, std::vector &LocalSymbolData, std::vector &ExternalSymbolData, std::vector &UndefinedSymbolData) { // Build section lookup table. DenseMap SectionIndexMap; unsigned Index = 1; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) SectionIndexMap[&it->getSection()] = Index; assert(Index <= 256 && "Too many sections!"); // Index 0 is always the empty string. StringMap StringIndexMap; StringTable += '\x00'; // Build the symbol arrays and the string table, but only for non-local // symbols. // // The particular order that we collect the symbols and create the string // table, then sort the symbols is chosen to match 'as'. Even though it // doesn't matter for correctness, this is important for letting us diff .o // files. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { const MCSymbol &Symbol = it->getSymbol(); // Ignore non-linker visible symbols. if (!Asm.isSymbolLinkerVisible(it)) continue; if (!it->isExternal() && !Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isUndefined()) { MSD.SectionIndex = 0; UndefinedSymbolData.push_back(MSD); } else if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; ExternalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); ExternalSymbolData.push_back(MSD); } } // Now add the data for local symbols. for (MCAssembler::symbol_iterator it = Asm.symbol_begin(), ie = Asm.symbol_end(); it != ie; ++it) { const MCSymbol &Symbol = it->getSymbol(); // Ignore non-linker visible symbols. if (!Asm.isSymbolLinkerVisible(it)) continue; if (it->isExternal() || Symbol.isUndefined()) continue; uint64_t &Entry = StringIndexMap[Symbol.getName()]; if (!Entry) { Entry = StringTable.size(); StringTable += Symbol.getName(); StringTable += '\x00'; } MachSymbolData MSD; MSD.SymbolData = it; MSD.StringIndex = Entry; if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; LocalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); LocalSymbolData.push_back(MSD); } } // External and undefined symbols are required to be in lexicographic order. std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end()); std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end()); // Set the symbol indices. Index = 0; for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) LocalSymbolData[i].SymbolData->setIndex(Index++); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) ExternalSymbolData[i].SymbolData->setIndex(Index++); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) UndefinedSymbolData[i].SymbolData->setIndex(Index++); // The string table is padded to a multiple of 4. while (StringTable.size() % 4) StringTable += '\x00'; } void ExecutePostLayoutBinding(MCAssembler &Asm) { // Create symbol data for any indirect symbols. BindIndirectSymbols(Asm); // Compute symbol table information and bind symbol indices. ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData, UndefinedSymbolData); } void WriteObject(const MCAssembler &Asm, const MCAsmLayout &Layout) { unsigned NumSections = Asm.size(); // The section data starts after the header, the segment load command (and // section headers) and the symbol table. unsigned NumLoadCommands = 1; uint64_t LoadCommandsSize = Is64Bit ? SegmentLoadCommand64Size + NumSections * Section64Size : SegmentLoadCommand32Size + NumSections * Section32Size; // Add the symbol table load command sizes, if used. unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() + UndefinedSymbolData.size(); if (NumSymbols) { NumLoadCommands += 2; LoadCommandsSize += SymtabLoadCommandSize + DysymtabLoadCommandSize; } // Compute the total size of the section data, as well as its file size and // vm size. uint64_t SectionDataStart = (Is64Bit ? Header64Size : Header32Size) + LoadCommandsSize; uint64_t SectionDataSize = 0; uint64_t SectionDataFileSize = 0; uint64_t VMSize = 0; for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { const MCSectionData &SD = *it; uint64_t Address = Layout.getSectionAddress(&SD); uint64_t Size = Layout.getSectionSize(&SD); uint64_t FileSize = Layout.getSectionFileSize(&SD); VMSize = std::max(VMSize, Address + Size); if (Asm.getBackend().isVirtualSection(SD.getSection())) continue; SectionDataSize = std::max(SectionDataSize, Address + Size); SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize); } // The section data is padded to 4 bytes. // // FIXME: Is this machine dependent? unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4); SectionDataFileSize += SectionDataPadding; // Write the prolog, starting with the header and load command... WriteHeader(NumLoadCommands, LoadCommandsSize, Asm.getSubsectionsViaSymbols()); WriteSegmentLoadCommand(NumSections, VMSize, SectionDataStart, SectionDataSize); // ... and then the section headers. uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize; for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { std::vector &Relocs = Relocations[it]; unsigned NumRelocs = Relocs.size(); uint64_t SectionStart = SectionDataStart + Layout.getSectionAddress(it); WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs); RelocTableEnd += NumRelocs * RelocationInfoSize; } // Write the symbol table load command, if used. if (NumSymbols) { unsigned FirstLocalSymbol = 0; unsigned NumLocalSymbols = LocalSymbolData.size(); unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; unsigned NumExternalSymbols = ExternalSymbolData.size(); unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); unsigned NumSymTabSymbols = NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; uint64_t IndirectSymbolOffset = 0; // If used, the indirect symbols are written after the section data. if (NumIndirectSymbols) IndirectSymbolOffset = RelocTableEnd; // The symbol table is written after the indirect symbol data. uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize; // The string table is written after symbol table. uint64_t StringTableOffset = SymbolTableOffset + NumSymTabSymbols * (Is64Bit ? Nlist64Size : Nlist32Size); WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, StringTableOffset, StringTable.size()); WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, FirstExternalSymbol, NumExternalSymbols, FirstUndefinedSymbol, NumUndefinedSymbols, IndirectSymbolOffset, NumIndirectSymbols); } // Write the actual section data. for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) Asm.WriteSectionData(it, Layout, Writer); // Write the extra padding. WriteZeros(SectionDataPadding); // Write the relocation entries. for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) { // Write the section relocation entries, in reverse order to match 'as' // (approximately, the exact algorithm is more complicated than this). std::vector &Relocs = Relocations[it]; for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { Write32(Relocs[e - i - 1].Word0); Write32(Relocs[e - i - 1].Word1); } } // Write the symbol table data, if used. if (NumSymbols) { // Write the indirect symbol entries. for (MCAssembler::const_indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // Indirect symbols in the non lazy symbol pointer section have some // special handling. const MCSectionMachO &Section = static_cast(it->SectionData->getSection()); if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) { // If this symbol is defined and internal, mark it as such. if (it->Symbol->isDefined() && !Asm.getSymbolData(*it->Symbol).isExternal()) { uint32_t Flags = ISF_Local; if (it->Symbol->isAbsolute()) Flags |= ISF_Absolute; Write32(Flags); continue; } } Write32(Asm.getSymbolData(*it->Symbol).getIndex()); } // FIXME: Check that offsets match computed ones. // Write the symbol table entries. for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) WriteNlist(LocalSymbolData[i], Layout); for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) WriteNlist(ExternalSymbolData[i], Layout); for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) WriteNlist(UndefinedSymbolData[i], Layout); // Write the string table. OS << StringTable.str(); } } }; } MachObjectWriter::MachObjectWriter(raw_ostream &OS, bool Is64Bit, bool IsLittleEndian) : MCObjectWriter(OS, IsLittleEndian) { Impl = new MachObjectWriterImpl(this, Is64Bit); } MachObjectWriter::~MachObjectWriter() { delete (MachObjectWriterImpl*) Impl; } void MachObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm) { ((MachObjectWriterImpl*) Impl)->ExecutePostLayoutBinding(Asm); } void MachObjectWriter::RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { ((MachObjectWriterImpl*) Impl)->RecordRelocation(Asm, Layout, Fragment, Fixup, Target, FixedValue); } void MachObjectWriter::WriteObject(const MCAssembler &Asm, const MCAsmLayout &Layout) { ((MachObjectWriterImpl*) Impl)->WriteObject(Asm, Layout); }