//===---- IA64ISelDAGToDAG.cpp - IA64 pattern matching inst selector ------===// // // The LLVM Compiler Infrastructure // // This file was developed by Duraid Madina and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for IA64, // converting a legalized dag to an IA64 dag. // //===----------------------------------------------------------------------===// #include "IA64.h" #include "IA64TargetMachine.h" #include "IA64ISelLowering.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/Statistic.h" #include "llvm/Constants.h" #include "llvm/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" using namespace llvm; namespace { Statistic<> FusedFP ("ia64-codegen", "Number of fused fp operations"); Statistic<> FrameOff("ia64-codegen", "Number of frame idx offsets collapsed"); //===--------------------------------------------------------------------===// /// IA64DAGToDAGISel - IA64 specific code to select IA64 machine /// instructions for SelectionDAG operations. /// class IA64DAGToDAGISel : public SelectionDAGISel { IA64TargetLowering IA64Lowering; unsigned GlobalBaseReg; public: IA64DAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM) {} virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseReg = 0; return SelectionDAGISel::runOnFunction(Fn); } /// getI64Imm - Return a target constant with the specified value, of type /// i64. inline SDOperand getI64Imm(uint64_t Imm) { return CurDAG->getTargetConstant(Imm, MVT::i64); } /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC /// base register. Return the virtual register that holds this value. // SDOperand getGlobalBaseReg(); TODO: hmm // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand Select(SDOperand Op); SDNode *SelectIntImmediateExpr(SDOperand LHS, SDOperand RHS, unsigned OCHi, unsigned OCLo, bool IsArithmetic = false, bool Negate = false); SDNode *SelectBitfieldInsert(SDNode *N); /// SelectCC - Select a comparison of the specified values with the /// specified condition code, returning the CR# of the expression. SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); /// SelectAddr - Given the specified address, return the two operands for a /// load/store instruction, and return true if it should be an indexed [r+r] /// operation. bool SelectAddr(SDOperand Addr, SDOperand &Op1, SDOperand &Op2); SDOperand BuildSDIVSequence(SDNode *N); SDOperand BuildUDIVSequence(SDNode *N); /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG); virtual const char *getPassName() const { return "IA64 (Itanium) DAG->DAG Instruction Selector"; } // Include the pieces autogenerated from the target description. #include "IA64GenDAGISel.inc" private: SDOperand SelectDIV(SDOperand Op); }; } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // The selection process is inherently a bottom-up recursive process (users // select their uses before themselves). Given infinite stack space, we // could just start selecting on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, select the entry node, then all its uses, // iteratively instead of recursively. std::vector Worklist; Worklist.push_back(DAG.getEntryNode()); // Note that we can do this in the IA64 target (scanning forward across token // chain edges) because no nodes ever get folded across these edges. On a // target like X86 which supports load/modify/store operations, this would // have to be more careful. while (!Worklist.empty()) { SDOperand Node = Worklist.back(); Worklist.pop_back(); // Chose from the least deep of the top two nodes. if (!Worklist.empty() && Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth()) std::swap(Worklist.back(), Node); if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END && Node.Val->getOpcode() < IA64ISD::FIRST_NUMBER) || CodeGenMap.count(Node)) continue; for (SDNode::use_iterator UI = Node.Val->use_begin(), E = Node.Val->use_end(); UI != E; ++UI) { // Scan the values. If this use has a value that is a token chain, add it // to the worklist. SDNode *User = *UI; for (unsigned i = 0, e = User->getNumValues(); i != e; ++i) if (User->getValueType(i) == MVT::Other) { Worklist.push_back(SDOperand(User, i)); break; } } // Finally, legalize this node. Select(Node); } // Select target instructions for the DAG. DAG.setRoot(Select(DAG.getRoot())); CodeGenMap.clear(); DAG.RemoveDeadNodes(); // Emit machine code to BB. ScheduleAndEmitDAG(DAG); } SDOperand IA64DAGToDAGISel::SelectDIV(SDOperand Op) { SDNode *N = Op.Val; SDOperand Chain = Select(N->getOperand(0)); SDOperand Tmp1 = Select(N->getOperand(0)); SDOperand Tmp2 = Select(N->getOperand(1)); bool isFP=false; if(MVT::isFloatingPoint(Tmp1.getValueType())) isFP=true; bool isModulus=false; // is it a division or a modulus? bool isSigned=false; switch(N->getOpcode()) { case ISD::FDIV: case ISD::SDIV: isModulus=false; isSigned=true; break; case ISD::UDIV: isModulus=false; isSigned=false; break; case ISD::FREM: case ISD::SREM: isModulus=true; isSigned=true; break; case ISD::UREM: isModulus=true; isSigned=false; break; } // TODO: check for integer divides by powers of 2 (or other simple patterns?) SDOperand TmpPR, TmpPR2; SDOperand TmpF1, TmpF2, TmpF3, TmpF4, TmpF5, TmpF6, TmpF7, TmpF8; SDOperand TmpF9, TmpF10,TmpF11,TmpF12,TmpF13,TmpF14,TmpF15; SDOperand Result; // OK, emit some code: if(!isFP) { // first, load the inputs into FP regs. TmpF1 = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp1); Chain = TmpF1.getValue(1); TmpF2 = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, Tmp2); Chain = TmpF2.getValue(1); // next, convert the inputs to FP if(isSigned) { TmpF3 = CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF1); Chain = TmpF3.getValue(1); TmpF4 = CurDAG->getTargetNode(IA64::FCVTXF, MVT::f64, TmpF2); Chain = TmpF4.getValue(1); } else { TmpF3 = CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF1); Chain = TmpF3.getValue(1); TmpF4 = CurDAG->getTargetNode(IA64::FCVTXUFS1, MVT::f64, TmpF2); Chain = TmpF4.getValue(1); } } else { // this is an FP divide/remainder, so we 'leak' some temp // regs and assign TmpF3=Tmp1, TmpF4=Tmp2 TmpF3=Tmp1; TmpF4=Tmp2; } // we start by computing an approximate reciprocal (good to 9 bits?) // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate) TmpF5 = CurDAG->getTargetNode(IA64::FRCPAS1, MVT::f64, MVT::i1, TmpF3, TmpF4); TmpPR = TmpF5.getValue(1); Chain = TmpF5.getValue(2); if(!isModulus) { // if this is a divide, we worry about div-by-zero SDOperand bogusPR = CurDAG->getTargetNode(IA64::CMPEQ, MVT::i1, CurDAG->getRegister(IA64::r0, MVT::i64), CurDAG->getRegister(IA64::r0, MVT::i64)); Chain = bogusPR.getValue(1); TmpPR2 = CurDAG->getTargetNode(IA64::TPCMPNE, MVT::i1, bogusPR, CurDAG->getRegister(IA64::r0, MVT::i64), CurDAG->getRegister(IA64::r0, MVT::i64), TmpPR); Chain = TmpPR2.getValue(1); } SDOperand F0 = CurDAG->getRegister(IA64::F0, MVT::f64); SDOperand F1 = CurDAG->getRegister(IA64::F1, MVT::f64); // now we apply newton's method, thrice! (FIXME: this is ~72 bits of // precision, don't need this much for f32/i32) TmpF6 = CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64, TmpF4, TmpF5, F1, TmpPR); Chain = TmpF6.getValue(1); TmpF7 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF3, TmpF5, F0, TmpPR); Chain = TmpF7.getValue(1); TmpF8 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF6, TmpF6, F0, TmpPR); Chain = TmpF8.getValue(1); TmpF9 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF6, TmpF7, TmpF7, TmpPR); Chain = TmpF9.getValue(1); TmpF10 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF6, TmpF5, TmpF5, TmpPR); Chain = TmpF10.getValue(1); TmpF11 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF8, TmpF9, TmpF9, TmpPR); Chain = TmpF11.getValue(1); TmpF12 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF8, TmpF10, TmpF10, TmpPR); Chain = TmpF12.getValue(1); TmpF13 = CurDAG->getTargetNode(IA64::CFNMAS1, MVT::f64, TmpF4, TmpF11, TmpF3, TmpPR); Chain = TmpF13.getValue(1); // FIXME: this is unfortunate :( // the story is that the dest reg of the fnma above and the fma below // (and therefore possibly the src of the fcvt.fx[u] as well) cannot // be the same register, or this code breaks if the first argument is // zero. (e.g. without this hack, 0%8 yields -64, not 0.) TmpF14 = CurDAG->getTargetNode(IA64::CFMAS1, MVT::f64, TmpF13, TmpF12, TmpF11, TmpPR); Chain = TmpF14.getValue(1); if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! ! SDOperand bogus = CurDAG->getTargetNode(IA64::IUSE, MVT::Other, TmpF13); // hack :( Chain = bogus.getValue(0); // hmmm } if(!isFP) { // round to an integer if(isSigned) { TmpF15 = CurDAG->getTargetNode(IA64::FCVTFXTRUNCS1, MVT::i64, TmpF14); Chain = TmpF15.getValue(1); } else { TmpF15 = CurDAG->getTargetNode(IA64::FCVTFXUTRUNCS1, MVT::i64, TmpF14); Chain = TmpF15.getValue(1); } } else { TmpF15 = TmpF14; // EXERCISE: can you see why TmpF15=TmpF14 does not work here, and // we really do need the above FMOV? ;) } if(!isModulus) { if(isFP) { // extra worrying about div-by-zero // we do a 'conditional fmov' (of the correct result, depending // on how the frcpa predicate turned out) SDOperand bogoResult = CurDAG->getTargetNode(IA64::PFMOV, MVT::f64, TmpF12, TmpPR2); Chain = bogoResult.getValue(1); Result = CurDAG->getTargetNode(IA64::CFMOV, MVT::f64, bogoResult, TmpF15, TmpPR); Chain = Result.getValue(1); } else { Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, TmpF15); Chain = Result.getValue(1); } } else { // this is a modulus if(!isFP) { // answer = q * (-b) + a SDOperand TmpI = CurDAG->getTargetNode(IA64::SUB, MVT::i64, CurDAG->getRegister(IA64::r0, MVT::i64), Tmp2); Chain = TmpI.getValue(1); SDOperand TmpF = CurDAG->getTargetNode(IA64::SETFSIG, MVT::f64, TmpI); Chain = TmpF.getValue(1); SDOperand ModulusResult = CurDAG->getTargetNode(IA64::XMAL, MVT::f64, TmpF15, TmpF, TmpF1); Chain = ModulusResult.getValue(1); Result = CurDAG->getTargetNode(IA64::GETFSIG, MVT::i64, ModulusResult); Chain = Result.getValue(1); } else { // FP modulus! The horror... the horror.... assert(0 && "sorry, no FP modulus just yet!\n!\n"); } } return Result; } // Select - Convert the specified operand from a target-independent to a // target-specific node if it hasn't already been changed. SDOperand IA64DAGToDAGISel::Select(SDOperand Op) { SDNode *N = Op.Val; if (N->getOpcode() >= ISD::BUILTIN_OP_END && N->getOpcode() < IA64ISD::FIRST_NUMBER) return Op; // Already selected. // If this has already been converted, use it. std::map::iterator CGMI = CodeGenMap.find(Op); if (CGMI != CodeGenMap.end()) return CGMI->second; switch (N->getOpcode()) { default: break; case IA64ISD::BRCALL: { // XXX: this is also a hack! SDOperand Chain = Select(N->getOperand(0)); SDOperand InFlag; // Null incoming flag value. if(N->getNumOperands()==3) // we have an incoming chain, callee and flag InFlag = Select(N->getOperand(2)); unsigned CallOpcode; SDOperand CallOperand; // if we can call directly, do so if (GlobalAddressSDNode *GASD = dyn_cast(N->getOperand(1))) { CallOpcode = IA64::BRCALL_IPREL_GA; CallOperand = CurDAG->getTargetGlobalAddress(GASD->getGlobal(), MVT::i64); } else if (ExternalSymbolSDNode *ESSDN = // FIXME: we currently NEED this // case for correctness, to avoid // "non-pic code with imm reloc.n // against dynamic symbol" errors dyn_cast(N->getOperand(1))) { CallOpcode = IA64::BRCALL_IPREL_ES; CallOperand = N->getOperand(1); } else { // otherwise we need to load the function descriptor, // load the branch target (function)'s entry point and GP, // branch (call) then restore the GP SDOperand FnDescriptor = Select(N->getOperand(1)); // load the branch target's entry point [mem] and // GP value [mem+8] SDOperand targetEntryPoint=CurDAG->getTargetNode(IA64::LD8, MVT::i64, FnDescriptor); Chain = targetEntryPoint.getValue(1); SDOperand targetGPAddr=CurDAG->getTargetNode(IA64::ADDS, MVT::i64, FnDescriptor, CurDAG->getConstant(8, MVT::i64)); Chain = targetGPAddr.getValue(1); SDOperand targetGP=CurDAG->getTargetNode(IA64::LD8, MVT::i64, targetGPAddr); Chain = targetGP.getValue(1); Chain = CurDAG->getCopyToReg(Chain, IA64::r1, targetGP, InFlag); InFlag = Chain.getValue(1); Chain = CurDAG->getCopyToReg(Chain, IA64::B6, targetEntryPoint, InFlag); // FLAG these? InFlag = Chain.getValue(1); CallOperand = CurDAG->getRegister(IA64::B6, MVT::i64); CallOpcode = IA64::BRCALL_INDIRECT; } // Finally, once everything is setup, emit the call itself if(InFlag.Val) Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, CallOperand, InFlag); else // there might be no arguments Chain = CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag, CallOperand, Chain); InFlag = Chain.getValue(1); std::vector CallResults; CallResults.push_back(Chain); CallResults.push_back(InFlag); for (unsigned i = 0, e = CallResults.size(); i != e; ++i) CodeGenMap[Op.getValue(i)] = CallResults[i]; return CallResults[Op.ResNo]; } case IA64ISD::GETFD: { SDOperand Input = Select(N->getOperand(0)); SDOperand Result = CurDAG->getTargetNode(IA64::GETFD, MVT::i64, Input); CodeGenMap[Op] = Result; return Result; } case ISD::CALL: case ISD::TAILCALL: { { // FIXME: This is a workaround for a bug in tblgen. // Pattern #47: (call:Flag (tglobaladdr:i32):$dst, ICC:Flag) // Emits: (CALL:void (tglobaladdr:i32):$dst) // Pattern complexity = 2 cost = 1 SDOperand N1 = N->getOperand(1); if (N1.getOpcode() != ISD::TargetGlobalAddress && N1.getOpcode() != ISD::ExternalSymbol) goto P47Fail; SDOperand InFlag = SDOperand(0, 0); SDOperand Chain = N->getOperand(0); SDOperand Tmp0 = N1; Chain = Select(Chain); SDOperand Result; if (N->getNumOperands() == 3) { InFlag = Select(N->getOperand(2)); Result = CurDAG->getTargetNode(IA64::BRCALL, MVT::Other, MVT::Flag, Tmp0, Chain, InFlag); } else { Result = CurDAG->getTargetNode(IA64::BRCALL, MVT::Other, MVT::Flag, Tmp0, Chain); } Chain = CodeGenMap[SDOperand(N, 0)] = Result.getValue(0); CodeGenMap[SDOperand(N, 1)] = Result.getValue(1); return Result.getValue(Op.ResNo); } P47Fail:; } case ISD::FDIV: case ISD::SDIV: case ISD::UDIV: case ISD::SREM: case ISD::UREM: return SelectDIV(Op); case ISD::DYNAMIC_STACKALLOC: { if (!isa(N->getOperand(2)) || cast(N->getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } SDOperand Chain = Select(N->getOperand(0)); SDOperand Amt = Select(N->getOperand(1)); SDOperand Reg = CurDAG->getRegister(IA64::r12, MVT::i64); SDOperand Val = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64); Chain = Val.getValue(1); // Subtract the amount (guaranteed to be a multiple of the stack alignment) // from the stack pointer, giving us the result pointer. SDOperand Result = Select(CurDAG->getNode(ISD::SUB, MVT::i64, Val, Amt)); // Copy this result back into r12. Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, Reg, Result); // Copy this result back out of r12 to make sure we're not using the stack // space without decrementing the stack pointer. Result = CurDAG->getCopyFromReg(Chain, IA64::r12, MVT::i64); // Finally, replace the DYNAMIC_STACKALLOC with the copyfromreg. CodeGenMap[Op.getValue(0)] = Result; CodeGenMap[Op.getValue(1)] = Result.getValue(1); return SDOperand(Result.Val, Op.ResNo); } case ISD::ConstantFP: { SDOperand Chain = CurDAG->getEntryNode(); // this is a constant, so.. if (cast(N)->isExactlyValue(+0.0)) return CurDAG->getCopyFromReg(Chain, IA64::F0, MVT::f64); else if (cast(N)->isExactlyValue(+1.0)) return CurDAG->getCopyFromReg(Chain, IA64::F1, MVT::f64); else assert(0 && "Unexpected FP constant!"); } case ISD::FrameIndex: { // TODO: reduce creepyness int FI = cast(N)->getIndex(); if (N->hasOneUse()) return CurDAG->SelectNodeTo(N, IA64::MOV, MVT::i64, CurDAG->getTargetFrameIndex(FI, MVT::i64)); return CurDAG->getTargetNode(IA64::MOV, MVT::i64, CurDAG->getTargetFrameIndex(FI, MVT::i64)); } case ISD::ConstantPool: { Constant *C = cast(N)->get(); SDOperand CPI = CurDAG->getTargetConstantPool(C, MVT::i64); return CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, // ? CurDAG->getRegister(IA64::r1, MVT::i64), CPI); } case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); SDOperand GA = CurDAG->getTargetGlobalAddress(GV, MVT::i64); SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_GA, MVT::i64, CurDAG->getRegister(IA64::r1, MVT::i64), GA); return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp); } /* XXX case ISD::ExternalSymbol: { SDOperand EA = CurDAG->getTargetExternalSymbol(cast(N)->getSymbol(), MVT::i64); SDOperand Tmp = CurDAG->getTargetNode(IA64::ADDL_EA, MVT::i64, CurDAG->getRegister(IA64::r1, MVT::i64), EA); return CurDAG->getTargetNode(IA64::LD8, MVT::i64, Tmp); } */ case ISD::LOAD: case ISD::EXTLOAD: case ISD::ZEXTLOAD: { SDOperand Chain = Select(N->getOperand(0)); SDOperand Address = Select(N->getOperand(1)); MVT::ValueType TypeBeingLoaded = (N->getOpcode() == ISD::LOAD) ? N->getValueType(0) : cast(N->getOperand(3))->getVT(); unsigned Opc; switch (TypeBeingLoaded) { default: N->dump(); assert(0 && "Cannot load this type!"); case MVT::i1: { // this is a bool Opc = IA64::LD1; // first we load a byte, then compare for != 0 if(N->getValueType(0) == MVT::i1) // XXX: early exit! return CurDAG->SelectNodeTo(N, IA64::CMPNE, MVT::i1, MVT::Other, CurDAG->getTargetNode(Opc, MVT::i64, Address), CurDAG->getRegister(IA64::r0, MVT::i64), Chain).getValue(Op.ResNo); /* otherwise, we want to load a bool into something bigger: LD1 will do that for us, so we just fall through */ } case MVT::i8: Opc = IA64::LD1; break; case MVT::i16: Opc = IA64::LD2; break; case MVT::i32: Opc = IA64::LD4; break; case MVT::i64: Opc = IA64::LD8; break; case MVT::f32: Opc = IA64::LDF4; break; case MVT::f64: Opc = IA64::LDF8; break; } // TODO: comment this return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), MVT::Other, Address, Chain).getValue(Op.ResNo); } case ISD::TRUNCSTORE: case ISD::STORE: { SDOperand Address = Select(N->getOperand(2)); SDOperand Chain = Select(N->getOperand(0)); unsigned Opc; if (N->getOpcode() == ISD::STORE) { switch (N->getOperand(1).getValueType()) { default: assert(0 && "unknown type in store"); case MVT::i1: { // this is a bool Opc = IA64::ST1; // we store either 0 or 1 as a byte // first load zero! SDOperand Initial = CurDAG->getCopyFromReg(Chain, IA64::r0, MVT::i64); Chain = Initial.getValue(1); // then load 1 iff the predicate to store is 1 SDOperand Tmp = CurDAG->getTargetNode(IA64::PADDS, MVT::i64, Initial, CurDAG->getConstant(1, MVT::i64), Select(N->getOperand(1))); return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Address, Tmp, Chain); } case MVT::i64: Opc = IA64::ST8; break; case MVT::f64: Opc = IA64::STF8; break; } } else { //ISD::TRUNCSTORE switch(cast(N->getOperand(4))->getVT()) { default: assert(0 && "unknown type in truncstore"); case MVT::i8: Opc = IA64::ST1; break; case MVT::i16: Opc = IA64::ST2; break; case MVT::i32: Opc = IA64::ST4; break; case MVT::f32: Opc = IA64::STF4; break; } } return CurDAG->SelectNodeTo(N, Opc, MVT::Other, Select(N->getOperand(2)), Select(N->getOperand(1)), Chain); } case ISD::BRCOND: { SDOperand Chain = Select(N->getOperand(0)); SDOperand CC = Select(N->getOperand(1)); MachineBasicBlock *Dest = cast(N->getOperand(2))->getBasicBlock(); //FIXME - we do NOT need long branches all the time return CurDAG->SelectNodeTo(N, IA64::BRLCOND_NOTCALL, MVT::Other, CC, CurDAG->getBasicBlock(Dest), Chain); } case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: { int64_t Amt = cast(N->getOperand(1))->getValue(); unsigned Opc = N->getOpcode() == ISD::CALLSEQ_START ? IA64::ADJUSTCALLSTACKDOWN : IA64::ADJUSTCALLSTACKUP; return CurDAG->SelectNodeTo(N, Opc, MVT::Other, getI64Imm(Amt), Select(N->getOperand(0))); } case ISD::RET: { SDOperand Chain = Select(N->getOperand(0)); // Token chain. SDOperand InFlag; switch (N->getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 2: { SDOperand RetVal = Select(N->getOperand(1)); switch (RetVal.getValueType()) { default: assert(0 && "I don't know how to return this type! (promote?)"); // FIXME: do I need to add support for bools here? // (return '0' or '1' in r8, basically...) // // FIXME: need to round floats - 80 bits is bad, the tester // told me so case MVT::i64: // we mark r8 as live on exit up above in LowerArguments() // BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1); Chain = CurDAG->getCopyToReg(Chain, IA64::r8, RetVal); InFlag = Chain.getValue(1); break; case MVT::f64: // we mark F8 as live on exit up above in LowerArguments() // BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1); Chain = CurDAG->getCopyToReg(Chain, IA64::F8, RetVal); InFlag = Chain.getValue(1); break; } break; } case 1: break; } // we need to copy VirtGPR (the vreg (to become a real reg)) that holds // the output of this function's alloc instruction back into ar.pfs // before we return. this copy must not float up above the last // outgoing call in this function!!! SDOperand AR_PFSVal = CurDAG->getCopyFromReg(Chain, IA64Lowering.VirtGPR, MVT::i64); Chain = AR_PFSVal.getValue(1); Chain = CurDAG->getCopyToReg(Chain, IA64::AR_PFS, AR_PFSVal); // and then just emit a 'ret' instruction // before returning, restore the ar.pfs register (set by the 'alloc' up top) // BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR); // return CurDAG->SelectNodeTo(N, IA64::RET, MVT::Other, Chain); } case ISD::BR: // FIXME: we don't need long branches all the time! return CurDAG->SelectNodeTo(N, IA64::BRL_NOTCALL, MVT::Other, N->getOperand(1), Select(N->getOperand(0))); } return SelectCode(Op); } /// createIA64DAGToDAGInstructionSelector - This pass converts a legalized DAG /// into an IA64-specific DAG, ready for instruction scheduling. /// FunctionPass *llvm::createIA64DAGToDAGInstructionSelector(TargetMachine &TM) { return new IA64DAGToDAGISel(TM); }