//===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the X86 specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #ifndef X86SUBTARGET_H #define X86SUBTARGET_H #include "llvm/ADT/Triple.h" #include "llvm/IR/CallingConv.h" #include "llvm/Target/TargetSubtargetInfo.h" #include #define GET_SUBTARGETINFO_HEADER #include "X86GenSubtargetInfo.inc" namespace llvm { class GlobalValue; class StringRef; class TargetMachine; /// PICStyles - The X86 backend supports a number of different styles of PIC. /// namespace PICStyles { enum Style { StubPIC, // Used on i386-darwin in -fPIC mode. StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode. GOT, // Used on many 32-bit unices in -fPIC mode. RIPRel, // Used on X86-64 when not in -static mode. None // Set when in -static mode (not PIC or DynamicNoPIC mode). }; } class X86Subtarget : public X86GenSubtargetInfo { protected: enum X86SSEEnum { NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F }; enum X863DNowEnum { NoThreeDNow, ThreeDNow, ThreeDNowA }; enum X86ProcFamilyEnum { Others, IntelAtom, IntelSLM }; /// X86ProcFamily - X86 processor family: Intel Atom, and others X86ProcFamilyEnum X86ProcFamily; /// PICStyle - Which PIC style to use /// PICStyles::Style PICStyle; /// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or /// none supported. X86SSEEnum X86SSELevel; /// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported. /// X863DNowEnum X863DNowLevel; /// HasCMov - True if this processor has conditional move instructions /// (generally pentium pro+). bool HasCMov; /// HasX86_64 - True if the processor supports X86-64 instructions. /// bool HasX86_64; /// HasPOPCNT - True if the processor supports POPCNT. bool HasPOPCNT; /// HasSSE4A - True if the processor supports SSE4A instructions. bool HasSSE4A; /// HasAES - Target has AES instructions bool HasAES; /// HasPCLMUL - Target has carry-less multiplication bool HasPCLMUL; /// HasFMA - Target has 3-operand fused multiply-add bool HasFMA; /// HasFMA4 - Target has 4-operand fused multiply-add bool HasFMA4; /// HasXOP - Target has XOP instructions bool HasXOP; /// HasTBM - Target has TBM instructions. bool HasTBM; /// HasMOVBE - True if the processor has the MOVBE instruction. bool HasMOVBE; /// HasRDRAND - True if the processor has the RDRAND instruction. bool HasRDRAND; /// HasF16C - Processor has 16-bit floating point conversion instructions. bool HasF16C; /// HasFSGSBase - Processor has FS/GS base insturctions. bool HasFSGSBase; /// HasLZCNT - Processor has LZCNT instruction. bool HasLZCNT; /// HasBMI - Processor has BMI1 instructions. bool HasBMI; /// HasBMI2 - Processor has BMI2 instructions. bool HasBMI2; /// HasRTM - Processor has RTM instructions. bool HasRTM; /// HasHLE - Processor has HLE. bool HasHLE; /// HasADX - Processor has ADX instructions. bool HasADX; /// HasSHA - Processor has SHA instructions. bool HasSHA; /// HasPRFCHW - Processor has PRFCHW instructions. bool HasPRFCHW; /// HasRDSEED - Processor has RDSEED instructions. bool HasRDSEED; /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow. bool IsBTMemSlow; /// IsSHLDSlow - True if SHLD instructions are slow. bool IsSHLDSlow; /// IsUAMemFast - True if unaligned memory access is fast. bool IsUAMemFast; /// HasVectorUAMem - True if SIMD operations can have unaligned memory /// operands. This may require setting a feature bit in the processor. bool HasVectorUAMem; /// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction; /// this is true for most x86-64 chips, but not the first AMD chips. bool HasCmpxchg16b; /// UseLeaForSP - True if the LEA instruction should be used for adjusting /// the stack pointer. This is an optimization for Intel Atom processors. bool UseLeaForSP; /// HasSlowDivide - True if smaller divides are significantly faster than /// full divides and should be used when possible. bool HasSlowDivide; /// PostRAScheduler - True if using post-register-allocation scheduler. bool PostRAScheduler; /// PadShortFunctions - True if the short functions should be padded to prevent /// a stall when returning too early. bool PadShortFunctions; /// CallRegIndirect - True if the Calls with memory reference should be converted /// to a register-based indirect call. bool CallRegIndirect; /// LEAUsesAG - True if the LEA instruction inputs have to be ready at /// address generation (AG) time. bool LEAUsesAG; /// Processor has AVX-512 PreFetch Instructions bool HasPFI; /// Processor has AVX-512 Exponential and Reciprocal Instructions bool HasERI; /// Processor has AVX-512 Conflict Detection Instructions bool HasCDI; /// stackAlignment - The minimum alignment known to hold of the stack frame on /// entry to the function and which must be maintained by every function. unsigned stackAlignment; /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. /// unsigned MaxInlineSizeThreshold; /// TargetTriple - What processor and OS we're targeting. Triple TargetTriple; /// Instruction itineraries for scheduling InstrItineraryData InstrItins; private: /// StackAlignOverride - Override the stack alignment. unsigned StackAlignOverride; /// In64BitMode - True if compiling for 64-bit, false for 32-bit. bool In64BitMode; public: /// This constructor initializes the data members to match that /// of the specified triple. /// X86Subtarget(const std::string &TT, const std::string &CPU, const std::string &FS, unsigned StackAlignOverride, bool is64Bit); /// getStackAlignment - Returns the minimum alignment known to hold of the /// stack frame on entry to the function and which must be maintained by every /// function for this subtarget. unsigned getStackAlignment() const { return stackAlignment; } /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size /// that still makes it profitable to inline the call. unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } /// ParseSubtargetFeatures - Parses features string setting specified /// subtarget options. Definition of function is auto generated by tblgen. void ParseSubtargetFeatures(StringRef CPU, StringRef FS); /// AutoDetectSubtargetFeatures - Auto-detect CPU features using CPUID /// instruction. void AutoDetectSubtargetFeatures(); /// \brief Reset the features for the X86 target. virtual void resetSubtargetFeatures(const MachineFunction *MF); private: void initializeEnvironment(); void resetSubtargetFeatures(StringRef CPU, StringRef FS); public: /// Is this x86_64? (disregarding specific ABI / programming model) bool is64Bit() const { return In64BitMode; } /// Is this x86_64 with the ILP32 programming model (x32 ABI)? bool isTarget64BitILP32() const { return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32); } /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? bool isTarget64BitLP64() const { return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32); } PICStyles::Style getPICStyle() const { return PICStyle; } void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } bool hasCMov() const { return HasCMov; } bool hasMMX() const { return X86SSELevel >= MMX; } bool hasSSE1() const { return X86SSELevel >= SSE1; } bool hasSSE2() const { return X86SSELevel >= SSE2; } bool hasSSE3() const { return X86SSELevel >= SSE3; } bool hasSSSE3() const { return X86SSELevel >= SSSE3; } bool hasSSE41() const { return X86SSELevel >= SSE41; } bool hasSSE42() const { return X86SSELevel >= SSE42; } bool hasAVX() const { return X86SSELevel >= AVX; } bool hasAVX2() const { return X86SSELevel >= AVX2; } bool hasAVX512() const { return X86SSELevel >= AVX512F; } bool hasFp256() const { return hasAVX(); } bool hasInt256() const { return hasAVX2(); } bool hasSSE4A() const { return HasSSE4A; } bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } bool hasPOPCNT() const { return HasPOPCNT; } bool hasAES() const { return HasAES; } bool hasPCLMUL() const { return HasPCLMUL; } bool hasFMA() const { return HasFMA; } // FIXME: Favor FMA when both are enabled. Is this the right thing to do? bool hasFMA4() const { return HasFMA4 && !HasFMA; } bool hasXOP() const { return HasXOP; } bool hasTBM() const { return HasTBM; } bool hasMOVBE() const { return HasMOVBE; } bool hasRDRAND() const { return HasRDRAND; } bool hasF16C() const { return HasF16C; } bool hasFSGSBase() const { return HasFSGSBase; } bool hasLZCNT() const { return HasLZCNT; } bool hasBMI() const { return HasBMI; } bool hasBMI2() const { return HasBMI2; } bool hasRTM() const { return HasRTM; } bool hasHLE() const { return HasHLE; } bool hasADX() const { return HasADX; } bool hasSHA() const { return HasSHA; } bool hasPRFCHW() const { return HasPRFCHW; } bool hasRDSEED() const { return HasRDSEED; } bool isBTMemSlow() const { return IsBTMemSlow; } bool isSHLDSlow() const { return IsSHLDSlow; } bool isUnalignedMemAccessFast() const { return IsUAMemFast; } bool hasVectorUAMem() const { return HasVectorUAMem; } bool hasCmpxchg16b() const { return HasCmpxchg16b; } bool useLeaForSP() const { return UseLeaForSP; } bool hasSlowDivide() const { return HasSlowDivide; } bool padShortFunctions() const { return PadShortFunctions; } bool callRegIndirect() const { return CallRegIndirect; } bool LEAusesAG() const { return LEAUsesAG; } bool hasCDI() const { return HasCDI; } bool hasPFI() const { return HasPFI; } bool hasERI() const { return HasERI; } bool isAtom() const { return X86ProcFamily == IntelAtom; } const Triple &getTargetTriple() const { return TargetTriple; } bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } bool isTargetFreeBSD() const { return TargetTriple.getOS() == Triple::FreeBSD; } bool isTargetSolaris() const { return TargetTriple.getOS() == Triple::Solaris; } bool isTargetELF() const { return (TargetTriple.getEnvironment() == Triple::ELF || TargetTriple.isOSBinFormatELF()); } bool isTargetLinux() const { return TargetTriple.isOSLinux(); } bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } bool isTargetWindows() const { return TargetTriple.getOS() == Triple::Win32; } bool isTargetMingw() const { return TargetTriple.getOS() == Triple::MinGW32; } bool isTargetCygwin() const { return TargetTriple.getOS() == Triple::Cygwin; } bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } bool isTargetCOFF() const { return (TargetTriple.getEnvironment() != Triple::ELF && TargetTriple.isOSBinFormatCOFF()); } bool isTargetEnvMacho() const { return TargetTriple.isEnvironmentMachO(); } bool isOSWindows() const { return TargetTriple.isOSWindows(); } bool isTargetWin64() const { return In64BitMode && TargetTriple.isOSWindows(); } bool isTargetWin32() const { return !In64BitMode && (isTargetCygMing() || isTargetWindows()); } bool isPICStyleSet() const { return PICStyle != PICStyles::None; } bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; } bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; } bool isPICStyleStubPIC() const { return PICStyle == PICStyles::StubPIC; } bool isPICStyleStubNoDynamic() const { return PICStyle == PICStyles::StubDynamicNoPIC; } bool isPICStyleStubAny() const { return PICStyle == PICStyles::StubDynamicNoPIC || PICStyle == PICStyles::StubPIC; } bool isCallingConvWin64(CallingConv::ID CC) const { return (isTargetWin64() && CC != CallingConv::X86_64_SysV) || CC == CallingConv::X86_64_Win64; } /// ClassifyGlobalReference - Classify a global variable reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM)const; /// ClassifyBlockAddressReference - Classify a blockaddress reference for the /// current subtarget according to how we should reference it in a non-pcrel /// context. unsigned char ClassifyBlockAddressReference() const; /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls /// to immediate address. bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const; /// This function returns the name of a function which has an interface /// like the non-standard bzero function, if such a function exists on /// the current subtarget and it is considered prefereable over /// memset with zero passed as the second argument. Otherwise it /// returns null. const char *getBZeroEntry() const; /// This function returns true if the target has sincos() routine in its /// compiler runtime or math libraries. bool hasSinCos() const; /// Enable the MachineScheduler pass for all X86 subtargets. bool enableMachineScheduler() const LLVM_OVERRIDE { return true; } /// enablePostRAScheduler - run for Atom optimization. bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const; bool postRAScheduler() const { return PostRAScheduler; } /// getInstrItins = Return the instruction itineraries based on the /// subtarget selection. const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } }; } // End llvm namespace #endif