//===- DSNode.h - Node definition for datastructure graphs ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Data structure graph nodes and some implementation of DSNodeHandle. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_DSNODE_H #define LLVM_ANALYSIS_DSNODE_H #include "llvm/Analysis/DataStructure/DSSupport.h" #include "llvm/ADT/hash_map" namespace llvm { template class DSNodeIterator; // Data structure graph traversal iterator class TargetData; //===----------------------------------------------------------------------===// /// DSNode - Data structure node class /// /// This class represents an untyped memory object of Size bytes. It keeps /// track of any pointers that have been stored into the object as well as the /// different types represented in this object. /// class DSNode { /// NumReferrers - The number of DSNodeHandles pointing to this node... if /// this is a forwarding node, then this is the number of node handles which /// are still forwarding over us. /// unsigned NumReferrers; /// ForwardNH - This NodeHandle contain the node (and offset into the node) /// that this node really is. When nodes get folded together, the node to be /// eliminated has these fields filled in, otherwise ForwardNH.getNode() is /// null. /// DSNodeHandle ForwardNH; /// Next, Prev - These instance variables are used to keep the node on a /// doubly-linked ilist in the DSGraph. /// DSNode *Next, *Prev; friend struct ilist_traits; /// Size - The current size of the node. This should be equal to the size of /// the current type record. /// unsigned Size; /// ParentGraph - The graph this node is currently embedded into. /// DSGraph *ParentGraph; /// Ty - Keep track of the current outer most type of this object, in addition /// to whether or not it has been indexed like an array or not. If the /// isArray bit is set, the node cannot grow. /// const Type *Ty; // The type itself... /// Links - Contains one entry for every sizeof(void*) bytes in this memory /// object. Note that if the node is not a multiple of size(void*) bytes /// large, that there is an extra entry for the "remainder" of the node as /// well. For this reason, nodes of 1 byte in size do have one link. /// std::vector Links; /// Globals - The list of global values that are merged into this node. /// std::vector Globals; void operator=(const DSNode &); // DO NOT IMPLEMENT DSNode(const DSNode &); // DO NOT IMPLEMENT public: enum NodeTy { ShadowNode = 0, // Nothing is known about this node... AllocaNode = 1 << 0, // This node was allocated with alloca HeapNode = 1 << 1, // This node was allocated with malloc GlobalNode = 1 << 2, // This node was allocated by a global var decl UnknownNode = 1 << 3, // This node points to unknown allocated memory Incomplete = 1 << 4, // This node may not be complete Modified = 1 << 5, // This node is modified in this context Read = 1 << 6, // This node is read in this context Array = 1 << 7, // This node is treated like an array //#ifndef NDEBUG DEAD = 1 << 8, // This node is dead and should not be pointed to //#endif Composition = AllocaNode | HeapNode | GlobalNode | UnknownNode }; /// NodeType - A union of the above bits. "Shadow" nodes do not add any flags /// to the nodes in the data structure graph, so it is possible to have nodes /// with a value of 0 for their NodeType. /// private: unsigned short NodeType; public: /// DSNode ctor - Create a node of the specified type, inserting it into the /// specified graph. /// DSNode(const Type *T, DSGraph *G); /// DSNode "copy ctor" - Copy the specified node, inserting it into the /// specified graph. If NullLinks is true, then null out all of the links, /// but keep the same number of them. This can be used for efficiency if the /// links are just going to be clobbered anyway. /// DSNode(const DSNode &, DSGraph *G, bool NullLinks = false); ~DSNode() { dropAllReferences(); assert(hasNoReferrers() && "Referrers to dead node exist!"); } // Iterator for graph interface... Defined in DSGraphTraits.h typedef DSNodeIterator iterator; typedef DSNodeIterator const_iterator; inline iterator begin(); inline iterator end(); inline const_iterator begin() const; inline const_iterator end() const; //===-------------------------------------------------- // Accessors /// getSize - Return the maximum number of bytes occupied by this object... /// unsigned getSize() const { return Size; } /// getType - Return the node type of this object... /// const Type *getType() const { return Ty; } bool isArray() const { return NodeType & Array; } /// hasNoReferrers - Return true if nothing is pointing to this node at all. /// bool hasNoReferrers() const { return getNumReferrers() == 0; } /// getNumReferrers - This method returns the number of referrers to the /// current node. Note that if this node is a forwarding node, this will /// return the number of nodes forwarding over the node! unsigned getNumReferrers() const { return NumReferrers; } DSGraph *getParentGraph() const { return ParentGraph; } void setParentGraph(DSGraph *G) { ParentGraph = G; } /// getTargetData - Get the target data object used to construct this node. /// const TargetData &getTargetData() const; /// getForwardNode - This method returns the node that this node is forwarded /// to, if any. /// DSNode *getForwardNode() const { return ForwardNH.getNode(); } /// isForwarding - Return true if this node is forwarding to another. /// bool isForwarding() const { return !ForwardNH.isNull(); } /// stopForwarding - When the last reference to this forwarding node has been /// dropped, delete the node. /// void stopForwarding() { assert(isForwarding() && "Node isn't forwarding, cannot stopForwarding()!"); ForwardNH.setTo(0, 0); assert(ParentGraph == 0 && "Forwarding nodes must have been removed from graph!"); delete this; } /// hasLink - Return true if this memory object has a link in slot LinkNo /// bool hasLink(unsigned Offset) const { assert((Offset & ((1 << DS::PointerShift)-1)) == 0 && "Pointer offset not aligned correctly!"); unsigned Index = Offset >> DS::PointerShift; assert(Index < Links.size() && "Link index is out of range!"); return Links[Index].getNode(); } /// getLink - Return the link at the specified offset. /// DSNodeHandle &getLink(unsigned Offset) { assert((Offset & ((1 << DS::PointerShift)-1)) == 0 && "Pointer offset not aligned correctly!"); unsigned Index = Offset >> DS::PointerShift; assert(Index < Links.size() && "Link index is out of range!"); return Links[Index]; } const DSNodeHandle &getLink(unsigned Offset) const { assert((Offset & ((1 << DS::PointerShift)-1)) == 0 && "Pointer offset not aligned correctly!"); unsigned Index = Offset >> DS::PointerShift; assert(Index < Links.size() && "Link index is out of range!"); return Links[Index]; } /// getNumLinks - Return the number of links in a node... /// unsigned getNumLinks() const { return Links.size(); } /// edge_* - Provide iterators for accessing outgoing edges. Some outgoing /// edges may be null. typedef std::vector::iterator edge_iterator; typedef std::vector::const_iterator const_edge_iterator; edge_iterator edge_begin() { return Links.begin(); } edge_iterator edge_end() { return Links.end(); } const_edge_iterator edge_begin() const { return Links.begin(); } const_edge_iterator edge_end() const { return Links.end(); } /// mergeTypeInfo - This method merges the specified type into the current /// node at the specified offset. This may update the current node's type /// record if this gives more information to the node, it may do nothing to /// the node if this information is already known, or it may merge the node /// completely (and return true) if the information is incompatible with what /// is already known. /// /// This method returns true if the node is completely folded, otherwise /// false. /// bool mergeTypeInfo(const Type *Ty, unsigned Offset, bool FoldIfIncompatible = true); /// foldNodeCompletely - If we determine that this node has some funny /// behavior happening to it that we cannot represent, we fold it down to a /// single, completely pessimistic, node. This node is represented as a /// single byte with a single TypeEntry of "void" with isArray = true. /// void foldNodeCompletely(); /// isNodeCompletelyFolded - Return true if this node has been completely /// folded down to something that can never be expanded, effectively losing /// all of the field sensitivity that may be present in the node. /// bool isNodeCompletelyFolded() const; /// setLink - Set the link at the specified offset to the specified /// NodeHandle, replacing what was there. It is uncommon to use this method, /// instead one of the higher level methods should be used, below. /// void setLink(unsigned Offset, const DSNodeHandle &NH) { assert((Offset & ((1 << DS::PointerShift)-1)) == 0 && "Pointer offset not aligned correctly!"); unsigned Index = Offset >> DS::PointerShift; assert(Index < Links.size() && "Link index is out of range!"); Links[Index] = NH; } /// getPointerSize - Return the size of a pointer for the current target. /// unsigned getPointerSize() const { return DS::PointerSize; } /// addEdgeTo - Add an edge from the current node to the specified node. This /// can cause merging of nodes in the graph. /// void addEdgeTo(unsigned Offset, const DSNodeHandle &NH); /// mergeWith - Merge this node and the specified node, moving all links to /// and from the argument node into the current node, deleting the node /// argument. Offset indicates what offset the specified node is to be merged /// into the current node. /// /// The specified node may be a null pointer (in which case, nothing happens). /// void mergeWith(const DSNodeHandle &NH, unsigned Offset); /// addGlobal - Add an entry for a global value to the Globals list. This /// also marks the node with the 'G' flag if it does not already have it. /// void addGlobal(GlobalValue *GV); /// removeGlobal - Remove the specified global that is explicitly in the /// globals list. void removeGlobal(GlobalValue *GV); void mergeGlobals(const std::vector &RHS); void clearGlobals() { std::vector().swap(Globals); } /// getGlobalsList - Return the set of global leaders that are represented by /// this node. Note that globals that are in this equivalence class but are /// not leaders are not returned: for that, use addFullGlobalsList(). const std::vector &getGlobalsList() const { return Globals; } /// addFullGlobalsList - Compute the full set of global values that are /// represented by this node. Unlike getGlobalsList(), this requires fair /// amount of work to compute, so don't treat this method call as free. void addFullGlobalsList(std::vector &List) const; /// addFullFunctionList - Identical to addFullGlobalsList, but only return the /// functions in the full list. void addFullFunctionList(std::vector &List) const; /// globals_iterator/begin/end - Provide iteration methods over the global /// value leaders set that is merged into this node. Like the getGlobalsList /// method, these iterators do not return globals that are part of the /// equivalence classes for globals in this node, but aren't leaders. typedef std::vector::const_iterator globals_iterator; globals_iterator globals_begin() const { return Globals.begin(); } globals_iterator globals_end() const { return Globals.end(); } /// maskNodeTypes - Apply a mask to the node types bitfield. /// void maskNodeTypes(unsigned Mask) { NodeType &= Mask; } void mergeNodeFlags(unsigned RHS) { NodeType |= RHS; } /// getNodeFlags - Return all of the flags set on the node. If the DEAD flag /// is set, hide it from the caller. /// unsigned getNodeFlags() const { return NodeType & ~DEAD; } bool isAllocaNode() const { return NodeType & AllocaNode; } bool isHeapNode() const { return NodeType & HeapNode; } bool isGlobalNode() const { return NodeType & GlobalNode; } bool isUnknownNode() const { return NodeType & UnknownNode; } bool isModified() const { return NodeType & Modified; } bool isRead() const { return NodeType & Read; } bool isIncomplete() const { return NodeType & Incomplete; } bool isComplete() const { return !isIncomplete(); } bool isDeadNode() const { return NodeType & DEAD; } DSNode *setAllocaNodeMarker() { NodeType |= AllocaNode; return this; } DSNode *setHeapNodeMarker() { NodeType |= HeapNode; return this; } DSNode *setGlobalNodeMarker() { NodeType |= GlobalNode; return this; } DSNode *setUnknownNodeMarker() { NodeType |= UnknownNode; return this; } DSNode *setIncompleteMarker() { NodeType |= Incomplete; return this; } DSNode *setModifiedMarker() { NodeType |= Modified; return this; } DSNode *setReadMarker() { NodeType |= Read; return this; } DSNode *setArrayMarker() { NodeType |= Array; return this; } void makeNodeDead() { Globals.clear(); assert(hasNoReferrers() && "Dead node shouldn't have refs!"); NodeType = DEAD; } /// forwardNode - Mark this node as being obsolete, and all references to it /// should be forwarded to the specified node and offset. /// void forwardNode(DSNode *To, unsigned Offset); void print(std::ostream &O, const DSGraph *G) const; void dump() const; void assertOK() const; void dropAllReferences() { Links.clear(); if (isForwarding()) ForwardNH.setTo(0, 0); } /// remapLinks - Change all of the Links in the current node according to the /// specified mapping. /// void remapLinks(hash_map &OldNodeMap); /// markReachableNodes - This method recursively traverses the specified /// DSNodes, marking any nodes which are reachable. All reachable nodes it /// adds to the set, which allows it to only traverse visited nodes once. /// void markReachableNodes(hash_set &ReachableNodes) const; private: friend class DSNodeHandle; // static mergeNodes - Helper for mergeWith() static void MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH); }; //===----------------------------------------------------------------------===// // Define the ilist_traits specialization for the DSGraph ilist. // template<> struct ilist_traits { static DSNode *getPrev(const DSNode *N) { return N->Prev; } static DSNode *getNext(const DSNode *N) { return N->Next; } static void setPrev(DSNode *N, DSNode *Prev) { N->Prev = Prev; } static void setNext(DSNode *N, DSNode *Next) { N->Next = Next; } static DSNode *createSentinel() { return new DSNode(0,0); } static void destroySentinel(DSNode *N) { delete N; } //static DSNode *createNode(const DSNode &V) { return new DSNode(V); } void addNodeToList(DSNode *NTy) {} void removeNodeFromList(DSNode *NTy) {} void transferNodesFromList(iplist &L2, ilist_iterator first, ilist_iterator last) {} }; template<> struct ilist_traits : public ilist_traits {}; //===----------------------------------------------------------------------===// // Define inline DSNodeHandle functions that depend on the definition of DSNode // inline DSNode *DSNodeHandle::getNode() const { // Disabling this assertion because it is failing on a "magic" struct // in named (from bind). The fourth field is an array of length 0, // presumably used to create struct instances of different sizes. // In a variable length struct, Offset could exceed Size when getNode() // is called before such a node is folded. In this case, the DS Analysis now // correctly folds this node after calling getNode. /* assert((!N || N->isNodeCompletelyFolded() || (N->Size == 0 && Offset == 0) || (int(Offset) >= 0 && Offset < N->Size) || (int(Offset) < 0 && -int(Offset) < int(N->Size)) || N->isForwarding()) && "Node handle offset out of range!"); */ if (N == 0 || !N->isForwarding()) return N; return HandleForwarding(); } inline void DSNodeHandle::setTo(DSNode *n, unsigned NewOffset) const { assert(!n || !n->isForwarding() && "Cannot set node to a forwarded node!"); if (N) getNode()->NumReferrers--; N = n; Offset = NewOffset; if (N) { N->NumReferrers++; if (Offset >= N->Size) { assert((Offset == 0 || N->Size == 1) && "Pointer to non-collapsed node with invalid offset!"); Offset = 0; } } assert(!N || ((N->NodeType & DSNode::DEAD) == 0)); assert((!N || Offset < N->Size || (N->Size == 0 && Offset == 0) || N->isForwarding()) && "Node handle offset out of range!"); } inline bool DSNodeHandle::hasLink(unsigned Num) const { assert(N && "DSNodeHandle does not point to a node yet!"); return getNode()->hasLink(Num+Offset); } /// getLink - Treat this current node pointer as a pointer to a structure of /// some sort. This method will return the pointer a mem[this+Num] /// inline const DSNodeHandle &DSNodeHandle::getLink(unsigned Off) const { assert(N && "DSNodeHandle does not point to a node yet!"); return getNode()->getLink(Offset+Off); } inline DSNodeHandle &DSNodeHandle::getLink(unsigned Off) { assert(N && "DSNodeHandle does not point to a node yet!"); return getNode()->getLink(Off+Offset); } inline void DSNodeHandle::setLink(unsigned Off, const DSNodeHandle &NH) { assert(N && "DSNodeHandle does not point to a node yet!"); getNode()->setLink(Off+Offset, NH); } /// addEdgeTo - Add an edge from the current node to the specified node. This /// can cause merging of nodes in the graph. /// inline void DSNodeHandle::addEdgeTo(unsigned Off, const DSNodeHandle &Node) { assert(N && "DSNodeHandle does not point to a node yet!"); getNode()->addEdgeTo(Off+Offset, Node); } /// mergeWith - Merge the logical node pointed to by 'this' with the node /// pointed to by 'N'. /// inline void DSNodeHandle::mergeWith(const DSNodeHandle &Node) const { if (!isNull()) getNode()->mergeWith(Node, Offset); else { // No node to merge with, so just point to Node Offset = 0; DSNode *NN = Node.getNode(); setTo(NN, Node.getOffset()); } } } // End llvm namespace #endif