//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the simple types necessary to represent the // attributes associated with functions and their calls. // //===----------------------------------------------------------------------===// #ifndef LLVM_ATTRIBUTES_H #define LLVM_ATTRIBUTES_H #include "llvm/AttributesImpl.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/ArrayRef.h" #include #include namespace llvm { class LLVMContext; class Type; /// AttributeImpl - The internal representation of the Attributes class. This is /// uniquified. class AttributesImpl; /// Attributes - A bitset of attributes. class Attributes { public: /// Function parameters and results can have attributes to indicate how they /// should be treated by optimizations and code generation. This enumeration /// lists the attributes that can be associated with parameters, function /// results or the function itself. /// /// Note that uwtable is about the ABI or the user mandating an entry in the /// unwind table. The nounwind attribute is about an exception passing by the /// function. /// /// In a theoretical system that uses tables for profiling and sjlj for /// exceptions, they would be fully independent. In a normal system that uses /// tables for both, the semantics are: /// /// nil = Needs an entry because an exception might pass by. /// nounwind = No need for an entry /// uwtable = Needs an entry because the ABI says so and because /// an exception might pass by. /// uwtable + nounwind = Needs an entry because the ABI says so. enum AttrVal { None = 0, ///< No attributes have been set AddressSafety = 1, ///< Address safety checking is on. Alignment = 2, ///< Alignment of parameter (5 bits) ///< stored as log2 of alignment with +1 bias ///< 0 means unaligned different from align 1 AlwaysInline = 3, ///< inline=always ByVal = 4, ///< Pass structure by value InlineHint = 5, ///< Source said inlining was desirable InReg = 6, ///< Force argument to be passed in register Naked = 7, ///< Naked function Nest = 8, ///< Nested function static chain NoAlias = 9, ///< Considered to not alias after call NoCapture = 10, ///< Function creates no aliases of pointer NoImplicitFloat = 11, ///< Disable implicit floating point insts NoInline = 12, ///< inline=never NonLazyBind = 13, ///< Function is called early and/or ///< often, so lazy binding isn't worthwhile NoRedZone = 14, ///< Disable redzone NoReturn = 15, ///< Mark the function as not returning NoUnwind = 16, ///< Function doesn't unwind stack OptimizeForSize = 17, ///< opt_size ReadNone = 18, ///< Function does not access memory ReadOnly = 19, ///< Function only reads from memory ReturnsTwice = 20, ///< Function can return twice SExt = 21, ///< Sign extended before/after call StackAlignment = 22, ///< Alignment of stack for function (3 bits) ///< stored as log2 of alignment with +1 bias 0 ///< means unaligned (different from ///< alignstack={1)) StackProtect = 23, ///< Stack protection. StackProtectReq = 24, ///< Stack protection required. StructRet = 25, ///< Hidden pointer to structure to return UWTable = 26, ///< Function must be in a unwind table ZExt = 27 ///< Zero extended before/after call }; private: AttributesImpl Attrs; explicit Attributes(AttributesImpl *A); public: Attributes() : Attrs(0) {} explicit Attributes(uint64_t Val); explicit Attributes(LLVMContext &C, AttrVal Val); Attributes(const Attributes &A); class Builder { friend class Attributes; uint64_t Bits; public: Builder() : Bits(0) {} Builder(const Attributes &A) : Bits(A.Raw()) {} void clear() { Bits = 0; } bool hasAttribute(Attributes::AttrVal A) const; bool hasAttributes() const; bool hasAttributes(const Attributes &A) const; bool hasAlignmentAttr() const; uint64_t getAlignment() const; uint64_t getStackAlignment() const; Builder &addAttribute(Attributes::AttrVal Val); Builder &removeAttribute(Attributes::AttrVal Val); void addAlignmentAttr(unsigned Align); void addStackAlignmentAttr(unsigned Align); void removeAttributes(const Attributes &A); /// @brief Remove attributes that are used on functions only. void removeFunctionOnlyAttrs() { removeAttribute(Attributes::NoReturn) .removeAttribute(Attributes::NoUnwind) .removeAttribute(Attributes::ReadNone) .removeAttribute(Attributes::ReadOnly) .removeAttribute(Attributes::NoInline) .removeAttribute(Attributes::AlwaysInline) .removeAttribute(Attributes::OptimizeForSize) .removeAttribute(Attributes::StackProtect) .removeAttribute(Attributes::StackProtectReq) .removeAttribute(Attributes::NoRedZone) .removeAttribute(Attributes::NoImplicitFloat) .removeAttribute(Attributes::Naked) .removeAttribute(Attributes::InlineHint) .removeAttribute(Attributes::StackAlignment) .removeAttribute(Attributes::UWTable) .removeAttribute(Attributes::NonLazyBind) .removeAttribute(Attributes::ReturnsTwice) .removeAttribute(Attributes::AddressSafety); } }; /// get - Return a uniquified Attributes object. This takes the uniquified /// value from the Builder and wraps it in the Attributes class. static Attributes get(Builder &B); static Attributes get(LLVMContext &Context, Builder &B); /// @brief Return true if the attribute is present. bool hasAttribute(AttrVal Val) const; /// @brief Return true if attributes exist bool hasAttributes() const { return Attrs.hasAttributes(); } /// @brief Return true if the attributes are a non-null intersection. bool hasAttributes(const Attributes &A) const; /// @brief Returns the alignment field of an attribute as a byte alignment /// value. unsigned getAlignment() const; /// @brief Returns the stack alignment field of an attribute as a byte /// alignment value. unsigned getStackAlignment() const; /// @brief Parameter attributes that do not apply to vararg call arguments. bool hasIncompatibleWithVarArgsAttrs() const { return hasAttribute(Attributes::StructRet); } /// @brief Attributes that only apply to function parameters. bool hasParameterOnlyAttrs() const { return hasAttribute(Attributes::ByVal) || hasAttribute(Attributes::Nest) || hasAttribute(Attributes::StructRet) || hasAttribute(Attributes::NoCapture); } /// @brief Attributes that may be applied to the function itself. These cannot /// be used on return values or function parameters. bool hasFunctionOnlyAttrs() const { return hasAttribute(Attributes::NoReturn) || hasAttribute(Attributes::NoUnwind) || hasAttribute(Attributes::ReadNone) || hasAttribute(Attributes::ReadOnly) || hasAttribute(Attributes::NoInline) || hasAttribute(Attributes::AlwaysInline) || hasAttribute(Attributes::OptimizeForSize) || hasAttribute(Attributes::StackProtect) || hasAttribute(Attributes::StackProtectReq) || hasAttribute(Attributes::NoRedZone) || hasAttribute(Attributes::NoImplicitFloat) || hasAttribute(Attributes::Naked) || hasAttribute(Attributes::InlineHint) || hasAttribute(Attributes::StackAlignment) || hasAttribute(Attributes::UWTable) || hasAttribute(Attributes::NonLazyBind) || hasAttribute(Attributes::ReturnsTwice) || hasAttribute(Attributes::AddressSafety); } bool isEmptyOrSingleton() const; // This is a "safe bool() operator". operator const void *() const { return Attrs.Bits ? this : 0; } bool operator == (const Attributes &A) const { return Attrs.Bits == A.Attrs.Bits; } bool operator != (const Attributes &A) const { return Attrs.Bits != A.Attrs.Bits; } Attributes operator | (const Attributes &A) const; Attributes operator & (const Attributes &A) const; Attributes operator ^ (const Attributes &A) const; Attributes &operator |= (const Attributes &A); Attributes &operator &= (const Attributes &A); Attributes operator ~ () const; uint64_t Raw() const; /// constructAlignmentFromInt - This turns an int alignment (a power of 2, /// normally) into the form used internally in Attributes. static Attributes constructAlignmentFromInt(unsigned i) { // Default alignment, allow the target to define how to align it. if (i == 0) return Attributes(); assert(isPowerOf2_32(i) && "Alignment must be a power of two."); assert(i <= 0x40000000 && "Alignment too large."); return Attributes((Log2_32(i)+1) << 16); } /// constructStackAlignmentFromInt - This turns an int stack alignment (which /// must be a power of 2) into the form used internally in Attributes. static Attributes constructStackAlignmentFromInt(unsigned i) { // Default alignment, allow the target to define how to align it. if (i == 0) return Attributes(); assert(isPowerOf2_32(i) && "Alignment must be a power of two."); assert(i <= 0x100 && "Alignment too large."); return Attributes((Log2_32(i)+1) << 26); } /// @brief Which attributes cannot be applied to a type. static Attributes typeIncompatible(Type *Ty); /// encodeLLVMAttributesForBitcode - This returns an integer containing an /// encoding of all the LLVM attributes found in the given attribute bitset. /// Any change to this encoding is a breaking change to bitcode compatibility. static uint64_t encodeLLVMAttributesForBitcode(Attributes Attrs) { // FIXME: It doesn't make sense to store the alignment information as an // expanded out value, we should store it as a log2 value. However, we // can't just change that here without breaking bitcode compatibility. If // this ever becomes a problem in practice, we should introduce new tag // numbers in the bitcode file and have those tags use a more efficiently // encoded alignment field. // Store the alignment in the bitcode as a 16-bit raw value instead of a // 5-bit log2 encoded value. Shift the bits above the alignment up by 11 // bits. uint64_t EncodedAttrs = Attrs.Raw() & 0xffff; if (Attrs.hasAttribute(Attributes::Alignment)) EncodedAttrs |= Attrs.getAlignment() << 16; EncodedAttrs |= (Attrs.Raw() & (0xfffULL << 21)) << 11; return EncodedAttrs; } /// decodeLLVMAttributesForBitcode - This returns an attribute bitset /// containing the LLVM attributes that have been decoded from the given /// integer. This function must stay in sync with /// 'encodeLLVMAttributesForBitcode'. static Attributes decodeLLVMAttributesForBitcode(uint64_t EncodedAttrs) { // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); Attributes Attrs(EncodedAttrs & 0xffff); if (Alignment) Attrs |= Attributes::constructAlignmentFromInt(Alignment); Attrs |= Attributes((EncodedAttrs & (0xfffULL << 32)) >> 11); return Attrs; } /// getAsString - The set of Attributes set in Attributes is converted to a /// string of equivalent mnemonics. This is, presumably, for writing out the /// mnemonics for the assembly writer. /// @brief Convert attribute bits to text std::string getAsString() const; }; //===----------------------------------------------------------------------===// // AttributeWithIndex //===----------------------------------------------------------------------===// /// AttributeWithIndex - This is just a pair of values to associate a set of /// attributes with an index. struct AttributeWithIndex { Attributes Attrs; ///< The attributes that are set, or'd together. unsigned Index; ///< Index of the parameter for which the attributes apply. ///< Index 0 is used for return value attributes. ///< Index ~0U is used for function attributes. static AttributeWithIndex get(unsigned Idx, ArrayRef Attrs) { Attributes::Builder B; for (ArrayRef::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ++I) B.addAttribute(*I); AttributeWithIndex P; P.Index = Idx; P.Attrs = Attributes::get(B); return P; } static AttributeWithIndex get(unsigned Idx, Attributes Attrs) { AttributeWithIndex P; P.Index = Idx; P.Attrs = Attrs; return P; } }; //===----------------------------------------------------------------------===// // AttrListPtr Smart Pointer //===----------------------------------------------------------------------===// class AttributeListImpl; /// AttrListPtr - This class manages the ref count for the opaque /// AttributeListImpl object and provides accessors for it. class AttrListPtr { /// AttrList - The attributes that we are managing. This can be null /// to represent the empty attributes list. AttributeListImpl *AttrList; public: AttrListPtr() : AttrList(0) {} AttrListPtr(const AttrListPtr &P); const AttrListPtr &operator=(const AttrListPtr &RHS); ~AttrListPtr(); //===--------------------------------------------------------------------===// // Attribute List Construction and Mutation //===--------------------------------------------------------------------===// /// get - Return a Attributes list with the specified parameters in it. static AttrListPtr get(ArrayRef Attrs); /// addAttr - Add the specified attribute at the specified index to this /// attribute list. Since attribute lists are immutable, this /// returns the new list. AttrListPtr addAttr(unsigned Idx, Attributes Attrs) const; /// removeAttr - Remove the specified attribute at the specified index from /// this attribute list. Since attribute lists are immutable, this /// returns the new list. AttrListPtr removeAttr(unsigned Idx, Attributes Attrs) const; //===--------------------------------------------------------------------===// // Attribute List Accessors //===--------------------------------------------------------------------===// /// getParamAttributes - The attributes for the specified index are /// returned. Attributes getParamAttributes(unsigned Idx) const { return getAttributes(Idx); } /// getRetAttributes - The attributes for the ret value are /// returned. Attributes getRetAttributes() const { return getAttributes(0); } /// getFnAttributes - The function attributes are returned. Attributes getFnAttributes() const { return getAttributes(~0U); } /// paramHasAttr - Return true if the specified parameter index has the /// specified attribute set. bool paramHasAttr(unsigned Idx, Attributes Attr) const { return getAttributes(Idx).hasAttributes(Attr); } /// getParamAlignment - Return the alignment for the specified function /// parameter. unsigned getParamAlignment(unsigned Idx) const { return getAttributes(Idx).getAlignment(); } /// hasAttrSomewhere - Return true if the specified attribute is set for at /// least one parameter or for the return value. bool hasAttrSomewhere(Attributes::AttrVal Attr) const; unsigned getNumAttrs() const; Attributes &getAttributesAtIndex(unsigned i) const; /// operator==/!= - Provide equality predicates. bool operator==(const AttrListPtr &RHS) const { return AttrList == RHS.AttrList; } bool operator!=(const AttrListPtr &RHS) const { return AttrList != RHS.AttrList; } void dump() const; //===--------------------------------------------------------------------===// // Attribute List Introspection //===--------------------------------------------------------------------===// /// getRawPointer - Return a raw pointer that uniquely identifies this /// attribute list. void *getRawPointer() const { return AttrList; } // Attributes are stored as a dense set of slots, where there is one // slot for each argument that has an attribute. This allows walking over the // dense set instead of walking the sparse list of attributes. /// isEmpty - Return true if there are no attributes. /// bool isEmpty() const { return AttrList == 0; } /// getNumSlots - Return the number of slots used in this attribute list. /// This is the number of arguments that have an attribute set on them /// (including the function itself). unsigned getNumSlots() const; /// getSlot - Return the AttributeWithIndex at the specified slot. This /// holds a index number plus a set of attributes. const AttributeWithIndex &getSlot(unsigned Slot) const; private: explicit AttrListPtr(AttributeListImpl *L); /// getAttributes - The attributes for the specified index are /// returned. Attributes for the result are denoted with Idx = 0. Attributes getAttributes(unsigned Idx) const; }; } // End llvm namespace #endif