//===-- Function.cpp - Implement the Global object classes ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Function class for the VMCore library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/IntrinsicInst.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/StringPool.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; BasicBlock *ilist_traits::createSentinel() { BasicBlock *Ret = new BasicBlock(); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Function *F) { return F->getBasicBlockList(); } Argument *ilist_traits::createSentinel() { Argument *Ret = new Argument(Type::Int32Ty); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Function *F) { return F->getArgumentList(); } // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file... template class SymbolTableListTraits; template class SymbolTableListTraits; //===----------------------------------------------------------------------===// // Argument Implementation //===----------------------------------------------------------------------===// Argument::Argument(const Type *Ty, const std::string &Name, Function *Par) : Value(Ty, Value::ArgumentVal) { Parent = 0; // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (Par) Par->getArgumentList().push_back(this); setName(Name); } void Argument::setParent(Function *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } /// getArgNo - Return the index of this formal argument in its containing /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. unsigned Argument::getArgNo() const { const Function *F = getParent(); assert(F && "Argument is not in a function"); Function::const_arg_iterator AI = F->arg_begin(); unsigned ArgIdx = 0; for (; &*AI != this; ++AI) ++ArgIdx; return ArgIdx; } /// hasByValAttr - Return true if this argument has the byval attribute on it /// in its containing function. bool Argument::hasByValAttr() const { if (!isa(getType())) return false; return getParent()->paramHasAttr(getArgNo()+1, ParamAttr::ByVal); } /// hasNoAliasAttr - Return true if this argument has the noalias attribute on /// it in its containing function. bool Argument::hasNoAliasAttr() const { if (!isa(getType())) return false; return getParent()->paramHasAttr(getArgNo()+1, ParamAttr::NoAlias); } /// hasSRetAttr - Return true if this argument has the sret attribute on /// it in its containing function. bool Argument::hasStructRetAttr() const { if (!isa(getType())) return false; if (this != getParent()->arg_begin()) return false; // StructRet param must be first param return getParent()->paramHasAttr(1, ParamAttr::StructRet); } //===----------------------------------------------------------------------===// // Helper Methods in Function //===----------------------------------------------------------------------===// const FunctionType *Function::getFunctionType() const { return cast(getType()->getElementType()); } bool Function::isVarArg() const { return getFunctionType()->isVarArg(); } const Type *Function::getReturnType() const { return getFunctionType()->getReturnType(); } void Function::removeFromParent() { getParent()->getFunctionList().remove(this); } void Function::eraseFromParent() { getParent()->getFunctionList().erase(this); } /// @brief Determine whether the function has the given attribute. bool Function::paramHasAttr(uint16_t i, ParameterAttributes attr) const { return ParamAttrs.paramHasAttr(i, attr); } /// @brief Extract the alignment for a call or parameter (0=unknown). uint16_t Function::getParamAlignment(uint16_t i) const { return ParamAttrs.getParamAlignment(i); } /// @brief Determine if the function cannot return. bool Function::doesNotReturn() const { return paramHasAttr(0, ParamAttr::NoReturn); } /// @brief Determine if the function cannot unwind. bool Function::doesNotThrow() const { return paramHasAttr(0, ParamAttr::NoUnwind); } /// @brief Determine if the function does not access memory. bool Function::doesNotAccessMemory() const { return paramHasAttr(0, ParamAttr::ReadNone); } /// @brief Determine if the function does not access or only reads memory. bool Function::onlyReadsMemory() const { return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly); } /// @brief Determine if the function returns a structure through first /// pointer argument. bool Function::hasStructRetAttr() const { return paramHasAttr(1, ParamAttr::StructRet); } //===----------------------------------------------------------------------===// // Function Implementation //===----------------------------------------------------------------------===// Function::Function(const FunctionType *Ty, LinkageTypes Linkage, const std::string &name, Module *ParentModule) : GlobalValue(PointerType::getUnqual(Ty), Value::FunctionVal, 0, 0, Linkage, name) { SymTab = new ValueSymbolTable(); assert((getReturnType()->isFirstClassType() ||getReturnType() == Type::VoidTy || isa(getReturnType())) && "LLVM functions cannot return aggregate values!"); // If the function has arguments, mark them as lazily built. if (Ty->getNumParams()) SubclassData = 1; // Set the "has lazy arguments" bit. // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (ParentModule) ParentModule->getFunctionList().push_back(this); } Function::~Function() { dropAllReferences(); // After this it is safe to delete instructions. // Delete all of the method arguments and unlink from symbol table... ArgumentList.clear(); delete SymTab; // Remove the function from the on-the-side collector table. clearCollector(); } void Function::BuildLazyArguments() const { // Create the arguments vector, all arguments start out unnamed. const FunctionType *FT = getFunctionType(); for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { assert(FT->getParamType(i) != Type::VoidTy && "Cannot have void typed arguments!"); ArgumentList.push_back(new Argument(FT->getParamType(i))); } // Clear the lazy arguments bit. const_cast(this)->SubclassData &= ~1; } size_t Function::arg_size() const { return getFunctionType()->getNumParams(); } bool Function::arg_empty() const { return getFunctionType()->getNumParams() == 0; } void Function::setParent(Module *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is deleted for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void Function::dropAllReferences() { for (iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); BasicBlocks.clear(); // Delete all basic blocks... } // Maintain the collector name for each function in an on-the-side table. This // saves allocating an additional word in Function for programs which do not use // GC (i.e., most programs) at the cost of increased overhead for clients which // do use GC. static DenseMap *CollectorNames; static StringPool *CollectorNamePool; bool Function::hasCollector() const { return CollectorNames && CollectorNames->count(this); } const char *Function::getCollector() const { assert(hasCollector() && "Function has no collector"); return *(*CollectorNames)[this]; } void Function::setCollector(const char *Str) { if (!CollectorNamePool) CollectorNamePool = new StringPool(); if (!CollectorNames) CollectorNames = new DenseMap(); (*CollectorNames)[this] = CollectorNamePool->intern(Str); } void Function::clearCollector() { if (CollectorNames) { CollectorNames->erase(this); if (CollectorNames->empty()) { delete CollectorNames; CollectorNames = 0; if (CollectorNamePool->empty()) { delete CollectorNamePool; CollectorNamePool = 0; } } } } /// getIntrinsicID - This method returns the ID number of the specified /// function, or Intrinsic::not_intrinsic if the function is not an /// intrinsic, or if the pointer is null. This value is always defined to be /// zero to allow easy checking for whether a function is intrinsic or not. The /// particular intrinsic functions which correspond to this value are defined in /// llvm/Intrinsics.h. /// unsigned Function::getIntrinsicID(bool noAssert) const { const ValueName *ValName = this->getValueName(); if (!ValName) return 0; unsigned Len = ValName->getKeyLength(); const char *Name = ValName->getKeyData(); if (Len < 5 || Name[4] != '.' || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm') return 0; // All intrinsics start with 'llvm.' assert((Len != 5 || noAssert) && "'llvm.' is an invalid intrinsic name!"); #define GET_FUNCTION_RECOGNIZER #include "llvm/Intrinsics.gen" #undef GET_FUNCTION_RECOGNIZER assert(noAssert && "Invalid LLVM intrinsic name"); return 0; } std::string Intrinsic::getName(ID id, const Type **Tys, unsigned numTys) { assert(id < num_intrinsics && "Invalid intrinsic ID!"); const char * const Table[] = { "not_intrinsic", #define GET_INTRINSIC_NAME_TABLE #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_NAME_TABLE }; if (numTys == 0) return Table[id]; std::string Result(Table[id]); for (unsigned i = 0; i < numTys; ++i) if (Tys[i]) Result += "." + MVT::getValueTypeString(MVT::getValueType(Tys[i])); return Result; } const FunctionType *Intrinsic::getType(ID id, const Type **Tys, unsigned numTys) { const Type *ResultTy = NULL; std::vector ArgTys; bool IsVarArg = false; #define GET_INTRINSIC_GENERATOR #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_GENERATOR return FunctionType::get(ResultTy, ArgTys, IsVarArg); } PAListPtr Intrinsic::getParamAttrs(ID id) { ParameterAttributes Attr = ParamAttr::None; #define GET_INTRINSIC_ATTRIBUTES #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_ATTRIBUTES // Intrinsics cannot throw exceptions. Attr |= ParamAttr::NoUnwind; ParamAttrsWithIndex PAWI = ParamAttrsWithIndex::get(0, Attr); return PAListPtr::get(&PAWI, 1); } Function *Intrinsic::getDeclaration(Module *M, ID id, const Type **Tys, unsigned numTys) { // There can never be multiple globals with the same name of different types, // because intrinsics must be a specific type. Function *F = cast(M->getOrInsertFunction(getName(id, Tys, numTys), getType(id, Tys, numTys))); F->setParamAttrs(getParamAttrs(id)); return F; } Value *IntrinsicInst::StripPointerCasts(Value *Ptr) { if (ConstantExpr *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == Instruction::BitCast) { if (isa(CE->getOperand(0)->getType())) return StripPointerCasts(CE->getOperand(0)); } else if (CE->getOpcode() == Instruction::GetElementPtr) { for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!CE->getOperand(i)->isNullValue()) return Ptr; return StripPointerCasts(CE->getOperand(0)); } return Ptr; } if (BitCastInst *CI = dyn_cast(Ptr)) { if (isa(CI->getOperand(0)->getType())) return StripPointerCasts(CI->getOperand(0)); } else if (GetElementPtrInst *GEP = dyn_cast(Ptr)) { if (GEP->hasAllZeroIndices()) return StripPointerCasts(GEP->getOperand(0)); } return Ptr; } // vim: sw=2 ai