//===- DeadStoreElimination.cpp - Dead Store Elimination ------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a trivial dead store elimination that only considers // basic-block local redundant stores. // // FIXME: This should eventually be extended to be a post-dominator tree // traversal. Doing so would be pretty trivial. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" using namespace llvm; namespace { Statistic<> NumStores("dse", "Number of stores deleted"); Statistic<> NumOther ("dse", "Number of other instrs removed"); struct DSE : public FunctionPass { virtual bool runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) Changed |= runOnBasicBlock(*I); return Changed; } bool runOnBasicBlock(BasicBlock &BB); void DeleteDeadInstructionChains(Instruction *I, SetVector &DeadInsts); // getAnalysisUsage - We require post dominance frontiers (aka Control // Dependence Graph) virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); } }; RegisterOpt X("dse", "Dead Store Elimination"); } FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); } bool DSE::runOnBasicBlock(BasicBlock &BB) { TargetData &TD = getAnalysis(); AliasAnalysis &AA = getAnalysis(); AliasSetTracker KillLocs(AA); // If this block ends in a return, unwind, unreachable, and eventually // tailcall, then all allocas are dead at its end. if (BB.getTerminator()->getNumSuccessors() == 0) { BasicBlock *Entry = BB.getParent()->begin(); for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) if (AllocaInst *AI = dyn_cast(I)) { unsigned Size = ~0U; if (!AI->isArrayAllocation() && AI->getType()->getElementType()->isSized()) Size = (unsigned)TD.getTypeSize(AI->getType()->getElementType()); KillLocs.add(AI, Size); } } // PotentiallyDeadInsts - Deleting dead stores from the program can make other // instructions die if they were only used as operands to stores. Keep track // of the operands to stores so that we can try deleting them at the end of // the traversal. SetVector PotentiallyDeadInsts; bool MadeChange = false; for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ) { Instruction *I = --BBI; // Keep moving iterator backwards // If this is a free instruction, it makes the free'd location dead! if (FreeInst *FI = dyn_cast(I)) { // Free instructions make any stores to the free'd location dead. KillLocs.add(FI); continue; } if (!isa(I) || cast(I)->isVolatile()) { // If this is a vaarg instruction, it reads its operand. We don't model // it correctly, so just conservatively remove all entries. if (isa(I)) { KillLocs.clear(); continue; } // If this is a non-store instruction, it makes everything referenced no // longer killed. Remove anything aliased from the alias set tracker. KillLocs.remove(I); continue; } // If this is a non-volatile store instruction, and if it is already in // the stored location is already in the tracker, then this is a dead // store. We can just delete it here, but while we're at it, we also // delete any trivially dead expression chains. unsigned ValSize = (unsigned)TD.getTypeSize(I->getOperand(0)->getType()); Value *Ptr = I->getOperand(1); if (AliasSet *AS = KillLocs.getAliasSetForPointerIfExists(Ptr, ValSize)) for (AliasSet::iterator ASI = AS->begin(), E = AS->end(); ASI != E; ++ASI) if (ASI.getSize() >= ValSize && // Overwriting all of this store. AA.alias(ASI.getPointer(), ASI.getSize(), Ptr, ValSize) == AliasAnalysis::MustAlias) { // If we found a must alias in the killed set, then this store really // is dead. Remember that the various operands of the store now have // fewer users. At the end we will see if we can delete any values // that are dead as part of the store becoming dead. if (Instruction *Op = dyn_cast(I->getOperand(0))) PotentiallyDeadInsts.insert(Op); if (Instruction *Op = dyn_cast(Ptr)) PotentiallyDeadInsts.insert(Op); // Delete it now. ++BBI; // Don't invalidate iterator. BB.getInstList().erase(I); // Nuke the store! ++NumStores; MadeChange = true; goto BigContinue; } // Otherwise, this is a non-dead store just add it to the set of dead // locations. KillLocs.add(cast(I)); BigContinue:; } while (!PotentiallyDeadInsts.empty()) { Instruction *I = PotentiallyDeadInsts.back(); PotentiallyDeadInsts.pop_back(); DeleteDeadInstructionChains(I, PotentiallyDeadInsts); } return MadeChange; } void DSE::DeleteDeadInstructionChains(Instruction *I, SetVector &DeadInsts) { // Instruction must be dead. if (!I->use_empty() || !isInstructionTriviallyDead(I)) return; // Let the alias analysis know that we have nuked a value. getAnalysis().deleteValue(I); // See if this made any operands dead. We do it this way in case the // instruction uses the same operand twice. We don't want to delete a // value then reference it. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { if (Instruction *Op = dyn_cast(I->getOperand(i))) DeadInsts.insert(Op); // Attempt to nuke it later. I->setOperand(i, 0); // Drop from the operand list. } I->eraseFromParent(); ++NumOther; }