//===- llvm/Analysis/Dominators.h - Dominator Info Calculation ---*- C++ -*--=// // // This file defines the following classes: // 1. DominatorSet: Calculates the [reverse] dominator set for a function // 2. ImmediateDominators: Calculates and holds a mapping between BasicBlocks // and their immediate dominator. // 3. DominatorTree: Represent the ImmediateDominator as an explicit tree // structure. // 4. DominanceFrontier: Calculate and hold the dominance frontier for a // function. // // These data structures are listed in increasing order of complexity. It // takes longer to calculate the dominator frontier, for example, than the // ImmediateDominator mapping. // //===----------------------------------------------------------------------===// #ifndef LLVM_DOMINATORS_H #define LLVM_DOMINATORS_H #include "llvm/Pass.h" #include class Instruction; //===----------------------------------------------------------------------===// // // DominatorBase - Base class that other, more interesting dominator analyses // inherit from. // class DominatorBase : public FunctionPass { protected: BasicBlock *Root; const bool IsPostDominators; inline DominatorBase(bool isPostDom) : Root(0), IsPostDominators(isPostDom) {} public: inline BasicBlock *getRoot() const { return Root; } // Returns true if analysis based of postdoms bool isPostDominator() const { return IsPostDominators; } }; //===----------------------------------------------------------------------===// // // DominatorSet - Maintain a set for every basic block in a // function, that represents the blocks that dominate the block. // class DominatorSetBase : public DominatorBase { public: typedef std::set DomSetType; // Dom set for a bb // Map of dom sets typedef std::map DomSetMapType; protected: DomSetMapType Doms; public: DominatorSetBase(bool isPostDom) : DominatorBase(isPostDom) {} virtual void releaseMemory() { Doms.clear(); } // Accessor interface: typedef DomSetMapType::const_iterator const_iterator; typedef DomSetMapType::iterator iterator; inline const_iterator begin() const { return Doms.begin(); } inline iterator begin() { return Doms.begin(); } inline const_iterator end() const { return Doms.end(); } inline iterator end() { return Doms.end(); } inline const_iterator find(BasicBlock* B) const { return Doms.find(B); } inline iterator find(BasicBlock* B) { return Doms.find(B); } // getDominators - Return the set of basic blocks that dominate the specified // block. // inline const DomSetType &getDominators(BasicBlock *BB) const { const_iterator I = find(BB); assert(I != end() && "BB not in function!"); return I->second; } // dominates - Return true if A dominates B. // inline bool dominates(BasicBlock *A, BasicBlock *B) const { return getDominators(B).count(A) != 0; } // print - Convert to human readable form virtual void print(std::ostream &OS) const; // dominates - Return true if A dominates B. This performs the special checks // neccesary if A and B are in the same basic block. // bool dominates(Instruction *A, Instruction *B) const; }; //===------------------------------------- // DominatorSet Class - Concrete subclass of DominatorSetBase that is used to // compute a normal dominator set. // struct DominatorSet : public DominatorSetBase { static AnalysisID ID; // Build dominator set DominatorSet() : DominatorSetBase(false) {} virtual bool runOnFunction(Function &F); // getAnalysisUsage - This simply provides a dominator set virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addProvided(ID); } }; //===------------------------------------- // DominatorSet Class - Concrete subclass of DominatorSetBase that is used to // compute the post-dominator set. // struct PostDominatorSet : public DominatorSetBase { static AnalysisID ID; // Build post-dominator set PostDominatorSet() : DominatorSetBase(true) {} virtual bool runOnFunction(Function &F); // getAnalysisUsage - This obviously provides a dominator set, but it also // uses the UnifyFunctionExitNode pass if building post-dominators // virtual void getAnalysisUsage(AnalysisUsage &AU) const; }; //===----------------------------------------------------------------------===// // // ImmediateDominators - Calculate the immediate dominator for each node in a // function. // class ImmediateDominatorsBase : public DominatorBase { protected: std::map IDoms; void calcIDoms(const DominatorSetBase &DS); public: ImmediateDominatorsBase(bool isPostDom) : DominatorBase(isPostDom) {} virtual void releaseMemory() { IDoms.clear(); } // Accessor interface: typedef std::map IDomMapType; typedef IDomMapType::const_iterator const_iterator; inline const_iterator begin() const { return IDoms.begin(); } inline const_iterator end() const { return IDoms.end(); } inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);} // operator[] - Return the idom for the specified basic block. The start // node returns null, because it does not have an immediate dominator. // inline BasicBlock *operator[](BasicBlock *BB) const { std::map::const_iterator I = IDoms.find(BB); return I != IDoms.end() ? I->second : 0; } // print - Convert to human readable form virtual void print(std::ostream &OS) const; }; //===------------------------------------- // ImmediateDominators Class - Concrete subclass of ImmediateDominatorsBase that // is used to compute a normal immediate dominator set. // struct ImmediateDominators : public ImmediateDominatorsBase { static AnalysisID ID; // Build immediate dominators ImmediateDominators() : ImmediateDominatorsBase(false) {} virtual bool runOnFunction(Function &F) { IDoms.clear(); // Reset from the last time we were run... DominatorSet &DS = getAnalysis(); Root = DS.getRoot(); calcIDoms(DS); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addProvided(ID); AU.addRequired(DominatorSet::ID); } }; //===------------------------------------- // ImmediatePostDominators Class - Concrete subclass of ImmediateDominatorsBase // that is used to compute the immediate post-dominators. // struct ImmediatePostDominators : public ImmediateDominatorsBase { static AnalysisID ID; // Build immediate postdominators ImmediatePostDominators() : ImmediateDominatorsBase(true) {} virtual bool runOnFunction(Function &F) { IDoms.clear(); // Reset from the last time we were run... PostDominatorSet &DS = getAnalysis(); Root = DS.getRoot(); calcIDoms(DS); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(PostDominatorSet::ID); AU.addProvided(ID); } }; //===----------------------------------------------------------------------===// // // DominatorTree - Calculate the immediate dominator tree for a function. // class DominatorTreeBase : public DominatorBase { protected: class Node2; public: typedef Node2 Node; protected: std::map Nodes; void reset(); typedef std::map NodeMapType; public: class Node2 : public std::vector { friend class DominatorTree; friend class PostDominatorTree; BasicBlock *TheNode; Node2 *IDom; public: inline BasicBlock *getNode() const { return TheNode; } inline Node2 *getIDom() const { return IDom; } inline const std::vector &getChildren() const { return *this; } // dominates - Returns true iff this dominates N. Note that this is not a // constant time operation! inline bool dominates(const Node2 *N) const { const Node2 *IDom; while ((IDom = N->getIDom()) != 0 && IDom != this) N = IDom; // Walk up the tree return IDom != 0; } private: inline Node2(BasicBlock *node, Node *iDom) : TheNode(node), IDom(iDom) {} inline Node2 *addChild(Node *C) { push_back(C); return C; } }; public: DominatorTreeBase(bool isPostDom) : DominatorBase(isPostDom) {} ~DominatorTreeBase() { reset(); } virtual void releaseMemory() { reset(); } inline Node *operator[](BasicBlock *BB) const { NodeMapType::const_iterator i = Nodes.find(BB); return (i != Nodes.end()) ? i->second : 0; } // print - Convert to human readable form virtual void print(std::ostream &OS) const; }; //===------------------------------------- // DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to // compute a normal dominator tree. // struct DominatorTree : public DominatorTreeBase { static AnalysisID ID; // Build dominator tree DominatorTree() : DominatorTreeBase(false) {} virtual bool runOnFunction(Function &F) { reset(); // Reset from the last time we were run... DominatorSet &DS = getAnalysis(); Root = DS.getRoot(); calculate(DS); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addProvided(ID); AU.addRequired(DominatorSet::ID); } private: void calculate(const DominatorSet &DS); }; //===------------------------------------- // PostDominatorTree Class - Concrete subclass of DominatorTree that is used to // compute the a post-dominator tree. // struct PostDominatorTree : public DominatorTreeBase { static AnalysisID ID; // Build immediate postdominators PostDominatorTree() : DominatorTreeBase(true) {} virtual bool runOnFunction(Function &F) { reset(); // Reset from the last time we were run... PostDominatorSet &DS = getAnalysis(); Root = DS.getRoot(); calculate(DS); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(PostDominatorSet::ID); AU.addProvided(ID); } private: void calculate(const PostDominatorSet &DS); }; //===----------------------------------------------------------------------===// // // DominanceFrontier - Calculate the dominance frontiers for a function. // class DominanceFrontierBase : public DominatorBase { public: typedef std::set DomSetType; // Dom set for a bb typedef std::map DomSetMapType; // Dom set map protected: DomSetMapType Frontiers; public: DominanceFrontierBase(bool isPostDom) : DominatorBase(isPostDom) {} virtual void releaseMemory() { Frontiers.clear(); } // Accessor interface: typedef DomSetMapType::const_iterator const_iterator; inline const_iterator begin() const { return Frontiers.begin(); } inline const_iterator end() const { return Frontiers.end(); } inline const_iterator find(BasicBlock* B) const { return Frontiers.find(B); } // print - Convert to human readable form virtual void print(std::ostream &OS) const; }; //===------------------------------------- // DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to // compute a normal dominator tree. // struct DominanceFrontier : public DominanceFrontierBase { static AnalysisID ID; // Build dominance frontier DominanceFrontier() : DominanceFrontierBase(false) {} virtual bool runOnFunction(Function &) { Frontiers.clear(); DominatorTree &DT = getAnalysis(); Root = DT.getRoot(); calculate(DT, DT[Root]); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addProvided(ID); AU.addRequired(DominatorTree::ID); } private: const DomSetType &calculate(const DominatorTree &DT, const DominatorTree::Node *Node); }; //===------------------------------------- // PostDominanceFrontier Class - Concrete subclass of DominanceFrontier that is // used to compute the a post-dominance frontier. // struct PostDominanceFrontier : public DominanceFrontierBase { static AnalysisID ID; // Build post dominance frontier PostDominanceFrontier() : DominanceFrontierBase(true) {} virtual bool runOnFunction(Function &) { Frontiers.clear(); PostDominatorTree &DT = getAnalysis(); Root = DT.getRoot(); calculate(DT, DT[Root]); return false; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(PostDominatorTree::ID); AU.addProvided(ID); } private: const DomSetType &calculate(const PostDominatorTree &DT, const DominatorTree::Node *Node); }; #endif