//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the LiveInterval analysis pass which is used // by the Linear Scan Register allocator. This pass linearizes the // basic blocks of the function in DFS order and uses the // LiveVariables pass to conservatively compute live intervals for // each virtual and physical register. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "LiveRangeCalc.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/IR/Value.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include #include #include using namespace llvm; // Switch to the new experimental algorithm for computing live intervals. static cl::opt NewLiveIntervals("new-live-intervals", cl::Hidden, cl::desc("Use new algorithm forcomputing live intervals")); char LiveIntervals::ID = 0; char &llvm::LiveIntervalsID = LiveIntervals::ID; INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(LiveVariables) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_END(LiveIntervals, "liveintervals", "Live Interval Analysis", false, false) void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addRequiredTransitiveID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addPreserved(); AU.addRequiredTransitive(); MachineFunctionPass::getAnalysisUsage(AU); } LiveIntervals::LiveIntervals() : MachineFunctionPass(ID), DomTree(0), LRCalc(0) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); } LiveIntervals::~LiveIntervals() { delete LRCalc; } void LiveIntervals::releaseMemory() { // Free the live intervals themselves. for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; VirtRegIntervals.clear(); RegMaskSlots.clear(); RegMaskBits.clear(); RegMaskBlocks.clear(); for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) delete RegUnitIntervals[i]; RegUnitIntervals.clear(); // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. VNInfoAllocator.Reset(); } /// runOnMachineFunction - Register allocate the whole function /// bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { MF = &fn; MRI = &MF->getRegInfo(); TM = &fn.getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); AA = &getAnalysis(); LV = &getAnalysis(); Indexes = &getAnalysis(); DomTree = &getAnalysis(); if (!LRCalc) LRCalc = new LiveRangeCalc(); // Allocate space for all virtual registers. VirtRegIntervals.resize(MRI->getNumVirtRegs()); if (NewLiveIntervals) { // This is the new way of computing live intervals. // It is independent of LiveVariables, and it can run at any time. computeVirtRegs(); computeRegMasks(); } else { // This is the old way of computing live intervals. // It depends on LiveVariables. computeIntervals(); } computeLiveInRegUnits(); DEBUG(dump()); return true; } /// print - Implement the dump method. void LiveIntervals::print(raw_ostream &OS, const Module* ) const { OS << "********** INTERVALS **********\n"; // Dump the regunits. for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i) if (LiveInterval *LI = RegUnitIntervals[i]) OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n'; // Dump the virtregs. for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (hasInterval(Reg)) OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n'; } OS << "RegMasks:"; for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i) OS << ' ' << RegMaskSlots[i]; OS << '\n'; printInstrs(OS); } void LiveIntervals::printInstrs(raw_ostream &OS) const { OS << "********** MACHINEINSTRS **********\n"; MF->print(OS, Indexes); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void LiveIntervals::dumpInstrs() const { printInstrs(dbgs()); } #endif static bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) { unsigned Reg = MI.getOperand(MOIdx).getReg(); for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; if (MO.getReg() == Reg && MO.isDef()) { assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() && MI.getOperand(MOIdx).getSubReg() && (MO.getSubReg() || MO.isImplicit())); return true; } } return false; } /// isPartialRedef - Return true if the specified def at the specific index is /// partially re-defining the specified live interval. A common case of this is /// a definition of the sub-register. bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO, LiveInterval &interval) { if (!MO.getSubReg() || MO.isEarlyClobber()) return false; SlotIndex RedefIndex = MIIdx.getRegSlot(); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def); if (DefMI != 0) { return DefMI->findRegisterDefOperandIdx(interval.reg) != -1; } return false; } void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb, MachineBasicBlock::iterator mi, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx, LiveInterval &interval) { DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI)); // Virtual registers may be defined multiple times (due to phi // elimination and 2-addr elimination). Much of what we do only has to be // done once for the vreg. We use an empty interval to detect the first // time we see a vreg. LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg); if (interval.empty()) { // Get the Idx of the defining instructions. SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); // Make sure the first definition is not a partial redefinition. assert(!MO.readsReg() && "First def cannot also read virtual register " "missing flag?"); VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); assert(ValNo->id == 0 && "First value in interval is not 0?"); // Loop over all of the blocks that the vreg is defined in. There are // two cases we have to handle here. The most common case is a vreg // whose lifetime is contained within a basic block. In this case there // will be a single kill, in MBB, which comes after the definition. if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) { // FIXME: what about dead vars? SlotIndex killIdx; if (vi.Kills[0] != mi) killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot(); else killIdx = defIndex.getDeadSlot(); // If the kill happens after the definition, we have an intra-block // live range. if (killIdx > defIndex) { assert(vi.AliveBlocks.empty() && "Shouldn't be alive across any blocks!"); LiveRange LR(defIndex, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR << "\n"); return; } } // The other case we handle is when a virtual register lives to the end // of the defining block, potentially live across some blocks, then is // live into some number of blocks, but gets killed. Start by adding a // range that goes from this definition to the end of the defining block. LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo); DEBUG(dbgs() << " +" << NewLR); interval.addRange(NewLR); bool PHIJoin = LV->isPHIJoin(interval.reg); if (PHIJoin) { // A phi join register is killed at the end of the MBB and revived as a // new valno in the killing blocks. assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks"); DEBUG(dbgs() << " phi-join"); } else { // Iterate over all of the blocks that the variable is completely // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the // live interval. for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), E = vi.AliveBlocks.end(); I != E; ++I) { MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I); LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } // Finally, this virtual register is live from the start of any killing // block to the 'use' slot of the killing instruction. for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) { MachineInstr *Kill = vi.Kills[i]; SlotIndex Start = getMBBStartIdx(Kill->getParent()); SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot(); // Create interval with one of a NEW value number. Note that this value // number isn't actually defined by an instruction, weird huh? :) if (PHIJoin) { assert(getInstructionFromIndex(Start) == 0 && "PHI def index points at actual instruction."); ValNo = interval.getNextValue(Start, VNInfoAllocator); } LiveRange LR(Start, killIdx, ValNo); interval.addRange(LR); DEBUG(dbgs() << " +" << LR); } } else { if (MultipleDefsBySameMI(*mi, MOIdx)) // Multiple defs of the same virtual register by the same instruction. // e.g. %reg1031:5, %reg1031:6 = VLD1q16 %reg1024, ... // This is likely due to elimination of REG_SEQUENCE instructions. Return // here since there is nothing to do. return; // If this is the second time we see a virtual register definition, it // must be due to phi elimination or two addr elimination. If this is // the result of two address elimination, then the vreg is one of the // def-and-use register operand. // It may also be partial redef like this: // 80 %reg1041:6 = VSHRNv4i16 %reg1034, 12, pred:14, pred:%reg0 // 120 %reg1041:5 = VSHRNv4i16 %reg1039, 12, pred:14, pred:%reg0 bool PartReDef = isPartialRedef(MIIdx, MO, interval); if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) { // If this is a two-address definition, then we have already processed // the live range. The only problem is that we didn't realize there // are actually two values in the live interval. Because of this we // need to take the LiveRegion that defines this register and split it // into two values. SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber()); const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex.getRegSlot(true)); VNInfo *OldValNo = OldLR->valno; SlotIndex DefIndex = OldValNo->def.getRegSlot(); // Delete the previous value, which should be short and continuous, // because the 2-addr copy must be in the same MBB as the redef. interval.removeRange(DefIndex, RedefIndex); // The new value number (#1) is defined by the instruction we claimed // defined value #0. VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator); // Value#0 is now defined by the 2-addr instruction. OldValNo->def = RedefIndex; // Add the new live interval which replaces the range for the input copy. LiveRange LR(DefIndex, RedefIndex, ValNo); DEBUG(dbgs() << " replace range with " << LR); interval.addRange(LR); // If this redefinition is dead, we need to add a dummy unit live // range covering the def slot. if (MO.isDead()) interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(), OldValNo)); DEBUG(dbgs() << " RESULT: " << interval); } else if (LV->isPHIJoin(interval.reg)) { // In the case of PHI elimination, each variable definition is only // live until the end of the block. We've already taken care of the // rest of the live range. SlotIndex defIndex = MIIdx.getRegSlot(); if (MO.isEarlyClobber()) defIndex = MIIdx.getRegSlot(true); VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator); SlotIndex killIndex = getMBBEndIdx(mbb); LiveRange LR(defIndex, killIndex, ValNo); interval.addRange(LR); DEBUG(dbgs() << " phi-join +" << LR); } else { llvm_unreachable("Multiply defined register"); } } DEBUG(dbgs() << '\n'); } void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB, MachineBasicBlock::iterator MI, SlotIndex MIIdx, MachineOperand& MO, unsigned MOIdx) { if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx, getOrCreateInterval(MO.getReg())); } /// computeIntervals - computes the live intervals for virtual /// registers. for some ordering of the machine instructions [1,N] a /// live interval is an interval [i, j) where 1 <= i <= j < N for /// which a variable is live void LiveIntervals::computeIntervals() { DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n" << "********** Function: " << MF->getName() << '\n'); RegMaskBlocks.resize(MF->getNumBlockIDs()); SmallVector UndefUses; for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size(); if (MBB->empty()) continue; // Track the index of the current machine instr. SlotIndex MIIndex = getMBBStartIdx(MBB); DEBUG(dbgs() << "BB#" << MBB->getNumber() << ":\t\t# derived from " << MBB->getName() << "\n"); // Skip over empty initial indices. if (getInstructionFromIndex(MIIndex) == 0) MIIndex = Indexes->getNextNonNullIndex(MIIndex); for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end(); MI != miEnd; ++MI) { DEBUG(dbgs() << MIIndex << "\t" << *MI); if (MI->isDebugValue()) continue; assert(Indexes->getInstructionFromIndex(MIIndex) == MI && "Lost SlotIndex synchronization"); // Handle defs. for (int i = MI->getNumOperands() - 1; i >= 0; --i) { MachineOperand &MO = MI->getOperand(i); // Collect register masks. if (MO.isRegMask()) { RegMaskSlots.push_back(MIIndex.getRegSlot()); RegMaskBits.push_back(MO.getRegMask()); continue; } if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; // handle register defs - build intervals if (MO.isDef()) handleRegisterDef(MBB, MI, MIIndex, MO, i); else if (MO.isUndef()) UndefUses.push_back(MO.getReg()); } // Move to the next instr slot. MIIndex = Indexes->getNextNonNullIndex(MIIndex); } // Compute the number of register mask instructions in this block. std::pair &RMB = RegMaskBlocks[MBB->getNumber()]; RMB.second = RegMaskSlots.size() - RMB.first; } // Create empty intervals for registers defined by implicit_def's (except // for those implicit_def that define values which are liveout of their // blocks. for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) { unsigned UndefReg = UndefUses[i]; (void)getOrCreateInterval(UndefReg); } } LiveInterval* LiveIntervals::createInterval(unsigned reg) { float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F; return new LiveInterval(reg, Weight); } /// computeVirtRegInterval - Compute the live interval of a virtual register, /// based on defs and uses. void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) { assert(LRCalc && "LRCalc not initialized."); assert(LI->empty() && "Should only compute empty intervals."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); LRCalc->createDeadDefs(LI); LRCalc->extendToUses(LI); } void LiveIntervals::computeVirtRegs() { for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = createInterval(Reg); VirtRegIntervals[Reg] = LI; computeVirtRegInterval(LI); } } void LiveIntervals::computeRegMasks() { RegMaskBlocks.resize(MF->getNumBlockIDs()); // Find all instructions with regmask operands. for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); MBBI != E; ++MBBI) { MachineBasicBlock *MBB = MBBI; std::pair &RMB = RegMaskBlocks[MBB->getNumber()]; RMB.first = RegMaskSlots.size(); for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end(); MI != ME; ++MI) for (MIOperands MO(MI); MO.isValid(); ++MO) { if (!MO->isRegMask()) continue; RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); RegMaskBits.push_back(MO->getRegMask()); } // Compute the number of register mask instructions in this block. RMB.second = RegMaskSlots.size() - RMB.first; } } //===----------------------------------------------------------------------===// // Register Unit Liveness //===----------------------------------------------------------------------===// // // Fixed interference typically comes from ABI boundaries: Function arguments // and return values are passed in fixed registers, and so are exception // pointers entering landing pads. Certain instructions require values to be // present in specific registers. That is also represented through fixed // interference. // /// computeRegUnitInterval - Compute the live interval of a register unit, based /// on the uses and defs of aliasing registers. The interval should be empty, /// or contain only dead phi-defs from ABI blocks. void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) { unsigned Unit = LI->reg; assert(LRCalc && "LRCalc not initialized."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); // The physregs aliasing Unit are the roots and their super-registers. // Create all values as dead defs before extending to uses. Note that roots // may share super-registers. That's OK because createDeadDefs() is // idempotent. It is very rare for a register unit to have multiple roots, so // uniquing super-registers is probably not worthwhile. for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { unsigned Root = *Roots; if (!MRI->reg_empty(Root)) LRCalc->createDeadDefs(LI, Root); for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { if (!MRI->reg_empty(*Supers)) LRCalc->createDeadDefs(LI, *Supers); } } // Now extend LI to reach all uses. // Ignore uses of reserved registers. We only track defs of those. for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) { unsigned Root = *Roots; if (!MRI->isReserved(Root) && !MRI->reg_empty(Root)) LRCalc->extendToUses(LI, Root); for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) { unsigned Reg = *Supers; if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg)) LRCalc->extendToUses(LI, Reg); } } } /// computeLiveInRegUnits - Precompute the live ranges of any register units /// that are live-in to an ABI block somewhere. Register values can appear /// without a corresponding def when entering the entry block or a landing pad. /// void LiveIntervals::computeLiveInRegUnits() { RegUnitIntervals.resize(TRI->getNumRegUnits()); DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); // Keep track of the intervals allocated. SmallVector NewIntvs; // Check all basic blocks for live-ins. for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); MFI != MFE; ++MFI) { const MachineBasicBlock *MBB = MFI; // We only care about ABI blocks: Entry + landing pads. if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty()) continue; // Create phi-defs at Begin for all live-in registers. SlotIndex Begin = Indexes->getMBBStartIdx(MBB); DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber()); for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(), LIE = MBB->livein_end(); LII != LIE; ++LII) { for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) { unsigned Unit = *Units; LiveInterval *Intv = RegUnitIntervals[Unit]; if (!Intv) { Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF); NewIntvs.push_back(Intv); } VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator()); (void)VNI; DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id); } } DEBUG(dbgs() << '\n'); } DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n"); // Compute the 'normal' part of the intervals. for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i) computeRegUnitInterval(NewIntvs[i]); } /// shrinkToUses - After removing some uses of a register, shrink its live /// range to just the remaining uses. This method does not compute reaching /// defs for new uses, and it doesn't remove dead defs. bool LiveIntervals::shrinkToUses(LiveInterval *li, SmallVectorImpl *dead) { DEBUG(dbgs() << "Shrink: " << *li << '\n'); assert(TargetRegisterInfo::isVirtualRegister(li->reg) && "Can only shrink virtual registers"); // Find all the values used, including PHI kills. SmallVector, 16> WorkList; // Blocks that have already been added to WorkList as live-out. SmallPtrSet LiveOut; // Visit all instructions reading li->reg. for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg); MachineInstr *UseMI = I.skipInstruction();) { if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg)) continue; SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); LiveRangeQuery LRQ(*li, Idx); VNInfo *VNI = LRQ.valueIn(); if (!VNI) { // This shouldn't happen: readsVirtualRegister returns true, but there is // no live value. It is likely caused by a target getting flags // wrong. DEBUG(dbgs() << Idx << '\t' << *UseMI << "Warning: Instr claims to read non-existent value in " << *li << '\n'); continue; } // Special case: An early-clobber tied operand reads and writes the // register one slot early. if (VNInfo *DefVNI = LRQ.valueDefined()) Idx = DefVNI->def; WorkList.push_back(std::make_pair(Idx, VNI)); } // Create a new live interval with only minimal live segments per def. LiveInterval NewLI(li->reg, 0); for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI)); } // Keep track of the PHIs that are in use. SmallPtrSet UsedPHIs; // Extend intervals to reach all uses in WorkList. while (!WorkList.empty()) { SlotIndex Idx = WorkList.back().first; VNInfo *VNI = WorkList.back().second; WorkList.pop_back(); const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot()); SlotIndex BlockStart = getMBBStartIdx(MBB); // Extend the live range for VNI to be live at Idx. if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) { (void)ExtVNI; assert(ExtVNI == VNI && "Unexpected existing value number"); // Is this a PHIDef we haven't seen before? if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI)) continue; // The PHI is live, make sure the predecessors are live-out. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); // A predecessor is not required to have a live-out value for a PHI. if (VNInfo *PVNI = li->getVNInfoBefore(Stop)) WorkList.push_back(std::make_pair(Stop, PVNI)); } continue; } // VNI is live-in to MBB. DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); NewLI.addRange(LiveRange(BlockStart, Idx, VNI)); // Make sure VNI is live-out from the predecessors. for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PE = MBB->pred_end(); PI != PE; ++PI) { if (!LiveOut.insert(*PI)) continue; SlotIndex Stop = getMBBEndIdx(*PI); assert(li->getVNInfoBefore(Stop) == VNI && "Wrong value out of predecessor"); WorkList.push_back(std::make_pair(Stop, VNI)); } } // Handle dead values. bool CanSeparate = false; for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end(); I != E; ++I) { VNInfo *VNI = *I; if (VNI->isUnused()) continue; LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def); assert(LII != NewLI.end() && "Missing live range for PHI"); if (LII->end != VNI->def.getDeadSlot()) continue; if (VNI->isPHIDef()) { // This is a dead PHI. Remove it. VNI->markUnused(); NewLI.removeRange(*LII); DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); CanSeparate = true; } else { // This is a dead def. Make sure the instruction knows. MachineInstr *MI = getInstructionFromIndex(VNI->def); assert(MI && "No instruction defining live value"); MI->addRegisterDead(li->reg, TRI); if (dead && MI->allDefsAreDead()) { DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI); dead->push_back(MI); } } } // Move the trimmed ranges back. li->ranges.swap(NewLI.ranges); DEBUG(dbgs() << "Shrunk: " << *li << '\n'); return CanSeparate; } void LiveIntervals::extendToIndices(LiveInterval *LI, ArrayRef Indices) { assert(LRCalc && "LRCalc not initialized."); LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); for (unsigned i = 0, e = Indices.size(); i != e; ++i) LRCalc->extend(LI, Indices[i]); } void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill, SmallVectorImpl *EndPoints) { LiveRangeQuery LRQ(*LI, Kill); VNInfo *VNI = LRQ.valueOut(); if (!VNI) return; MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); SlotIndex MBBStart, MBBEnd; tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB); // If VNI isn't live out from KillMBB, the value is trivially pruned. if (LRQ.endPoint() < MBBEnd) { LI->removeRange(Kill, LRQ.endPoint()); if (EndPoints) EndPoints->push_back(LRQ.endPoint()); return; } // VNI is live out of KillMBB. LI->removeRange(Kill, MBBEnd); if (EndPoints) EndPoints->push_back(MBBEnd); // Find all blocks that are reachable from KillMBB without leaving VNI's live // range. It is possible that KillMBB itself is reachable, so start a DFS // from each successor. typedef SmallPtrSet VisitedTy; VisitedTy Visited; for (MachineBasicBlock::succ_iterator SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end(); SuccI != SuccE; ++SuccI) { for (df_ext_iterator I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited); I != E;) { MachineBasicBlock *MBB = *I; // Check if VNI is live in to MBB. tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); LiveRangeQuery LRQ(*LI, MBBStart); if (LRQ.valueIn() != VNI) { // This block isn't part of the VNI live range. Prune the search. I.skipChildren(); continue; } // Prune the search if VNI is killed in MBB. if (LRQ.endPoint() < MBBEnd) { LI->removeRange(MBBStart, LRQ.endPoint()); if (EndPoints) EndPoints->push_back(LRQ.endPoint()); I.skipChildren(); continue; } // VNI is live through MBB. LI->removeRange(MBBStart, MBBEnd); if (EndPoints) EndPoints->push_back(MBBEnd); ++I; } } } //===----------------------------------------------------------------------===// // Register allocator hooks. // void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { // Keep track of regunit ranges. SmallVector, 8> RU; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (MRI->reg_nodbg_empty(Reg)) continue; LiveInterval *LI = &getInterval(Reg); if (LI->empty()) continue; // Find the regunit intervals for the assigned register. They may overlap // the virtual register live range, cancelling any kills. RU.clear(); for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid(); ++Units) { LiveInterval *RUInt = &getRegUnit(*Units); if (RUInt->empty()) continue; RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end))); } // Every instruction that kills Reg corresponds to a live range end point. for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE; ++RI) { // A block index indicates an MBB edge. if (RI->end.isBlock()) continue; MachineInstr *MI = getInstructionFromIndex(RI->end); if (!MI) continue; // Check if any of the reguints are live beyond the end of RI. That could // happen when a physreg is defined as a copy of a virtreg: // // %EAX = COPY %vreg5 // FOO %vreg5 <--- MI, cancel kill because %EAX is live. // BAR %EAX // // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX. bool CancelKill = false; for (unsigned u = 0, e = RU.size(); u != e; ++u) { LiveInterval *RInt = RU[u].first; LiveInterval::iterator &I = RU[u].second; if (I == RInt->end()) continue; I = RInt->advanceTo(I, RI->end); if (I == RInt->end() || I->start >= RI->end) continue; // I is overlapping RI. CancelKill = true; break; } if (CancelKill) MI->clearRegisterKills(Reg, NULL); else MI->addRegisterKilled(Reg, NULL); } } } MachineBasicBlock* LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { // A local live range must be fully contained inside the block, meaning it is // defined and killed at instructions, not at block boundaries. It is not // live in or or out of any block. // // It is technically possible to have a PHI-defined live range identical to a // single block, but we are going to return false in that case. SlotIndex Start = LI.beginIndex(); if (Start.isBlock()) return NULL; SlotIndex Stop = LI.endIndex(); if (Stop.isBlock()) return NULL; // getMBBFromIndex doesn't need to search the MBB table when both indexes // belong to proper instructions. MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); return MBB1 == MBB2 ? MBB1 : NULL; } bool LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); I != E; ++I) { const VNInfo *PHI = *I; if (PHI->isUnused() || !PHI->isPHIDef()) continue; const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); // Conservatively return true instead of scanning huge predecessor lists. if (PHIMBB->pred_size() > 100) return true; for (MachineBasicBlock::const_pred_iterator PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI) if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI))) return true; } return false; } float LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) { // Limit the loop depth ridiculousness. if (loopDepth > 200) loopDepth = 200; // The loop depth is used to roughly estimate the number of times the // instruction is executed. Something like 10^d is simple, but will quickly // overflow a float. This expression behaves like 10^d for small d, but is // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of // headroom before overflow. // By the way, powf() might be unavailable here. For consistency, // We may take pow(double,double). float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth); return (isDef + isUse) * lc; } LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg, MachineInstr* startInst) { LiveInterval& Interval = getOrCreateInterval(reg); VNInfo* VN = Interval.getNextValue( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getVNInfoAllocator()); LiveRange LR( SlotIndex(getInstructionIndex(startInst).getRegSlot()), getMBBEndIdx(startInst->getParent()), VN); Interval.addRange(LR); return LR; } //===----------------------------------------------------------------------===// // Register mask functions //===----------------------------------------------------------------------===// bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, BitVector &UsableRegs) { if (LI.empty()) return false; LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); // Use a smaller arrays for local live ranges. ArrayRef Slots; ArrayRef Bits; if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { Slots = getRegMaskSlotsInBlock(MBB->getNumber()); Bits = getRegMaskBitsInBlock(MBB->getNumber()); } else { Slots = getRegMaskSlots(); Bits = getRegMaskBits(); } // We are going to enumerate all the register mask slots contained in LI. // Start with a binary search of RegMaskSlots to find a starting point. ArrayRef::iterator SlotI = std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); ArrayRef::iterator SlotE = Slots.end(); // No slots in range, LI begins after the last call. if (SlotI == SlotE) return false; bool Found = false; for (;;) { assert(*SlotI >= LiveI->start); // Loop over all slots overlapping this segment. while (*SlotI < LiveI->end) { // *SlotI overlaps LI. Collect mask bits. if (!Found) { // This is the first overlap. Initialize UsableRegs to all ones. UsableRegs.clear(); UsableRegs.resize(TRI->getNumRegs(), true); Found = true; } // Remove usable registers clobbered by this mask. UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); if (++SlotI == SlotE) return Found; } // *SlotI is beyond the current LI segment. LiveI = LI.advanceTo(LiveI, *SlotI); if (LiveI == LiveE) return Found; // Advance SlotI until it overlaps. while (*SlotI < LiveI->start) if (++SlotI == SlotE) return Found; } } //===----------------------------------------------------------------------===// // IntervalUpdate class. //===----------------------------------------------------------------------===// // HMEditor is a toolkit used by handleMove to trim or extend live intervals. class LiveIntervals::HMEditor { private: LiveIntervals& LIS; const MachineRegisterInfo& MRI; const TargetRegisterInfo& TRI; SlotIndex OldIdx; SlotIndex NewIdx; SmallPtrSet Updated; bool UpdateFlags; public: HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, const TargetRegisterInfo& TRI, SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), UpdateFlags(UpdateFlags) {} // FIXME: UpdateFlags is a workaround that creates live intervals for all // physregs, even those that aren't needed for regalloc, in order to update // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill // flags, and postRA passes will use a live register utility instead. LiveInterval *getRegUnitLI(unsigned Unit) { if (UpdateFlags) return &LIS.getRegUnit(Unit); return LIS.getCachedRegUnit(Unit); } /// Update all live ranges touched by MI, assuming a move from OldIdx to /// NewIdx. void updateAllRanges(MachineInstr *MI) { DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); bool hasRegMask = false; for (MIOperands MO(MI); MO.isValid(); ++MO) { if (MO->isRegMask()) hasRegMask = true; if (!MO->isReg()) continue; // Aggressively clear all kill flags. // They are reinserted by VirtRegRewriter. if (MO->isUse()) MO->setIsKill(false); unsigned Reg = MO->getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) { updateRange(LIS.getInterval(Reg)); continue; } // For physregs, only update the regunits that actually have a // precomputed live range. for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) if (LiveInterval *LI = getRegUnitLI(*Units)) updateRange(*LI); } if (hasRegMask) updateRegMaskSlots(); } private: /// Update a single live range, assuming an instruction has been moved from /// OldIdx to NewIdx. void updateRange(LiveInterval &LI) { if (!Updated.insert(&LI)) return; DEBUG({ dbgs() << " "; if (TargetRegisterInfo::isVirtualRegister(LI.reg)) dbgs() << PrintReg(LI.reg); else dbgs() << PrintRegUnit(LI.reg, &TRI); dbgs() << ":\t" << LI << '\n'; }); if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) handleMoveDown(LI); else handleMoveUp(LI); DEBUG(dbgs() << " -->\t" << LI << '\n'); LI.verify(); } /// Update LI to reflect an instruction has been moved downwards from OldIdx /// to NewIdx. /// /// 1. Live def at OldIdx: /// Move def to NewIdx, assert endpoint after NewIdx. /// /// 2. Live def at OldIdx, killed at NewIdx: /// Change to dead def at NewIdx. /// (Happens when bundling def+kill together). /// /// 3. Dead def at OldIdx: /// Move def to NewIdx, possibly across another live value. /// /// 4. Def at OldIdx AND at NewIdx: /// Remove live range [OldIdx;NewIdx) and value defined at OldIdx. /// (Happens when bundling multiple defs together). /// /// 5. Value read at OldIdx, killed before NewIdx: /// Extend kill to NewIdx. /// void handleMoveDown(LiveInterval &LI) { // First look for a kill at OldIdx. LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex()); LiveInterval::iterator E = LI.end(); // Is LI even live at OldIdx? if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) return; // Handle a live-in value. if (!SlotIndex::isSameInstr(I->start, OldIdx)) { bool isKill = SlotIndex::isSameInstr(OldIdx, I->end); // If the live-in value already extends to NewIdx, there is nothing to do. if (!SlotIndex::isEarlierInstr(I->end, NewIdx)) return; // Aggressively remove all kill flags from the old kill point. // Kill flags shouldn't be used while live intervals exist, they will be // reinserted by VirtRegRewriter. if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end)) for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO) if (MO->isReg() && MO->isUse()) MO->setIsKill(false); // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by // overlapping ranges. Case 5 above. I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); // If this was a kill, there may also be a def. Otherwise we're done. if (!isKill) return; ++I; } // Check for a def at OldIdx. if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start)) return; // We have a def at OldIdx. VNInfo *DefVNI = I->valno; assert(DefVNI->def == I->start && "Inconsistent def"); DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); // If the defined value extends beyond NewIdx, just move the def down. // This is case 1 above. if (SlotIndex::isEarlierInstr(NewIdx, I->end)) { I->start = DefVNI->def; return; } // The remaining possibilities are now: // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx). // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot(). // In either case, it is possible that there is an existing def at NewIdx. assert((I->end == OldIdx.getDeadSlot() || SlotIndex::isSameInstr(I->end, NewIdx)) && "Cannot move def below kill"); LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot()); if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) { // There is an existing def at NewIdx, case 4 above. The def at OldIdx is // coalesced into that value. assert(NewI->valno != DefVNI && "Multiple defs of value?"); LI.removeValNo(DefVNI); return; } // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx. // If the def at OldIdx was dead, we allow it to be moved across other LI // values. The new range should be placed immediately before NewI, move any // intermediate ranges up. assert(NewI != I && "Inconsistent iterators"); std::copy(llvm::next(I), NewI, I); *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); } /// Update LI to reflect an instruction has been moved upwards from OldIdx /// to NewIdx. /// /// 1. Live def at OldIdx: /// Hoist def to NewIdx. /// /// 2. Dead def at OldIdx: /// Hoist def+end to NewIdx, possibly move across other values. /// /// 3. Dead def at OldIdx AND existing def at NewIdx: /// Remove value defined at OldIdx, coalescing it with existing value. /// /// 4. Live def at OldIdx AND existing def at NewIdx: /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx. /// (Happens when bundling multiple defs together). /// /// 5. Value killed at OldIdx: /// Hoist kill to NewIdx, then scan for last kill between NewIdx and /// OldIdx. /// void handleMoveUp(LiveInterval &LI) { // First look for a kill at OldIdx. LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex()); LiveInterval::iterator E = LI.end(); // Is LI even live at OldIdx? if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start)) return; // Handle a live-in value. if (!SlotIndex::isSameInstr(I->start, OldIdx)) { // If the live-in value isn't killed here, there is nothing to do. if (!SlotIndex::isSameInstr(OldIdx, I->end)) return; // Adjust I->end to end at NewIdx. If we are hoisting a kill above // another use, we need to search for that use. Case 5 above. I->end = NewIdx.getRegSlot(I->end.isEarlyClobber()); ++I; // If OldIdx also defines a value, there couldn't have been another use. if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) { // No def, search for the new kill. // This can never be an early clobber kill since there is no def. llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot(); return; } } // Now deal with the def at OldIdx. assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?"); VNInfo *DefVNI = I->valno; assert(DefVNI->def == I->start && "Inconsistent def"); DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber()); // Check for an existing def at NewIdx. LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot()); if (SlotIndex::isSameInstr(NewI->start, NewIdx)) { assert(NewI->valno != DefVNI && "Same value defined more than once?"); // There is an existing def at NewIdx. if (I->end.isDead()) { // Case 3: Remove the dead def at OldIdx. LI.removeValNo(DefVNI); return; } // Case 4: Replace def at NewIdx with live def at OldIdx. I->start = DefVNI->def; LI.removeValNo(NewI->valno); return; } // There is no existing def at NewIdx. Hoist DefVNI. if (!I->end.isDead()) { // Leave the end point of a live def. I->start = DefVNI->def; return; } // DefVNI is a dead def. It may have been moved across other values in LI, // so move I up to NewI. Slide [NewI;I) down one position. std::copy_backward(NewI, I, llvm::next(I)); *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI); } void updateRegMaskSlots() { SmallVectorImpl::iterator RI = std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), OldIdx); assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && "No RegMask at OldIdx."); *RI = NewIdx.getRegSlot(); assert((RI == LIS.RegMaskSlots.begin() || SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) && "Cannot move regmask instruction above another call"); assert((llvm::next(RI) == LIS.RegMaskSlots.end() || SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) && "Cannot move regmask instruction below another call"); } // Return the last use of reg between NewIdx and OldIdx. SlotIndex findLastUseBefore(unsigned Reg) { SlotIndex LastUse = NewIdx; if (TargetRegisterInfo::isVirtualRegister(Reg)) { for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg), UE = MRI.use_nodbg_end(); UI != UE; UI.skipInstruction()) { const MachineInstr* MI = &*UI; SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); if (InstSlot > LastUse && InstSlot < OldIdx) LastUse = InstSlot; } } else { MachineInstr* MI = LIS.getSlotIndexes()->getInstructionFromIndex(NewIdx); MachineBasicBlock::iterator MII(MI); ++MII; MachineBasicBlock* MBB = MI->getParent(); for (; MII != MBB->end(); ++MII){ if (MII->isDebugValue()) continue; if (LIS.getInstructionIndex(MII) < OldIdx) break; for (MachineInstr::mop_iterator MOI = MII->operands_begin(), MOE = MII->operands_end(); MOI != MOE; ++MOI) { const MachineOperand& mop = *MOI; if (!mop.isReg() || mop.getReg() == 0 || TargetRegisterInfo::isVirtualRegister(mop.getReg())) continue; if (TRI.hasRegUnit(mop.getReg(), Reg)) LastUse = LIS.getInstructionIndex(MII); } } } return LastUse; } }; void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) { assert(!MI->isBundled() && "Can't handle bundled instructions yet."); SlotIndex OldIndex = Indexes->getInstructionIndex(MI); Indexes->removeMachineInstrFromMaps(MI); SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); assert(getMBBStartIdx(MI->getParent()) <= OldIndex && OldIndex < getMBBEndIdx(MI->getParent()) && "Cannot handle moves across basic block boundaries."); HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); HME.updateAllRanges(MI); } void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart, bool UpdateFlags) { SlotIndex OldIndex = Indexes->getInstructionIndex(MI); SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); HME.updateAllRanges(MI); }