//===-- SparcV9RegInfo.h - SparcV9 Target Register Info ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is used to describe the register file of the SparcV9 target to // its register allocator. // //===----------------------------------------------------------------------===// #ifndef SPARCV9REGINFO_H #define SPARCV9REGINFO_H #include "Support/hash_map" #include #include namespace llvm { class TargetMachine; class IGNode; class Type; class Value; class LiveRangeInfo; class Function; class LiveRange; class AddedInstrns; class MachineInstr; class BasicBlock; class SparcV9TargetMachine; ///---------------------------------------------------------------------------- /// Interface to description of machine register class (e.g., int reg class /// float reg class etc) /// class TargetRegClassInfo { protected: const unsigned RegClassID; // integer ID of a reg class const unsigned NumOfAvailRegs; // # of avail for coloring -without SP etc. const unsigned NumOfAllRegs; // # of all registers -including SP,g0 etc. public: inline unsigned getRegClassID() const { return RegClassID; } inline unsigned getNumOfAvailRegs() const { return NumOfAvailRegs; } inline unsigned getNumOfAllRegs() const { return NumOfAllRegs; } // This method marks the registers used for a given register number. // This defaults to marking a single register but may mark multiple // registers when a single number denotes paired registers. // virtual void markColorsUsed(unsigned RegInClass, int UserRegType, int RegTypeWanted, std::vector &IsColorUsedArr) const { assert(RegInClass < NumOfAllRegs && RegInClass < IsColorUsedArr.size()); assert(UserRegType == RegTypeWanted && "Default method is probably incorrect for class with multiple types."); IsColorUsedArr[RegInClass] = true; } // This method finds unused registers of the specified register type, // using the given "used" flag array IsColorUsedArr. It defaults to // checking a single entry in the array directly, but that can be overridden // for paired registers and other such silliness. // It returns -1 if no unused color is found. // virtual int findUnusedColor(int RegTypeWanted, const std::vector &IsColorUsedArr) const { // find first unused color in the IsColorUsedArr directly unsigned NC = this->getNumOfAvailRegs(); assert(IsColorUsedArr.size() >= NC && "Invalid colors-used array"); for (unsigned c = 0; c < NC; c++) if (!IsColorUsedArr[c]) return c; return -1; } // This method should find a color which is not used by neighbors // (i.e., a false position in IsColorUsedArr) and virtual void colorIGNode(IGNode *Node, const std::vector &IsColorUsedArr) const = 0; // Check whether a specific register is volatile, i.e., whether it is not // preserved across calls virtual bool isRegVolatile(int Reg) const = 0; // Check whether a specific register is modified as a side-effect of the // call instruction itself, virtual bool modifiedByCall(int Reg) const {return false; } virtual const char* const getRegName(unsigned reg) const = 0; TargetRegClassInfo(unsigned ID, unsigned NVR, unsigned NAR) : RegClassID(ID), NumOfAvailRegs(NVR), NumOfAllRegs(NAR) {} }; //--------------------------------------------------------------------------- /// TargetRegInfo - Interface to register info of target machine /// class TargetRegInfo { TargetRegInfo(const TargetRegInfo &); // DO NOT IMPLEMENT void operator=(const TargetRegInfo &); // DO NOT IMPLEMENT protected: // A vector of all machine register classes // std::vector MachineRegClassArr; public: const TargetMachine ⌖ // A register can be initialized to an invalid number. That number can // be obtained using this method. // static int getInvalidRegNum() { return -1; } TargetRegInfo(const TargetMachine& tgt) : target(tgt) { } virtual ~TargetRegInfo() { for (unsigned i = 0, e = MachineRegClassArr.size(); i != e; ++i) delete MachineRegClassArr[i]; } // According the definition of a MachineOperand class, a Value in a // machine instruction can go into either a normal register or a // condition code register. If isCCReg is true below, the ID of the condition // code register class will be returned. Otherwise, the normal register // class (eg. int, float) must be returned. virtual unsigned getRegClassIDOfType (const Type *type, bool isCCReg = false) const = 0; virtual unsigned getRegClassIDOfRegType(int regType) const = 0; unsigned getRegClassIDOfReg(int unifiedRegNum) const { unsigned classId = 0; (void) getClassRegNum(unifiedRegNum, classId); return classId; } unsigned int getNumOfRegClasses() const { return MachineRegClassArr.size(); } const TargetRegClassInfo *getMachineRegClass(unsigned i) const { return MachineRegClassArr[i]; } // returns the register that is hardwired to zero if any (-1 if none) // virtual unsigned getZeroRegNum() const = 0; // Number of registers used for passing int args (usually 6: %o0 - %o5) // and float args (usually 32: %f0 - %f31) // virtual unsigned const getNumOfIntArgRegs() const = 0; virtual unsigned const getNumOfFloatArgRegs() const = 0; // The following methods are used to color special live ranges (e.g. // method args and return values etc.) with specific hardware registers // as required. See SparcRegInfo.cpp for the implementation for Sparc. // virtual void suggestRegs4MethodArgs(const Function *Func, LiveRangeInfo& LRI) const = 0; virtual void suggestRegs4CallArgs(MachineInstr *CallI, LiveRangeInfo& LRI) const = 0; virtual void suggestReg4RetValue(MachineInstr *RetI, LiveRangeInfo& LRI) const = 0; virtual void colorMethodArgs(const Function *Func, LiveRangeInfo &LRI, std::vector& InstrnsBefore, std::vector& InstrnsAfter) const = 0; // The following methods are used to generate "copy" machine instructions // for an architecture. Currently they are used in TargetRegClass // interface. However, they can be moved to TargetInstrInfo interface if // necessary. // // The function regTypeNeedsScratchReg() can be used to check whether a // scratch register is needed to copy a register of type `regType' to // or from memory. If so, such a scratch register can be provided by // the caller (e.g., if it knows which regsiters are free); otherwise // an arbitrary one will be chosen and spilled by the copy instructions. // If a scratch reg is needed, the reg. type that must be used // for scratch registers is returned in scratchRegType. // virtual bool regTypeNeedsScratchReg(int RegType, int& scratchRegType) const = 0; virtual void cpReg2RegMI(std::vector& mvec, unsigned SrcReg, unsigned DestReg, int RegType) const = 0; virtual void cpReg2MemMI(std::vector& mvec, unsigned SrcReg, unsigned DestPtrReg, int Offset, int RegType, int scratchReg = -1) const=0; virtual void cpMem2RegMI(std::vector& mvec, unsigned SrcPtrReg, int Offset, unsigned DestReg, int RegType, int scratchReg = -1) const=0; virtual void cpValue2Value(Value *Src, Value *Dest, std::vector& mvec) const = 0; // Check whether a specific register is volatile, i.e., whether it is not // preserved across calls inline virtual bool isRegVolatile(int RegClassID, int Reg) const { return MachineRegClassArr[RegClassID]->isRegVolatile(Reg); } // Check whether a specific register is modified as a side-effect of the // call instruction itself, inline virtual bool modifiedByCall(int RegClassID, int Reg) const { return MachineRegClassArr[RegClassID]->modifiedByCall(Reg); } // Returns the reg used for pushing the address when a method is called. // This can be used for other purposes between calls // virtual unsigned getCallAddressReg() const = 0; // Returns the register containing the return address. //It should be made sure that this // register contains the return value when a return instruction is reached. // virtual unsigned getReturnAddressReg() const = 0; // Each register class has a separate space for register IDs. To convert // a regId in a register class to a common Id, or vice versa, // we use the folloing two methods. // // This method converts from class reg. number to unified register number. int getUnifiedRegNum(unsigned regClassID, int reg) const { if (reg == getInvalidRegNum()) { return getInvalidRegNum(); } assert(regClassID < getNumOfRegClasses() && "Invalid register class"); int totalRegs = 0; for (unsigned rcid = 0; rcid < regClassID; ++rcid) totalRegs += MachineRegClassArr[rcid]->getNumOfAllRegs(); return reg + totalRegs; } // This method converts the unified number to the number in its class, // and returns the class ID in regClassID. int getClassRegNum(int uRegNum, unsigned& regClassID) const { if (uRegNum == getInvalidRegNum()) { return getInvalidRegNum(); } int totalRegs = 0, rcid = 0, NC = getNumOfRegClasses(); while (rcid < NC && uRegNum>= totalRegs+(int)MachineRegClassArr[rcid]->getNumOfAllRegs()) { totalRegs += MachineRegClassArr[rcid]->getNumOfAllRegs(); rcid++; } if (rcid == NC) { assert(0 && "getClassRegNum(): Invalid register number"); return getInvalidRegNum(); } regClassID = rcid; return uRegNum - totalRegs; } // Returns the assembly-language name of the specified machine register. // const char * const getUnifiedRegName(int UnifiedRegNum) const { unsigned regClassID = getNumOfRegClasses(); // initialize to invalid value int regNumInClass = getClassRegNum(UnifiedRegNum, regClassID); return MachineRegClassArr[regClassID]->getRegName(regNumInClass); } // Get the register type for a register identified different ways. // Note that getRegTypeForLR(LR) != getRegTypeForDataType(LR->getType())! // The reg class of a LR depends both on the Value types in it and whether // they are CC registers or not (for example). virtual int getRegTypeForDataType(const Type* type) const = 0; virtual int getRegTypeForLR(const LiveRange *LR) const = 0; virtual int getRegType(int unifiedRegNum) const = 0; // The following methods are used to get the frame/stack pointers // virtual unsigned getFramePointer() const = 0; virtual unsigned getStackPointer() const = 0; // This method gives the the number of bytes of stack space allocated // to a register when it is spilled to the stack. // virtual int getSpilledRegSize(int RegType) const = 0; }; /// This class implements the virtual class TargetRegInfo for SparcV9. /// class SparcV9RegInfo : public TargetRegInfo { private: // Number of registers used for passing int args (usually 6: %o0 - %o5) // unsigned const NumOfIntArgRegs; // Number of registers used for passing float args (usually 32: %f0 - %f31) // unsigned const NumOfFloatArgRegs; // The following methods are used to color special live ranges (e.g. // function args and return values etc.) with specific hardware registers // as required. See SparcV9RegInfo.cpp for the implementation. // void suggestReg4RetAddr(MachineInstr *RetMI, LiveRangeInfo &LRI) const; void suggestReg4CallAddr(MachineInstr *CallMI, LiveRangeInfo &LRI) const; // Helper used by the all the getRegType() functions. int getRegTypeForClassAndType(unsigned regClassID, const Type* type) const; public: // Type of registers available in SparcV9. There can be several reg types // in the same class. For instace, the float reg class has Single/Double // types // enum RegTypes { IntRegType, FPSingleRegType, FPDoubleRegType, IntCCRegType, FloatCCRegType, SpecialRegType }; // The actual register classes in the SparcV9 // // **** WARNING: If this enum order is changed, also modify // getRegisterClassOfValue method below since it assumes this particular // order for efficiency. // enum RegClassIDs { IntRegClassID, // Integer FloatRegClassID, // Float (both single/double) IntCCRegClassID, // Int Condition Code FloatCCRegClassID, // Float Condition code SpecialRegClassID // Special (unallocated) registers }; SparcV9RegInfo(const SparcV9TargetMachine &tgt); // To find the register class used for a specified Type // unsigned getRegClassIDOfType(const Type *type, bool isCCReg = false) const; // To find the register class to which a specified register belongs // unsigned getRegClassIDOfRegType(int regType) const; // getZeroRegNum - returns the register that contains always zero this is the // unified register number // virtual unsigned getZeroRegNum() const; // getCallAddressReg - returns the reg used for pushing the address when a // function is called. This can be used for other purposes between calls // unsigned getCallAddressReg() const; // Returns the register containing the return address. // It should be made sure that this register contains the return // value when a return instruction is reached. // unsigned getReturnAddressReg() const; // Number of registers used for passing int args (usually 6: %o0 - %o5) // and float args (usually 32: %f0 - %f31) // unsigned const getNumOfIntArgRegs() const { return NumOfIntArgRegs; } unsigned const getNumOfFloatArgRegs() const { return NumOfFloatArgRegs; } // Compute which register can be used for an argument, if any // int regNumForIntArg(bool inCallee, bool isVarArgsCall, unsigned argNo, unsigned& regClassId) const; int regNumForFPArg(unsigned RegType, bool inCallee, bool isVarArgsCall, unsigned argNo, unsigned& regClassId) const; // The following methods are used to color special live ranges (e.g. // function args and return values etc.) with specific hardware registers // as required. See SparcV9RegInfo.cpp for the implementation for SparcV9. // void suggestRegs4MethodArgs(const Function *Meth, LiveRangeInfo& LRI) const; void suggestRegs4CallArgs(MachineInstr *CallMI, LiveRangeInfo& LRI) const; void suggestReg4RetValue(MachineInstr *RetMI, LiveRangeInfo& LRI) const; void colorMethodArgs(const Function *Meth, LiveRangeInfo& LRI, std::vector& InstrnsBefore, std::vector& InstrnsAfter) const; // method used for printing a register for debugging purposes // void printReg(const LiveRange *LR) const; // returns the # of bytes of stack space allocated for each register // type. For SparcV9, currently we allocate 8 bytes on stack for all // register types. We can optimize this later if necessary to save stack // space (However, should make sure that stack alignment is correct) // inline int getSpilledRegSize(int RegType) const { return 8; } // To obtain the return value and the indirect call address (if any) // contained in a CALL machine instruction // const Value * getCallInstRetVal(const MachineInstr *CallMI) const; const Value * getCallInstIndirectAddrVal(const MachineInstr *CallMI) const; // The following methods are used to generate "copy" machine instructions // for an architecture. // // The function regTypeNeedsScratchReg() can be used to check whether a // scratch register is needed to copy a register of type `regType' to // or from memory. If so, such a scratch register can be provided by // the caller (e.g., if it knows which regsiters are free); otherwise // an arbitrary one will be chosen and spilled by the copy instructions. // bool regTypeNeedsScratchReg(int RegType, int& scratchRegClassId) const; void cpReg2RegMI(std::vector& mvec, unsigned SrcReg, unsigned DestReg, int RegType) const; void cpReg2MemMI(std::vector& mvec, unsigned SrcReg, unsigned DestPtrReg, int Offset, int RegType, int scratchReg = -1) const; void cpMem2RegMI(std::vector& mvec, unsigned SrcPtrReg, int Offset, unsigned DestReg, int RegType, int scratchReg = -1) const; void cpValue2Value(Value *Src, Value *Dest, std::vector& mvec) const; // Get the register type for a register identified different ways. // Note that getRegTypeForLR(LR) != getRegTypeForDataType(LR->getType())! // The reg class of a LR depends both on the Value types in it and whether // they are CC registers or not (for example). int getRegTypeForDataType(const Type* type) const; int getRegTypeForLR(const LiveRange *LR) const; int getRegType(int unifiedRegNum) const; virtual unsigned getFramePointer() const; virtual unsigned getStackPointer() const; }; } // End llvm namespace #endif // SPARCV9REGINFO_H