// $Id$ //*************************************************************************** // File: // MachineInstr.cpp // // Purpose: // // // Strategy: // // History: // 7/2/01 - Vikram Adve - Created //**************************************************************************/ #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Method.h" #include "llvm/ConstPoolVals.h" #include "llvm/Instruction.h" //************************ Class Implementations **************************/ // Constructor for instructions with fixed #operands (nearly all) MachineInstr::MachineInstr(MachineOpCode _opCode, OpCodeMask _opCodeMask) : opCode(_opCode), opCodeMask(_opCodeMask), operands(TargetInstrDescriptors[_opCode].numOperands) { assert(TargetInstrDescriptors[_opCode].numOperands >= 0); } // Constructor for instructions with variable #operands MachineInstr::MachineInstr(MachineOpCode _opCode, unsigned numOperands, OpCodeMask _opCodeMask) : opCode(_opCode), opCodeMask(_opCodeMask), operands(numOperands) { } void MachineInstr::SetMachineOperand(unsigned int i, MachineOperand::MachineOperandType operandType, Value* _val, bool isdef=false) { assert(i < operands.size()); operands[i].Initialize(operandType, _val); operands[i].isDef = isdef || TargetInstrDescriptors[opCode].resultPos == (int) i; } void MachineInstr::SetMachineOperand(unsigned int i, MachineOperand::MachineOperandType operandType, int64_t intValue, bool isdef=false) { assert(i < operands.size()); operands[i].InitializeConst(operandType, intValue); operands[i].isDef = isdef || TargetInstrDescriptors[opCode].resultPos == (int) i; } void MachineInstr::SetMachineOperand(unsigned int i, unsigned int regNum, bool isdef=false) { assert(i < operands.size()); operands[i].InitializeReg(regNum); operands[i].isDef = isdef || TargetInstrDescriptors[opCode].resultPos == (int) i; } void MachineInstr::dump(unsigned int indent) const { for (unsigned i=0; i < indent; i++) cout << " "; cout << *this; } ostream& operator<< (ostream& os, const MachineInstr& minstr) { os << TargetInstrDescriptors[minstr.opCode].opCodeString; for (unsigned i=0, N=minstr.getNumOperands(); i < N; i++) os << "\t" << minstr.getOperand(i); #undef DEBUG_VAL_OP_ITERATOR #ifdef DEBUG_VAL_OP_ITERATOR os << endl << "\tValue operands are: "; for (MachineInstr::val_op_const_iterator vo(&minstr); ! vo.done(); ++vo) { const Value* val = *vo; os << val << (vo.isDef()? "(def), " : ", "); } os << endl; #endif return os; } static inline ostream &OutputOperand(ostream &os, const MachineOperand &mop) { switch (mop.getOperandType()) { case MachineOperand::MO_CCRegister: case MachineOperand::MO_VirtualRegister: return os << "(val " << mop.getVRegValue() << ")"; case MachineOperand::MO_MachineRegister: return os << "(" << mop.getMachineRegNum() << ")"; default: assert(0 && "Unknown operand type"); return os; } } ostream &operator<<(ostream &os, const MachineOperand &mop) { switch(mop.opType) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_MachineRegister: os << "%reg"; return OutputOperand(os, mop); case MachineOperand::MO_CCRegister: os << "%ccreg"; return OutputOperand(os, mop); case MachineOperand::MO_SignExtendedImmed: return os << mop.immedVal; case MachineOperand::MO_UnextendedImmed: return os << mop.immedVal; case MachineOperand::MO_PCRelativeDisp: os << "%disp(label "; return OutputOperand(os, mop) << ")"; default: assert(0 && "Unrecognized operand type"); break; } return os; } //--------------------------------------------------------------------------- // Target-independent utility routines for creating machine instructions //--------------------------------------------------------------------------- //------------------------------------------------------------------------ // Function Set2OperandsFromInstr // Function Set3OperandsFromInstr // // For the common case of 2- and 3-operand arithmetic/logical instructions, // set the m/c instr. operands directly from the VM instruction's operands. // Check whether the first or second operand is 0 and can use a dedicated "0" register. // Check whether the second operand should use an immediate field or register. // (First and third operands are never immediates for such instructions.) // // Arguments: // canDiscardResult: Specifies that the result operand can be discarded // by using the dedicated "0" // // op1position, op2position and resultPosition: Specify in which position // in the machine instruction the 3 operands (arg1, arg2 // and result) should go. // // RETURN VALUE: unsigned int flags, where // flags & 0x01 => operand 1 is constant and needs a register // flags & 0x02 => operand 2 is constant and needs a register //------------------------------------------------------------------------ void Set2OperandsFromInstr(MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& target, bool canDiscardResult, int op1Position, int resultPosition) { Set3OperandsFromInstr(minstr, vmInstrNode, target, canDiscardResult, op1Position, /*op2Position*/ -1, resultPosition); } #undef REVERT_TO_EXPLICIT_CONSTANT_CHECKS #ifdef REVERT_TO_EXPLICIT_CONSTANT_CHECKS unsigned Set3OperandsFromInstrJUNK(MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& target, bool canDiscardResult, int op1Position, int op2Position, int resultPosition) { assert(op1Position >= 0); assert(resultPosition >= 0); unsigned returnFlags = 0x0; // Check if operand 1 is 0. If so, try to use a hardwired 0 register. Value* op1Value = vmInstrNode->leftChild()->getValue(); bool isValidConstant; int64_t intValue = GetConstantValueAsSignedInt(op1Value, isValidConstant); if (isValidConstant && intValue == 0 && target.zeroRegNum >= 0) minstr->SetMachineOperand(op1Position, /*regNum*/ target.zeroRegNum); else { if (op1Value->getValueType() == Value::ConstantVal) {// value is constant and must be loaded from constant pool returnFlags = returnFlags | (1 << op1Position); } minstr->SetMachineOperand(op1Position,MachineOperand::MO_VirtualRegister, op1Value); } // Check if operand 2 (if any) fits in the immed. field of the instruction, // or if it is 0 and can use a dedicated machine register if (op2Position >= 0) { Value* op2Value = vmInstrNode->rightChild()->getValue(); int64_t immedValue; unsigned int machineRegNum; MachineOperand::MachineOperandType op2type = ChooseRegOrImmed(op2Value, minstr->getOpCode(), target, /*canUseImmed*/ true, machineRegNum, immedValue); if (op2type == MachineOperand::MO_MachineRegister) minstr->SetMachineOperand(op2Position, machineRegNum); else if (op2type == MachineOperand::MO_VirtualRegister) { if (op2Value->getValueType() == Value::ConstantVal) {// value is constant and must be loaded from constant pool returnFlags = returnFlags | (1 << op2Position); } minstr->SetMachineOperand(op2Position, op2type, op2Value); } else { assert(op2type != MO_CCRegister); minstr->SetMachineOperand(op2Position, op2type, immedValue); } } // If operand 3 (result) can be discarded, use a dead register if one exists if (canDiscardResult && target.zeroRegNum >= 0) minstr->SetMachineOperand(resultPosition, target.zeroRegNum); else minstr->SetMachineOperand(resultPosition, MachineOperand::MO_VirtualRegister, vmInstrNode->getValue()); return returnFlags; } #endif void Set3OperandsFromInstr(MachineInstr* minstr, InstructionNode* vmInstrNode, const TargetMachine& target, bool canDiscardResult, int op1Position, int op2Position, int resultPosition) { assert(op1Position >= 0); assert(resultPosition >= 0); // operand 1 minstr->SetMachineOperand(op1Position, MachineOperand::MO_VirtualRegister, vmInstrNode->leftChild()->getValue()); // operand 2 (if any) if (op2Position >= 0) minstr->SetMachineOperand(op2Position, MachineOperand::MO_VirtualRegister, vmInstrNode->rightChild()->getValue()); // result operand: if it can be discarded, use a dead register if one exists if (canDiscardResult && target.zeroRegNum >= 0) minstr->SetMachineOperand(resultPosition, target.zeroRegNum); else minstr->SetMachineOperand(resultPosition, MachineOperand::MO_VirtualRegister, vmInstrNode->getValue()); } MachineOperand::MachineOperandType ChooseRegOrImmed(Value* val, MachineOpCode opCode, const TargetMachine& target, bool canUseImmed, unsigned int& getMachineRegNum, int64_t& getImmedValue) { MachineOperand::MachineOperandType opType = MachineOperand::MO_VirtualRegister; getMachineRegNum = 0; getImmedValue = 0; // Check for the common case first: argument is not constant // ConstPoolVal *CPV = val->castConstant(); if (!CPV) return opType; if (CPV->getType() == Type::BoolTy) { ConstPoolBool *CPB = (ConstPoolBool*)CPV; if (!CPB->getValue() && target.zeroRegNum >= 0) { getMachineRegNum = target.zeroRegNum; return MachineOperand::MO_MachineRegister; } getImmedValue = 1; return MachineOperand::MO_SignExtendedImmed; } if (!CPV->getType()->isIntegral()) return opType; // Now get the constant value and check if it fits in the IMMED field. // Take advantage of the fact that the max unsigned value will rarely // fit into any IMMED field and ignore that case (i.e., cast smaller // unsigned constants to signed). // int64_t intValue; if (CPV->getType()->isSigned()) { intValue = ((ConstPoolSInt*)CPV)->getValue(); } else { uint64_t V = ((ConstPoolUInt*)CPV)->getValue(); if (V >= INT64_MAX) return opType; intValue = (int64_t)V; } if (intValue == 0 && target.zeroRegNum >= 0){ opType = MachineOperand::MO_MachineRegister; getMachineRegNum = target.zeroRegNum; } else if (canUseImmed && target.getInstrInfo().constantFitsInImmedField(opCode, intValue)) { opType = MachineOperand::MO_SignExtendedImmed; getImmedValue = intValue; } return opType; } void PrintMachineInstructions(const Method* method) { cout << "\n" << method->getReturnType() << " \"" << method->getName() << "\"" << endl; for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI) { const BasicBlock* bb = *BI; cout << "\n" << (bb->hasName()? bb->getName() : "Label") << " (" << bb << ")" << ":" << endl; const MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec(); for (unsigned i=0; i < mvec.size(); i++) cout << "\t" << *mvec[i] << endl; } cout << endl << "End method \"" << method->getName() << "\"" << endl << endl; }