//===-- Verifier.cpp - Implement the Module Verifier -----------------------==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the function verifier interface, that can be used for some // sanity checking of input to the system. // // Note that this does not provide full `Java style' security and verifications, // instead it just tries to ensure that code is well-formed. // // * Both of a binary operator's parameters are of the same type // * Verify that the indices of mem access instructions match other operands // * Verify that arithmetic and other things are only performed on first-class // types. Verify that shifts & logicals only happen on integrals f.e. // * All of the constants in a switch statement are of the correct type // * The code is in valid SSA form // * It should be illegal to put a label into any other type (like a structure) // or to return one. [except constant arrays!] // * Only phi nodes can be self referential: 'add i32 %0, %0 ; :0' is bad // * PHI nodes must have an entry for each predecessor, with no extras. // * PHI nodes must be the first thing in a basic block, all grouped together // * PHI nodes must have at least one entry // * All basic blocks should only end with terminator insts, not contain them // * The entry node to a function must not have predecessors // * All Instructions must be embedded into a basic block // * Functions cannot take a void-typed parameter // * Verify that a function's argument list agrees with it's declared type. // * It is illegal to specify a name for a void value. // * It is illegal to have a internal global value with no initializer // * It is illegal to have a ret instruction that returns a value that does not // agree with the function return value type. // * Function call argument types match the function prototype // * A landing pad is defined by a landingpad instruction, and can be jumped to // only by the unwind edge of an invoke instruction. // * A landingpad instruction must be the first non-PHI instruction in the // block. // * All landingpad instructions must use the same personality function with // the same function. // * All other things that are tested by asserts spread about the code... // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Verifier.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/IntrinsicInst.h" #include "llvm/Metadata.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Debug.h" #include "llvm/Support/InstVisitor.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; namespace { // Anonymous namespace for class struct PreVerifier : public FunctionPass { static char ID; // Pass ID, replacement for typeid PreVerifier() : FunctionPass(ID) { initializePreVerifierPass(*PassRegistry::getPassRegistry()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); } // Check that the prerequisites for successful DominatorTree construction // are satisfied. bool runOnFunction(Function &F) { bool Broken = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { if (I->empty() || !I->back().isTerminator()) { dbgs() << "Basic Block in function '" << F.getName() << "' does not have terminator!\n"; WriteAsOperand(dbgs(), I, true); dbgs() << "\n"; Broken = true; } } if (Broken) report_fatal_error("Broken module, no Basic Block terminator!"); return false; } }; } char PreVerifier::ID = 0; INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification", false, false) static char &PreVerifyID = PreVerifier::ID; namespace { struct Verifier : public FunctionPass, public InstVisitor { static char ID; // Pass ID, replacement for typeid bool Broken; // Is this module found to be broken? bool RealPass; // Are we not being run by a PassManager? VerifierFailureAction action; // What to do if verification fails. Module *Mod; // Module we are verifying right now LLVMContext *Context; // Context within which we are verifying DominatorTree *DT; // Dominator Tree, caution can be null! std::string Messages; raw_string_ostream MessagesStr; /// InstInThisBlock - when verifying a basic block, keep track of all of the /// instructions we have seen so far. This allows us to do efficient /// dominance checks for the case when an instruction has an operand that is /// an instruction in the same block. SmallPtrSet InstsInThisBlock; /// MDNodes - keep track of the metadata nodes that have been checked /// already. SmallPtrSet MDNodes; /// PersonalityFn - The personality function referenced by the /// LandingPadInsts. All LandingPadInsts within the same function must use /// the same personality function. const Value *PersonalityFn; Verifier() : FunctionPass(ID), Broken(false), RealPass(true), action(AbortProcessAction), Mod(0), Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) { initializeVerifierPass(*PassRegistry::getPassRegistry()); } explicit Verifier(VerifierFailureAction ctn) : FunctionPass(ID), Broken(false), RealPass(true), action(ctn), Mod(0), Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) { initializeVerifierPass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) { Mod = &M; Context = &M.getContext(); // If this is a real pass, in a pass manager, we must abort before // returning back to the pass manager, or else the pass manager may try to // run other passes on the broken module. if (RealPass) return abortIfBroken(); return false; } bool runOnFunction(Function &F) { // Get dominator information if we are being run by PassManager if (RealPass) DT = &getAnalysis(); Mod = F.getParent(); if (!Context) Context = &F.getContext(); visit(F); InstsInThisBlock.clear(); PersonalityFn = 0; // If this is a real pass, in a pass manager, we must abort before // returning back to the pass manager, or else the pass manager may try to // run other passes on the broken module. if (RealPass) return abortIfBroken(); return false; } bool doFinalization(Module &M) { // Scan through, checking all of the external function's linkage now... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { visitGlobalValue(*I); // Check to make sure function prototypes are okay. if (I->isDeclaration()) visitFunction(*I); } for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) visitGlobalVariable(*I); for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) visitGlobalAlias(*I); for (Module::named_metadata_iterator I = M.named_metadata_begin(), E = M.named_metadata_end(); I != E; ++I) visitNamedMDNode(*I); // If the module is broken, abort at this time. return abortIfBroken(); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredID(PreVerifyID); if (RealPass) AU.addRequired(); } /// abortIfBroken - If the module is broken and we are supposed to abort on /// this condition, do so. /// bool abortIfBroken() { if (!Broken) return false; MessagesStr << "Broken module found, "; switch (action) { case AbortProcessAction: MessagesStr << "compilation aborted!\n"; dbgs() << MessagesStr.str(); // Client should choose different reaction if abort is not desired abort(); case PrintMessageAction: MessagesStr << "verification continues.\n"; dbgs() << MessagesStr.str(); return false; case ReturnStatusAction: MessagesStr << "compilation terminated.\n"; return true; } llvm_unreachable("Invalid action"); } // Verification methods... void visitGlobalValue(GlobalValue &GV); void visitGlobalVariable(GlobalVariable &GV); void visitGlobalAlias(GlobalAlias &GA); void visitNamedMDNode(NamedMDNode &NMD); void visitMDNode(MDNode &MD, Function *F); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); using InstVisitor::visit; void visit(Instruction &I); void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); void visitFPTruncInst(FPTruncInst &I); void visitFPExtInst(FPExtInst &I); void visitFPToUIInst(FPToUIInst &I); void visitFPToSIInst(FPToSIInst &I); void visitUIToFPInst(UIToFPInst &I); void visitSIToFPInst(SIToFPInst &I); void visitIntToPtrInst(IntToPtrInst &I); void visitPtrToIntInst(PtrToIntInst &I); void visitBitCastInst(BitCastInst &I); void visitPHINode(PHINode &PN); void visitBinaryOperator(BinaryOperator &B); void visitICmpInst(ICmpInst &IC); void visitFCmpInst(FCmpInst &FC); void visitExtractElementInst(ExtractElementInst &EI); void visitInsertElementInst(InsertElementInst &EI); void visitShuffleVectorInst(ShuffleVectorInst &EI); void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } void visitCallInst(CallInst &CI); void visitInvokeInst(InvokeInst &II); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void verifyDominatesUse(Instruction &I, unsigned i); void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); void visitBranchInst(BranchInst &BI); void visitReturnInst(ReturnInst &RI); void visitSwitchInst(SwitchInst &SI); void visitIndirectBrInst(IndirectBrInst &BI); void visitSelectInst(SelectInst &SI); void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); void visitAtomicRMWInst(AtomicRMWInst &RMWI); void visitFenceInst(FenceInst &FI); void visitAllocaInst(AllocaInst &AI); void visitExtractValueInst(ExtractValueInst &EVI); void visitInsertValueInst(InsertValueInst &IVI); void visitLandingPadInst(LandingPadInst &LPI); void VerifyCallSite(CallSite CS); bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, unsigned ArgNo, std::string &Suffix); void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, unsigned RetNum, unsigned ParamNum, ...); void VerifyParameterAttrs(Attributes Attrs, Type *Ty, bool isReturnValue, const Value *V); void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs, const Value *V); void WriteValue(const Value *V) { if (!V) return; if (isa(V)) { MessagesStr << *V << '\n'; } else { WriteAsOperand(MessagesStr, V, true, Mod); MessagesStr << '\n'; } } void WriteType(Type *T) { if (!T) return; MessagesStr << ' ' << *T; } // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. void CheckFailed(const Twine &Message, const Value *V1 = 0, const Value *V2 = 0, const Value *V3 = 0, const Value *V4 = 0) { MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteValue(V2); WriteValue(V3); WriteValue(V4); Broken = true; } void CheckFailed(const Twine &Message, const Value *V1, Type *T2, const Value *V3 = 0) { MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteType(T2); WriteValue(V3); Broken = true; } void CheckFailed(const Twine &Message, Type *T1, Type *T2 = 0, Type *T3 = 0) { MessagesStr << Message.str() << "\n"; WriteType(T1); WriteType(T2); WriteType(T3); Broken = true; } }; } // End anonymous namespace char Verifier::ID = 0; INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false) INITIALIZE_PASS_DEPENDENCY(PreVerifier) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false) // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ do { if (!(C)) { CheckFailed(M); return; } } while (0) #define Assert1(C, M, V1) \ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) #define Assert2(C, M, V1, V2) \ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) #define Assert3(C, M, V1, V2, V3) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) void Verifier::visit(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) Assert1(I.getOperand(i) != 0, "Operand is null", &I); InstVisitor::visit(I); } void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isDeclaration() || GV.isMaterializable() || GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage() || (isa(GV) && (GV.hasLocalLinkage() || GV.hasWeakLinkage())), "Global is external, but doesn't have external or dllimport or weak linkage!", &GV); Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), "Global is marked as dllimport, but not external", &GV); Assert1(!GV.hasAppendingLinkage() || isa(GV), "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { GlobalVariable *GVar = dyn_cast(&GV); Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(), "Only global arrays can have appending linkage!", GVar); } Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(), "linker_private_weak_def_auto can only have default visibility!", &GV); } void Verifier::visitGlobalVariable(GlobalVariable &GV) { if (GV.hasInitializer()) { Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), "Global variable initializer type does not match global " "variable type!", &GV); // If the global has common linkage, it must have a zero initializer and // cannot be constant. if (GV.hasCommonLinkage()) { Assert1(GV.getInitializer()->isNullValue(), "'common' global must have a zero initializer!", &GV); Assert1(!GV.isConstant(), "'common' global may not be marked constant!", &GV); } } else { Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage(), "invalid linkage type for global declaration", &GV); } if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || GV.getName() == "llvm.global_dtors")) { Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(), "invalid linkage for intrinsic global variable", &GV); // Don't worry about emitting an error for it not being an array, // visitGlobalValue will complain on appending non-array. if (ArrayType *ATy = dyn_cast(GV.getType())) { StructType *STy = dyn_cast(ATy->getElementType()); PointerType *FuncPtrTy = FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo(); Assert1(STy && STy->getNumElements() == 2 && STy->getTypeAtIndex(0u)->isIntegerTy(32) && STy->getTypeAtIndex(1) == FuncPtrTy, "wrong type for intrinsic global variable", &GV); } } visitGlobalValue(GV); } void Verifier::visitGlobalAlias(GlobalAlias &GA) { Assert1(!GA.getName().empty(), "Alias name cannot be empty!", &GA); Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() || GA.hasWeakLinkage(), "Alias should have external or external weak linkage!", &GA); Assert1(GA.getAliasee(), "Aliasee cannot be NULL!", &GA); Assert1(GA.getType() == GA.getAliasee()->getType(), "Alias and aliasee types should match!", &GA); Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA); if (!isa(GA.getAliasee())) { const ConstantExpr *CE = dyn_cast(GA.getAliasee()); Assert1(CE && (CE->getOpcode() == Instruction::BitCast || CE->getOpcode() == Instruction::GetElementPtr) && isa(CE->getOperand(0)), "Aliasee should be either GlobalValue or bitcast of GlobalValue", &GA); } const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false); Assert1(Aliasee, "Aliasing chain should end with function or global variable", &GA); visitGlobalValue(GA); } void Verifier::visitNamedMDNode(NamedMDNode &NMD) { for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) { MDNode *MD = NMD.getOperand(i); if (!MD) continue; Assert1(!MD->isFunctionLocal(), "Named metadata operand cannot be function local!", MD); visitMDNode(*MD, 0); } } void Verifier::visitMDNode(MDNode &MD, Function *F) { // Only visit each node once. Metadata can be mutually recursive, so this // avoids infinite recursion here, as well as being an optimization. if (!MDNodes.insert(&MD)) return; for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) { Value *Op = MD.getOperand(i); if (!Op) continue; if (isa(Op) || isa(Op)) continue; if (MDNode *N = dyn_cast(Op)) { Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(), "Global metadata operand cannot be function local!", &MD, N); visitMDNode(*N, F); continue; } Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op); // If this was an instruction, bb, or argument, verify that it is in the // function that we expect. Function *ActualF = 0; if (Instruction *I = dyn_cast(Op)) ActualF = I->getParent()->getParent(); else if (BasicBlock *BB = dyn_cast(Op)) ActualF = BB->getParent(); else if (Argument *A = dyn_cast(Op)) ActualF = A->getParent(); assert(ActualF && "Unimplemented function local metadata case!"); Assert2(ActualF == F, "function-local metadata used in wrong function", &MD, Op); } } // VerifyParameterAttrs - Check the given attributes for an argument or return // value of the specified type. The value V is printed in error messages. void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty, bool isReturnValue, const Value *V) { if (Attrs == Attribute::None) return; Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly; Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) + " only applies to the function!", V); if (isReturnValue) { Attributes RetI = Attrs & Attribute::ParameterOnly; Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) + " does not apply to return values!", V); } for (unsigned i = 0; i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i]; Assert1(MutI.isEmptyOrSingleton(), "Attributes " + Attribute::getAsString(MutI) + " are incompatible!", V); } Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty); Assert1(!TypeI, "Wrong type for attribute " + Attribute::getAsString(TypeI), V); Attributes ByValI = Attrs & Attribute::ByVal; if (PointerType *PTy = dyn_cast(Ty)) { Assert1(!ByValI || PTy->getElementType()->isSized(), "Attribute " + Attribute::getAsString(ByValI) + " does not support unsized types!", V); } else { Assert1(!ByValI, "Attribute " + Attribute::getAsString(ByValI) + " only applies to parameters with pointer type!", V); } } // VerifyFunctionAttrs - Check parameter attributes against a function type. // The value V is printed in error messages. void Verifier::VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs, const Value *V) { if (Attrs.isEmpty()) return; bool SawNest = false; for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) { const AttributeWithIndex &Attr = Attrs.getSlot(i); Type *Ty; if (Attr.Index == 0) Ty = FT->getReturnType(); else if (Attr.Index-1 < FT->getNumParams()) Ty = FT->getParamType(Attr.Index-1); else break; // VarArgs attributes, verified elsewhere. VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V); if (Attr.Attrs & Attribute::Nest) { Assert1(!SawNest, "More than one parameter has attribute nest!", V); SawNest = true; } if (Attr.Attrs & Attribute::StructRet) Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V); } Attributes FAttrs = Attrs.getFnAttributes(); Attributes NotFn = FAttrs & (~Attribute::FunctionOnly); Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) + " does not apply to the function!", V); for (unsigned i = 0; i < array_lengthof(Attribute::MutuallyIncompatible); ++i) { Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i]; Assert1(MutI.isEmptyOrSingleton(), "Attributes " + Attribute::getAsString(MutI) + " are incompatible!", V); } } static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) { if (Attrs.isEmpty()) return true; unsigned LastSlot = Attrs.getNumSlots() - 1; unsigned LastIndex = Attrs.getSlot(LastSlot).Index; if (LastIndex <= Params || (LastIndex == (unsigned)~0 && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params))) return true; return false; } // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { // Check function arguments. FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.arg_size(); Assert1(Context == &F.getContext(), "Function context does not match Module context!", &F); Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); Assert1(F.getReturnType()->isFirstClassType() || F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), "Functions cannot return aggregate values!", &F); Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), "Invalid struct return type!", &F); const AttrListPtr &Attrs = F.getAttributes(); Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()), "Attributes after last parameter!", &F); // Check function attributes. VerifyFunctionAttrs(FT, Attrs, &F); // Check that this function meets the restrictions on this calling convention. switch (F.getCallingConv()) { default: break; case CallingConv::C: break; case CallingConv::Fast: case CallingConv::Cold: case CallingConv::X86_FastCall: case CallingConv::X86_ThisCall: case CallingConv::PTX_Kernel: case CallingConv::PTX_Device: Assert1(!F.isVarArg(), "Varargs functions must have C calling conventions!", &F); break; } bool isLLVMdotName = F.getName().size() >= 5 && F.getName().substr(0, 5) == "llvm."; // Check that the argument values match the function type for this function... unsigned i = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { Assert2(I->getType() == FT->getParamType(i), "Argument value does not match function argument type!", I, FT->getParamType(i)); Assert1(I->getType()->isFirstClassType(), "Function arguments must have first-class types!", I); if (!isLLVMdotName) Assert2(!I->getType()->isMetadataTy(), "Function takes metadata but isn't an intrinsic", I, &F); } if (F.isMaterializable()) { // Function has a body somewhere we can't see. } else if (F.isDeclaration()) { Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() || F.hasExternalWeakLinkage(), "invalid linkage type for function declaration", &F); } else { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F); // Check the entry node BasicBlock *Entry = &F.getEntryBlock(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); // The address of the entry block cannot be taken, unless it is dead. if (Entry->hasAddressTaken()) { Assert1(!BlockAddress::get(Entry)->isConstantUsed(), "blockaddress may not be used with the entry block!", Entry); } } // If this function is actually an intrinsic, verify that it is only used in // direct call/invokes, never having its "address taken". if (F.getIntrinsicID()) { const User *U; if (F.hasAddressTaken(&U)) Assert1(0, "Invalid user of intrinsic instruction!", U); } } // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { InstsInThisBlock.clear(); // Ensure that basic blocks have terminators! Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); // Check constraints that this basic block imposes on all of the PHI nodes in // it. if (isa(BB.front())) { SmallVector Preds(pred_begin(&BB), pred_end(&BB)); SmallVector, 8> Values; std::sort(Preds.begin(), Preds.end()); PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { // Ensure that PHI nodes have at least one entry! Assert1(PN->getNumIncomingValues() != 0, "PHI nodes must have at least one entry. If the block is dead, " "the PHI should be removed!", PN); Assert1(PN->getNumIncomingValues() == Preds.size(), "PHINode should have one entry for each predecessor of its " "parent basic block!", PN); // Get and sort all incoming values in the PHI node... Values.clear(); Values.reserve(PN->getNumIncomingValues()); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) Values.push_back(std::make_pair(PN->getIncomingBlock(i), PN->getIncomingValue(i))); std::sort(Values.begin(), Values.end()); for (unsigned i = 0, e = Values.size(); i != e; ++i) { // Check to make sure that if there is more than one entry for a // particular basic block in this PHI node, that the incoming values are // all identical. // Assert4(i == 0 || Values[i].first != Values[i-1].first || Values[i].second == Values[i-1].second, "PHI node has multiple entries for the same basic block with " "different incoming values!", PN, Values[i].first, Values[i].second, Values[i-1].second); // Check to make sure that the predecessors and PHI node entries are // matched up. Assert3(Values[i].first == Preds[i], "PHI node entries do not match predecessors!", PN, Values[i].first, Preds[i]); } } } } void Verifier::visitTerminatorInst(TerminatorInst &I) { // Ensure that terminators only exist at the end of the basic block. Assert1(&I == I.getParent()->getTerminator(), "Terminator found in the middle of a basic block!", I.getParent()); visitInstruction(I); } void Verifier::visitBranchInst(BranchInst &BI) { if (BI.isConditional()) { Assert2(BI.getCondition()->getType()->isIntegerTy(1), "Branch condition is not 'i1' type!", &BI, BI.getCondition()); } visitTerminatorInst(BI); } void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); unsigned N = RI.getNumOperands(); if (F->getReturnType()->isVoidTy()) Assert2(N == 0, "Found return instr that returns non-void in Function of void " "return type!", &RI, F->getReturnType()); else Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), "Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); } void Verifier::visitSwitchInst(SwitchInst &SI) { // Check to make sure that all of the constants in the switch instruction // have the same type as the switched-on value. Type *SwitchTy = SI.getCondition()->getType(); SmallPtrSet Constants; for (unsigned i = 0, e = SI.getNumCases(); i != e; ++i) { Assert1(SI.getCaseValue(i)->getType() == SwitchTy, "Switch constants must all be same type as switch value!", &SI); Assert2(Constants.insert(SI.getCaseValue(i)), "Duplicate integer as switch case", &SI, SI.getCaseValue(i)); } visitTerminatorInst(SI); } void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { Assert1(BI.getAddress()->getType()->isPointerTy(), "Indirectbr operand must have pointer type!", &BI); for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) Assert1(BI.getDestination(i)->getType()->isLabelTy(), "Indirectbr destinations must all have pointer type!", &BI); visitTerminatorInst(BI); } void Verifier::visitSelectInst(SelectInst &SI) { Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), SI.getOperand(2)), "Invalid operands for select instruction!", &SI); Assert1(SI.getTrueValue()->getType() == SI.getType(), "Select values must have same type as select instruction!", &SI); visitInstruction(SI); } /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of /// a pass, if any exist, it's an error. /// void Verifier::visitUserOp1(Instruction &I) { Assert1(0, "User-defined operators should not live outside of a pass!", &I); } void Verifier::visitTruncInst(TruncInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "trunc source and destination must both be a vector or neither", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); visitInstruction(I); } void Verifier::visitZExtInst(ZExtInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "zext source and destination must both be a vector or neither", &I); unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); visitInstruction(I); } void Verifier::visitSExtInst(SExtInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "sext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); visitInstruction(I); } void Verifier::visitFPTruncInst(FPTruncInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I); Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fptrunc source and destination must both be a vector or neither",&I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); visitInstruction(I); } void Verifier::visitFPExtInst(FPExtInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DestBitSize = DestTy->getScalarSizeInBits(); Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I); Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "fpext source and destination must both be a vector or neither", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); visitInstruction(I); } void Verifier::visitUIToFPInst(UIToFPInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "UIToFP source and dest must both be vector or scalar", &I); Assert1(SrcTy->isIntOrIntVectorTy(), "UIToFP source must be integer or integer vector", &I); Assert1(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "UIToFP source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitSIToFPInst(SIToFPInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "SIToFP source and dest must both be vector or scalar", &I); Assert1(SrcTy->isIntOrIntVectorTy(), "SIToFP source must be integer or integer vector", &I); Assert1(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "SIToFP source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitFPToUIInst(FPToUIInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToUI source and dest must both be vector or scalar", &I); Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); Assert1(DestTy->isIntOrIntVectorTy(), "FPToUI result must be integer or integer vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "FPToUI source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitFPToSIInst(FPToSIInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); bool SrcVec = SrcTy->isVectorTy(); bool DstVec = DestTy->isVectorTy(); Assert1(SrcVec == DstVec, "FPToSI source and dest must both be vector or scalar", &I); Assert1(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); Assert1(DestTy->isIntOrIntVectorTy(), "FPToSI result must be integer or integer vector", &I); if (SrcVec && DstVec) Assert1(cast(SrcTy)->getNumElements() == cast(DestTy)->getNumElements(), "FPToSI source and dest vector length mismatch", &I); visitInstruction(I); } void Verifier::visitPtrToIntInst(PtrToIntInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); Assert1(SrcTy->getScalarType()->isPointerTy(), "PtrToInt source must be pointer", &I); Assert1(DestTy->getScalarType()->isIntegerTy(), "PtrToInt result must be integral", &I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast(SrcTy); VectorType *VDest = dyn_cast(DestTy); Assert1(VSrc->getNumElements() == VDest->getNumElements(), "PtrToInt Vector width mismatch", &I); } visitInstruction(I); } void Verifier::visitIntToPtrInst(IntToPtrInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); Assert1(SrcTy->getScalarType()->isIntegerTy(), "IntToPtr source must be an integral", &I); Assert1(DestTy->getScalarType()->isPointerTy(), "IntToPtr result must be a pointer",&I); Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", &I); if (SrcTy->isVectorTy()) { VectorType *VSrc = dyn_cast(SrcTy); VectorType *VDest = dyn_cast(DestTy); Assert1(VSrc->getNumElements() == VDest->getNumElements(), "IntToPtr Vector width mismatch", &I); } visitInstruction(I); } void Verifier::visitBitCastInst(BitCastInst &I) { // Get the source and destination types Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(), "Bitcast requires both operands to be pointer or neither", &I); Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I); // Disallow aggregates. Assert1(!SrcTy->isAggregateType(), "Bitcast operand must not be aggregate", &I); Assert1(!DestTy->isAggregateType(), "Bitcast type must not be aggregate", &I); visitInstruction(I); } /// visitPHINode - Ensure that a PHI node is well formed. /// void Verifier::visitPHINode(PHINode &PN) { // Ensure that the PHI nodes are all grouped together at the top of the block. // This can be tested by checking whether the instruction before this is // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. Assert2(&PN == &PN.getParent()->front() || isa(--BasicBlock::iterator(&PN)), "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); // Check that all of the values of the PHI node have the same type as the // result, and that the incoming blocks are really basic blocks. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), "PHI node operands are not the same type as the result!", &PN); } // All other PHI node constraints are checked in the visitBasicBlock method. visitInstruction(PN); } void Verifier::VerifyCallSite(CallSite CS) { Instruction *I = CS.getInstruction(); Assert1(CS.getCalledValue()->getType()->isPointerTy(), "Called function must be a pointer!", I); PointerType *FPTy = cast(CS.getCalledValue()->getType()); Assert1(FPTy->getElementType()->isFunctionTy(), "Called function is not pointer to function type!", I); FunctionType *FTy = cast(FPTy->getElementType()); // Verify that the correct number of arguments are being passed if (FTy->isVarArg()) Assert1(CS.arg_size() >= FTy->getNumParams(), "Called function requires more parameters than were provided!",I); else Assert1(CS.arg_size() == FTy->getNumParams(), "Incorrect number of arguments passed to called function!", I); // Verify that all arguments to the call match the function type. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i), "Call parameter type does not match function signature!", CS.getArgument(i), FTy->getParamType(i), I); const AttrListPtr &Attrs = CS.getAttributes(); Assert1(VerifyAttributeCount(Attrs, CS.arg_size()), "Attributes after last parameter!", I); // Verify call attributes. VerifyFunctionAttrs(FTy, Attrs, I); if (FTy->isVarArg()) // Check attributes on the varargs part. for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) { Attributes Attr = Attrs.getParamAttributes(Idx); VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I); Attributes VArgI = Attr & Attribute::VarArgsIncompatible; Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) + " cannot be used for vararg call arguments!", I); } // Verify that there's no metadata unless it's a direct call to an intrinsic. if (CS.getCalledFunction() == 0 || !CS.getCalledFunction()->getName().startswith("llvm.")) { for (FunctionType::param_iterator PI = FTy->param_begin(), PE = FTy->param_end(); PI != PE; ++PI) Assert1(!(*PI)->isMetadataTy(), "Function has metadata parameter but isn't an intrinsic", I); } visitInstruction(*I); } void Verifier::visitCallInst(CallInst &CI) { VerifyCallSite(&CI); if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) visitIntrinsicFunctionCall(ID, CI); } void Verifier::visitInvokeInst(InvokeInst &II) { VerifyCallSite(&II); // Verify that there is a landingpad instruction as the first non-PHI // instruction of the 'unwind' destination. Assert1(II.getUnwindDest()->isLandingPad(), "The unwind destination does not have a landingpad instruction!",&II); visitTerminatorInst(II); } /// visitBinaryOperator - Check that both arguments to the binary operator are /// of the same type! /// void Verifier::visitBinaryOperator(BinaryOperator &B) { Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { // Check that integer arithmetic operators are only used with // integral operands. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::UDiv: case Instruction::SRem: case Instruction::URem: Assert1(B.getType()->isIntOrIntVectorTy(), "Integer arithmetic operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Integer arithmetic operators must have same type " "for operands and result!", &B); break; // Check that floating-point arithmetic operators are only used with // floating-point operands. case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: case Instruction::FDiv: case Instruction::FRem: Assert1(B.getType()->isFPOrFPVectorTy(), "Floating-point arithmetic operators only work with " "floating-point types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Floating-point arithmetic operators must have same type " "for operands and result!", &B); break; // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: Assert1(B.getType()->isIntOrIntVectorTy(), "Logical operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Logical operators must have same type for operands and result!", &B); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: Assert1(B.getType()->isIntOrIntVectorTy(), "Shifts only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Shift return type must be same as operands!", &B); break; default: llvm_unreachable("Unknown BinaryOperator opcode!"); } visitInstruction(B); } void Verifier::visitICmpInst(ICmpInst &IC) { // Check that the operands are the same type Type *Op0Ty = IC.getOperand(0)->getType(); Type *Op1Ty = IC.getOperand(1)->getType(); Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), "Invalid operand types for ICmp instruction", &IC); // Check that the predicate is valid. Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, "Invalid predicate in ICmp instruction!", &IC); visitInstruction(IC); } void Verifier::visitFCmpInst(FCmpInst &FC) { // Check that the operands are the same type Type *Op0Ty = FC.getOperand(0)->getType(); Type *Op1Ty = FC.getOperand(1)->getType(); Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type Assert1(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", &FC); // Check that the predicate is valid. Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, "Invalid predicate in FCmp instruction!", &FC); visitInstruction(FC); } void Verifier::visitExtractElementInst(ExtractElementInst &EI) { Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), "Invalid extractelement operands!", &EI); visitInstruction(EI); } void Verifier::visitInsertElementInst(InsertElementInst &IE) { Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), IE.getOperand(2)), "Invalid insertelement operands!", &IE); visitInstruction(IE); } void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), SV.getOperand(2)), "Invalid shufflevector operands!", &SV); visitInstruction(SV); } void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); Assert1(isa(TargetTy), "GEP base pointer is not a vector or a vector of pointers", &GEP); Assert1(cast(TargetTy)->getElementType()->isSized(), "GEP into unsized type!", &GEP); SmallVector Idxs(GEP.idx_begin(), GEP.idx_end()); Type *ElTy = GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); if (GEP.getPointerOperandType()->isPointerTy()) { // Validate GEPs with scalar indices. Assert2(GEP.getType()->isPointerTy() && cast(GEP.getType())->getElementType() == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); } else { // Validate GEPs with a vector index. Assert1(Idxs.size() == 1, "Invalid number of indices!", &GEP); Value *Index = Idxs[0]; Type *IndexTy = Index->getType(); Assert1(IndexTy->isVectorTy(), "Vector GEP must have vector indices!", &GEP); Assert1(GEP.getType()->isVectorTy(), "Vector GEP must return a vector value", &GEP); Type *ElemPtr = cast(GEP.getType())->getElementType(); Assert1(ElemPtr->isPointerTy(), "Vector GEP pointer operand is not a pointer!", &GEP); unsigned IndexWidth = cast(IndexTy)->getNumElements(); unsigned GepWidth = cast(GEP.getType())->getNumElements(); Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP); Assert1(ElTy == cast(ElemPtr)->getElementType(), "Vector GEP type does not match pointer type!", &GEP); } visitInstruction(GEP); } void Verifier::visitLoadInst(LoadInst &LI) { PointerType *PTy = dyn_cast(LI.getOperand(0)->getType()); Assert1(PTy, "Load operand must be a pointer.", &LI); Type *ElTy = PTy->getElementType(); Assert2(ElTy == LI.getType(), "Load result type does not match pointer operand type!", &LI, ElTy); if (LI.isAtomic()) { Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease, "Load cannot have Release ordering", &LI); Assert1(LI.getAlignment() != 0, "Atomic load must specify explicit alignment", &LI); } else { Assert1(LI.getSynchScope() == CrossThread, "Non-atomic load cannot have SynchronizationScope specified", &LI); } visitInstruction(LI); } void Verifier::visitStoreInst(StoreInst &SI) { PointerType *PTy = dyn_cast(SI.getOperand(1)->getType()); Assert1(PTy, "Store operand must be a pointer.", &SI); Type *ElTy = PTy->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), "Stored value type does not match pointer operand type!", &SI, ElTy); if (SI.isAtomic()) { Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease, "Store cannot have Acquire ordering", &SI); Assert1(SI.getAlignment() != 0, "Atomic store must specify explicit alignment", &SI); } else { Assert1(SI.getSynchScope() == CrossThread, "Non-atomic store cannot have SynchronizationScope specified", &SI); } visitInstruction(SI); } void Verifier::visitAllocaInst(AllocaInst &AI) { PointerType *PTy = AI.getType(); Assert1(PTy->getAddressSpace() == 0, "Allocation instruction pointer not in the generic address space!", &AI); Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type", &AI); Assert1(AI.getArraySize()->getType()->isIntegerTy(), "Alloca array size must have integer type", &AI); visitInstruction(AI); } void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { Assert1(CXI.getOrdering() != NotAtomic, "cmpxchg instructions must be atomic.", &CXI); Assert1(CXI.getOrdering() != Unordered, "cmpxchg instructions cannot be unordered.", &CXI); PointerType *PTy = dyn_cast(CXI.getOperand(0)->getType()); Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI); Type *ElTy = PTy->getElementType(); Assert2(ElTy == CXI.getOperand(1)->getType(), "Expected value type does not match pointer operand type!", &CXI, ElTy); Assert2(ElTy == CXI.getOperand(2)->getType(), "Stored value type does not match pointer operand type!", &CXI, ElTy); visitInstruction(CXI); } void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { Assert1(RMWI.getOrdering() != NotAtomic, "atomicrmw instructions must be atomic.", &RMWI); Assert1(RMWI.getOrdering() != Unordered, "atomicrmw instructions cannot be unordered.", &RMWI); PointerType *PTy = dyn_cast(RMWI.getOperand(0)->getType()); Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI); Type *ElTy = PTy->getElementType(); Assert2(ElTy == RMWI.getOperand(1)->getType(), "Argument value type does not match pointer operand type!", &RMWI, ElTy); Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() && RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP, "Invalid binary operation!", &RMWI); visitInstruction(RMWI); } void Verifier::visitFenceInst(FenceInst &FI) { const AtomicOrdering Ordering = FI.getOrdering(); Assert1(Ordering == Acquire || Ordering == Release || Ordering == AcquireRelease || Ordering == SequentiallyConsistent, "fence instructions may only have " "acquire, release, acq_rel, or seq_cst ordering.", &FI); visitInstruction(FI); } void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), EVI.getIndices()) == EVI.getType(), "Invalid ExtractValueInst operands!", &EVI); visitInstruction(EVI); } void Verifier::visitInsertValueInst(InsertValueInst &IVI) { Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), IVI.getIndices()) == IVI.getOperand(1)->getType(), "Invalid InsertValueInst operands!", &IVI); visitInstruction(IVI); } void Verifier::visitLandingPadInst(LandingPadInst &LPI) { BasicBlock *BB = LPI.getParent(); // The landingpad instruction is ill-formed if it doesn't have any clauses and // isn't a cleanup. Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(), "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); // The landingpad instruction defines its parent as a landing pad block. The // landing pad block may be branched to only by the unwind edge of an invoke. for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { const InvokeInst *II = dyn_cast((*I)->getTerminator()); Assert1(II && II->getUnwindDest() == BB, "Block containing LandingPadInst must be jumped to " "only by the unwind edge of an invoke.", &LPI); } // The landingpad instruction must be the first non-PHI instruction in the // block. Assert1(LPI.getParent()->getLandingPadInst() == &LPI, "LandingPadInst not the first non-PHI instruction in the block.", &LPI); // The personality functions for all landingpad instructions within the same // function should match. if (PersonalityFn) Assert1(LPI.getPersonalityFn() == PersonalityFn, "Personality function doesn't match others in function", &LPI); PersonalityFn = LPI.getPersonalityFn(); // All operands must be constants. Assert1(isa(PersonalityFn), "Personality function is not constant!", &LPI); for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { Value *Clause = LPI.getClause(i); Assert1(isa(Clause), "Clause is not constant!", &LPI); if (LPI.isCatch(i)) { Assert1(isa(Clause->getType()), "Catch operand does not have pointer type!", &LPI); } else { Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); Assert1(isa(Clause) || isa(Clause), "Filter operand is not an array of constants!", &LPI); } } visitInstruction(LPI); } void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { Instruction *Op = cast(I.getOperand(i)); BasicBlock *BB = I.getParent(); BasicBlock *OpBlock = Op->getParent(); PHINode *PN = dyn_cast(&I); // DT can handle non phi instructions for us. if (!PN) { // Definition must dominate use unless use is unreachable! Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB) || DT->dominates(Op, &I), "Instruction does not dominate all uses!", Op, &I); return; } // Check that a definition dominates all of its uses. if (InvokeInst *II = dyn_cast(Op)) { // Invoke results are only usable in the normal destination, not in the // exceptional destination. BasicBlock *NormalDest = II->getNormalDest(); // PHI nodes differ from other nodes because they actually "use" the // value in the predecessor basic blocks they correspond to. BasicBlock *UseBlock = BB; unsigned j = PHINode::getIncomingValueNumForOperand(i); UseBlock = PN->getIncomingBlock(j); Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB", Op, &I); if (UseBlock == OpBlock) { // Special case of a phi node in the normal destination or the unwind // destination. Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock), "Invoke result not available in the unwind destination!", Op, &I); } else { Assert2(DT->dominates(II, UseBlock) || !DT->isReachableFromEntry(UseBlock), "Invoke result does not dominate all uses!", Op, &I); } } // PHI nodes are more difficult than other nodes because they actually // "use" the value in the predecessor basic blocks they correspond to. unsigned j = PHINode::getIncomingValueNumForOperand(i); BasicBlock *PredBB = PN->getIncomingBlock(j); Assert2(PredBB && (DT->dominates(OpBlock, PredBB) || !DT->isReachableFromEntry(PredBB)), "Instruction does not dominate all uses!", Op, &I); } /// verifyInstruction - Verify that an instruction is well formed. /// void Verifier::visitInstruction(Instruction &I) { BasicBlock *BB = I.getParent(); Assert1(BB, "Instruction not embedded in basic block!", &I); if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB), "Only PHI nodes may reference their own value!", &I); } // Check that void typed values don't have names Assert1(!I.getType()->isVoidTy() || !I.hasName(), "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. Assert1(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), "Instruction returns a non-scalar type!", &I); // Check that the instruction doesn't produce metadata. Calls are already // checked against the callee type. Assert1(!I.getType()->isMetadataTy() || isa(I) || isa(I), "Invalid use of metadata!", &I); // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { if (Instruction *Used = dyn_cast(*UI)) Assert2(Used->getParent() != 0, "Instruction referencing instruction not" " embedded in a basic block!", &I, Used); else { CheckFailed("Use of instruction is not an instruction!", *UI); return; } } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); // Check to make sure that only first-class-values are operands to // instructions. if (!I.getOperand(i)->getType()->isFirstClassType()) { Assert1(0, "Instruction operands must be first-class values!", &I); } if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. Assert1(!F->isIntrinsic() || (i + 1 == e && isa(I)), "Cannot take the address of an intrinsic!", &I); Assert1(F->getParent() == Mod, "Referencing function in another module!", &I); } else if (BasicBlock *OpBB = dyn_cast(I.getOperand(i))) { Assert1(OpBB->getParent() == BB->getParent(), "Referring to a basic block in another function!", &I); } else if (Argument *OpArg = dyn_cast(I.getOperand(i))) { Assert1(OpArg->getParent() == BB->getParent(), "Referring to an argument in another function!", &I); } else if (GlobalValue *GV = dyn_cast(I.getOperand(i))) { Assert1(GV->getParent() == Mod, "Referencing global in another module!", &I); } else if (isa(I.getOperand(i))) { verifyDominatesUse(I, i); } else if (isa(I.getOperand(i))) { Assert1((i + 1 == e && isa(I)) || (i + 3 == e && isa(I)), "Cannot take the address of an inline asm!", &I); } } InstsInThisBlock.insert(&I); } // Flags used by TableGen to mark intrinsic parameters with the // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes. static const unsigned ExtendedElementVectorType = 0x40000000; static const unsigned TruncatedElementVectorType = 0x20000000; /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF); #define GET_INTRINSIC_VERIFIER #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_VERIFIER // If the intrinsic takes MDNode arguments, verify that they are either global // or are local to *this* function. for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i) if (MDNode *MD = dyn_cast(CI.getArgOperand(i))) visitMDNode(*MD, CI.getParent()->getParent()); switch (ID) { default: break; case Intrinsic::ctlz: // llvm.ctlz case Intrinsic::cttz: // llvm.cttz Assert1(isa(CI.getArgOperand(1)), "is_zero_undef argument of bit counting intrinsics must be a " "constant int", &CI); break; case Intrinsic::dbg_declare: { // llvm.dbg.declare Assert1(CI.getArgOperand(0) && isa(CI.getArgOperand(0)), "invalid llvm.dbg.declare intrinsic call 1", &CI); MDNode *MD = cast(CI.getArgOperand(0)); Assert1(MD->getNumOperands() == 1, "invalid llvm.dbg.declare intrinsic call 2", &CI); } break; case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset: Assert1(isa(CI.getArgOperand(3)), "alignment argument of memory intrinsics must be a constant int", &CI); Assert1(isa(CI.getArgOperand(4)), "isvolatile argument of memory intrinsics must be a constant int", &CI); break; case Intrinsic::gcroot: case Intrinsic::gcwrite: case Intrinsic::gcread: if (ID == Intrinsic::gcroot) { AllocaInst *AI = dyn_cast(CI.getArgOperand(0)->stripPointerCasts()); Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI); Assert1(isa(CI.getArgOperand(1)), "llvm.gcroot parameter #2 must be a constant.", &CI); if (!AI->getType()->getElementType()->isPointerTy()) { Assert1(!isa(CI.getArgOperand(1)), "llvm.gcroot parameter #1 must either be a pointer alloca, " "or argument #2 must be a non-null constant.", &CI); } } Assert1(CI.getParent()->getParent()->hasGC(), "Enclosing function does not use GC.", &CI); break; case Intrinsic::init_trampoline: Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), "llvm.init_trampoline parameter #2 must resolve to a function.", &CI); break; case Intrinsic::prefetch: Assert1(isa(CI.getArgOperand(1)) && isa(CI.getArgOperand(2)) && cast(CI.getArgOperand(1))->getZExtValue() < 2 && cast(CI.getArgOperand(2))->getZExtValue() < 4, "invalid arguments to llvm.prefetch", &CI); break; case Intrinsic::stackprotector: Assert1(isa(CI.getArgOperand(1)->stripPointerCasts()), "llvm.stackprotector parameter #2 must resolve to an alloca.", &CI); break; case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::invariant_start: Assert1(isa(CI.getArgOperand(0)), "size argument of memory use markers must be a constant integer", &CI); break; case Intrinsic::invariant_end: Assert1(isa(CI.getArgOperand(1)), "llvm.invariant.end parameter #2 must be a constant integer", &CI); break; } } /// Produce a string to identify an intrinsic parameter or return value. /// The ArgNo value numbers the return values from 0 to NumRets-1 and the /// parameters beginning with NumRets. /// static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) { if (ArgNo >= NumRets) return "Intrinsic parameter #" + utostr(ArgNo - NumRets); if (NumRets == 1) return "Intrinsic result type"; return "Intrinsic result type #" + utostr(ArgNo); } bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT, unsigned ArgNo, std::string &Suffix) { FunctionType *FTy = F->getFunctionType(); unsigned NumElts = 0; Type *EltTy = Ty; VectorType *VTy = dyn_cast(Ty); if (VTy) { EltTy = VTy->getElementType(); NumElts = VTy->getNumElements(); } Type *RetTy = FTy->getReturnType(); StructType *ST = dyn_cast(RetTy); unsigned NumRetVals; if (RetTy->isVoidTy()) NumRetVals = 0; else if (ST) NumRetVals = ST->getNumElements(); else NumRetVals = 1; if (VT < 0) { int Match = ~VT; // Check flags that indicate a type that is an integral vector type with // elements that are larger or smaller than the elements of the matched // type. if ((Match & (ExtendedElementVectorType | TruncatedElementVectorType)) != 0) { IntegerType *IEltTy = dyn_cast(EltTy); if (!VTy || !IEltTy) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "an integral vector type.", F); return false; } // Adjust the current Ty (in the opposite direction) rather than // the type being matched against. if ((Match & ExtendedElementVectorType) != 0) { if ((IEltTy->getBitWidth() & 1) != 0) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector " "element bit-width is odd.", F); return false; } Ty = VectorType::getTruncatedElementVectorType(VTy); } else Ty = VectorType::getExtendedElementVectorType(VTy); Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType); } if (Match <= static_cast(NumRetVals - 1)) { if (ST) RetTy = ST->getElementType(Match); if (Ty != RetTy) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " "match return type.", F); return false; } } else { if (Ty != FTy->getParamType(Match - NumRetVals)) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not " "match parameter %" + utostr(Match - NumRetVals) + ".", F); return false; } } } else if (VT == MVT::iAny) { if (!EltTy->isIntegerTy()) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "an integer type.", F); return false; } unsigned GotBits = cast(EltTy)->getBitWidth(); Suffix += "."; if (EltTy != Ty) Suffix += "v" + utostr(NumElts); Suffix += "i" + utostr(GotBits); // Check some constraints on various intrinsics. switch (ID) { default: break; // Not everything needs to be checked. case Intrinsic::bswap: if (GotBits < 16 || GotBits % 16 != 0) { CheckFailed("Intrinsic requires even byte width argument", F); return false; } break; } } else if (VT == MVT::fAny) { if (!EltTy->isFloatingPointTy()) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not " "a floating-point type.", F); return false; } Suffix += "."; if (EltTy != Ty) Suffix += "v" + utostr(NumElts); Suffix += EVT::getEVT(EltTy).getEVTString(); } else if (VT == MVT::vAny) { if (!VTy) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.", F); return false; } Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString(); } else if (VT == MVT::iPTR) { if (!Ty->isPointerTy()) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " "pointer and a pointer is required.", F); return false; } } else if (VT == MVT::iPTRAny) { // Outside of TableGen, we don't distinguish iPTRAny (to any address space) // and iPTR. In the verifier, we can not distinguish which case we have so // allow either case to be legal. if (PointerType* PTyp = dyn_cast(Ty)) { EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true); if (PointeeVT == MVT::Other) { CheckFailed("Intrinsic has pointer to complex type."); return false; } Suffix += ".p" + utostr(PTyp->getAddressSpace()) + PointeeVT.getEVTString(); } else { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a " "pointer and a pointer is required.", F); return false; } } else if (EVT((MVT::SimpleValueType)VT).isVector()) { EVT VVT = EVT((MVT::SimpleValueType)VT); // If this is a vector argument, verify the number and type of elements. if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) { CheckFailed("Intrinsic prototype has incorrect vector element type!", F); return false; } if (VVT.getVectorNumElements() != NumElts) { CheckFailed("Intrinsic prototype has incorrect number of " "vector elements!", F); return false; } } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) != EltTy) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F); return false; } else if (EltTy != Ty) { CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector " "and a scalar is required.", F); return false; } return true; } /// VerifyIntrinsicPrototype - TableGen emits calls to this function into /// Intrinsics.gen. This implements a little state machine that verifies the /// prototype of intrinsics. void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, unsigned NumRetVals, unsigned NumParams, ...) { va_list VA; va_start(VA, NumParams); FunctionType *FTy = F->getFunctionType(); // For overloaded intrinsics, the Suffix of the function name must match the // types of the arguments. This variable keeps track of the expected // suffix, to be checked at the end. std::string Suffix; if (FTy->getNumParams() + FTy->isVarArg() != NumParams) { CheckFailed("Intrinsic prototype has incorrect number of arguments!", F); return; } Type *Ty = FTy->getReturnType(); StructType *ST = dyn_cast(Ty); if (NumRetVals == 0 && !Ty->isVoidTy()) { CheckFailed("Intrinsic should return void", F); return; } // Verify the return types. if (ST && ST->getNumElements() != NumRetVals) { CheckFailed("Intrinsic prototype has incorrect number of return types!", F); return; } for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (ST) Ty = ST->getElementType(ArgNo); if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix)) break; } // Verify the parameter types. for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) { int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative. if (VT == MVT::isVoid && ArgNo > 0) { if (!FTy->isVarArg()) CheckFailed("Intrinsic prototype has no '...'!", F); break; } if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT, ArgNo + NumRetVals, Suffix)) break; } va_end(VA); // For intrinsics without pointer arguments, if we computed a Suffix then the // intrinsic is overloaded and we need to make sure that the name of the // function is correct. We add the suffix to the name of the intrinsic and // compare against the given function name. If they are not the same, the // function name is invalid. This ensures that overloading of intrinsics // uses a sane and consistent naming convention. Note that intrinsics with // pointer argument may or may not be overloaded so we will check assuming it // has a suffix and not. if (!Suffix.empty()) { std::string Name(Intrinsic::getName(ID)); if (Name + Suffix != F->getName()) { CheckFailed("Overloaded intrinsic has incorrect suffix: '" + F->getName().substr(Name.length()) + "'. It should be '" + Suffix + "'", F); } } // Check parameter attributes. Assert1(F->getAttributes() == Intrinsic::getAttributes(ID), "Intrinsic has wrong parameter attributes!", F); } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { return new Verifier(action); } /// verifyFunction - Check a function for errors, printing messages on stderr. /// Return true if the function is corrupt. /// bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); FunctionPassManager FPM(F.getParent()); Verifier *V = new Verifier(action); FPM.add(V); FPM.run(F); return V->Broken; } /// verifyModule - Check a module for errors, printing messages on stderr. /// Return true if the module is corrupt. /// bool llvm::verifyModule(const Module &M, VerifierFailureAction action, std::string *ErrorInfo) { PassManager PM; Verifier *V = new Verifier(action); PM.add(V); PM.run(const_cast(M)); if (ErrorInfo && V->Broken) *ErrorInfo = V->MessagesStr.str(); return V->Broken; }