//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the common interface used by the various execution engine // subclasses. // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Object/Archive.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/MutexGuard.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include using namespace llvm; #define DEBUG_TYPE "jit" STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); STATISTIC(NumGlobals , "Number of global vars initialized"); ExecutionEngine *(*ExecutionEngine::MCJITCtor)( std::unique_ptr M, std::string *ErrorStr, std::shared_ptr MemMgr, std::shared_ptr Resolver, std::unique_ptr TM) = nullptr; ExecutionEngine *(*ExecutionEngine::OrcMCJITReplacementCtor)( std::string *ErrorStr, std::shared_ptr MemMgr, std::shared_ptr Resolver, std::unique_ptr TM) = nullptr; ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr M, std::string *ErrorStr) =nullptr; void JITEventListener::anchor() {} void ExecutionEngine::Init(std::unique_ptr M) { CompilingLazily = false; GVCompilationDisabled = false; SymbolSearchingDisabled = false; // IR module verification is enabled by default in debug builds, and disabled // by default in release builds. #ifndef NDEBUG VerifyModules = true; #else VerifyModules = false; #endif assert(M && "Module is null?"); Modules.push_back(std::move(M)); } ExecutionEngine::ExecutionEngine(std::unique_ptr M) : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) { Init(std::move(M)); } ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr M) : DL(std::move(DL)), LazyFunctionCreator(nullptr) { Init(std::move(M)); } ExecutionEngine::~ExecutionEngine() { clearAllGlobalMappings(); } namespace { /// \brief Helper class which uses a value handler to automatically deletes the /// memory block when the GlobalVariable is destroyed. class GVMemoryBlock : public CallbackVH { GVMemoryBlock(const GlobalVariable *GV) : CallbackVH(const_cast(GV)) {} public: /// \brief Returns the address the GlobalVariable should be written into. The /// GVMemoryBlock object prefixes that. static char *Create(const GlobalVariable *GV, const DataLayout& TD) { Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); void *RawMemory = ::operator new( RoundUpToAlignment(sizeof(GVMemoryBlock), TD.getPreferredAlignment(GV)) + GVSize); new(RawMemory) GVMemoryBlock(GV); return static_cast(RawMemory) + sizeof(GVMemoryBlock); } void deleted() override { // We allocated with operator new and with some extra memory hanging off the // end, so don't just delete this. I'm not sure if this is actually // required. this->~GVMemoryBlock(); ::operator delete(this); } }; } // anonymous namespace char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { return GVMemoryBlock::Create(GV, getDataLayout()); } void ExecutionEngine::addObjectFile(std::unique_ptr O) { llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); } void ExecutionEngine::addObjectFile(object::OwningBinary O) { llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); } void ExecutionEngine::addArchive(object::OwningBinary A) { llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive."); } bool ExecutionEngine::removeModule(Module *M) { for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) { Module *Found = I->get(); if (Found == M) { I->release(); Modules.erase(I); clearGlobalMappingsFromModule(M); return true; } } return false; } Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { Function *F = Modules[i]->getFunction(FnName); if (F && !F->isDeclaration()) return F; } return nullptr; } GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(const char *Name, bool AllowInternal) { for (unsigned i = 0, e = Modules.size(); i != e; ++i) { GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal); if (GV && !GV->isDeclaration()) return GV; } return nullptr; } uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) { GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name); uint64_t OldVal; // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the // GlobalAddressMap. if (I == GlobalAddressMap.end()) OldVal = 0; else { GlobalAddressReverseMap.erase(I->second); OldVal = I->second; GlobalAddressMap.erase(I); } return OldVal; } std::string ExecutionEngine::getMangledName(const GlobalValue *GV) { MutexGuard locked(lock); Mangler Mang; SmallString<128> FullName; Mang.getNameWithPrefix(FullName, GV, false); return FullName.str(); } void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); addGlobalMapping(getMangledName(GV), (uint64_t) Addr); } void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) { MutexGuard locked(lock); assert(!Name.empty() && "Empty GlobalMapping symbol name!"); DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";); uint64_t &CurVal = EEState.getGlobalAddressMap()[Name]; assert((!CurVal || !Addr) && "GlobalMapping already established!"); CurVal = Addr; // If we are using the reverse mapping, add it too. if (!EEState.getGlobalAddressReverseMap().empty()) { std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; assert((!V.empty() || !Name.empty()) && "GlobalMapping already established!"); V = Name; } } void ExecutionEngine::clearAllGlobalMappings() { MutexGuard locked(lock); EEState.getGlobalAddressMap().clear(); EEState.getGlobalAddressReverseMap().clear(); } void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { MutexGuard locked(lock); for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) EEState.RemoveMapping(getMangledName(FI)); for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); GI != GE; ++GI) EEState.RemoveMapping(getMangledName(GI)); } uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { MutexGuard locked(lock); return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr); } uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) { MutexGuard locked(lock); ExecutionEngineState::GlobalAddressMapTy &Map = EEState.getGlobalAddressMap(); // Deleting from the mapping? if (!Addr) return EEState.RemoveMapping(Name); uint64_t &CurVal = Map[Name]; uint64_t OldVal = CurVal; if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) EEState.getGlobalAddressReverseMap().erase(CurVal); CurVal = Addr; // If we are using the reverse mapping, add it too. if (!EEState.getGlobalAddressReverseMap().empty()) { std::string &V = EEState.getGlobalAddressReverseMap()[CurVal]; assert((!V.empty() || !Name.empty()) && "GlobalMapping already established!"); V = Name; } return OldVal; } uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) { MutexGuard locked(lock); uint64_t Address = 0; ExecutionEngineState::GlobalAddressMapTy::iterator I = EEState.getGlobalAddressMap().find(S); if (I != EEState.getGlobalAddressMap().end()) Address = I->second; return Address; } void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) { MutexGuard locked(lock); if (void* Address = (void *) getAddressToGlobalIfAvailable(S)) return Address; return nullptr; } void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { MutexGuard locked(lock); return getPointerToGlobalIfAvailable(getMangledName(GV)); } const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { MutexGuard locked(lock); // If we haven't computed the reverse mapping yet, do so first. if (EEState.getGlobalAddressReverseMap().empty()) { for (ExecutionEngineState::GlobalAddressMapTy::iterator I = EEState.getGlobalAddressMap().begin(), E = EEState.getGlobalAddressMap().end(); I != E; ++I) { StringRef Name = I->first(); uint64_t Addr = I->second; EEState.getGlobalAddressReverseMap().insert(std::make_pair( Addr, Name)); } } std::map::iterator I = EEState.getGlobalAddressReverseMap().find((uint64_t) Addr); if (I != EEState.getGlobalAddressReverseMap().end()) { StringRef Name = I->second; for (unsigned i = 0, e = Modules.size(); i != e; ++i) if (GlobalValue *GV = Modules[i]->getNamedValue(Name)) return GV; } return nullptr; } namespace { class ArgvArray { std::unique_ptr Array; std::vector> Values; public: /// Turn a vector of strings into a nice argv style array of pointers to null /// terminated strings. void *reset(LLVMContext &C, ExecutionEngine *EE, const std::vector &InputArgv); }; } // anonymous namespace void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, const std::vector &InputArgv) { Values.clear(); // Free the old contents. Values.reserve(InputArgv.size()); unsigned PtrSize = EE->getDataLayout().getPointerSize(); Array = make_unique((InputArgv.size()+1)*PtrSize); DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array.get() << "\n"); Type *SBytePtr = Type::getInt8PtrTy(C); for (unsigned i = 0; i != InputArgv.size(); ++i) { unsigned Size = InputArgv[i].size()+1; auto Dest = make_unique(Size); DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest.get() << "\n"); std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get()); Dest[Size-1] = 0; // Endian safe: Array[i] = (PointerTy)Dest; EE->StoreValueToMemory(PTOGV(Dest.get()), (GenericValue*)(&Array[i*PtrSize]), SBytePtr); Values.push_back(std::move(Dest)); } // Null terminate it EE->StoreValueToMemory(PTOGV(nullptr), (GenericValue*)(&Array[InputArgv.size()*PtrSize]), SBytePtr); return Array.get(); } void ExecutionEngine::runStaticConstructorsDestructors(Module &module, bool isDtors) { const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; GlobalVariable *GV = module.getNamedGlobal(Name); // If this global has internal linkage, or if it has a use, then it must be // an old-style (llvmgcc3) static ctor with __main linked in and in use. If // this is the case, don't execute any of the global ctors, __main will do // it. if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; // Should be an array of '{ i32, void ()* }' structs. The first value is // the init priority, which we ignore. ConstantArray *InitList = dyn_cast(GV->getInitializer()); if (!InitList) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { ConstantStruct *CS = dyn_cast(InitList->getOperand(i)); if (!CS) continue; Constant *FP = CS->getOperand(1); if (FP->isNullValue()) continue; // Found a sentinal value, ignore. // Strip off constant expression casts. if (ConstantExpr *CE = dyn_cast(FP)) if (CE->isCast()) FP = CE->getOperand(0); // Execute the ctor/dtor function! if (Function *F = dyn_cast(FP)) runFunction(F, None); // FIXME: It is marginally lame that we just do nothing here if we see an // entry we don't recognize. It might not be unreasonable for the verifier // to not even allow this and just assert here. } } void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { // Execute global ctors/dtors for each module in the program. for (std::unique_ptr &M : Modules) runStaticConstructorsDestructors(*M, isDtors); } #ifndef NDEBUG /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { unsigned PtrSize = EE->getDataLayout().getPointerSize(); for (unsigned i = 0; i < PtrSize; ++i) if (*(i + (uint8_t*)Loc)) return false; return true; } #endif int ExecutionEngine::runFunctionAsMain(Function *Fn, const std::vector &argv, const char * const * envp) { std::vector GVArgs; GenericValue GVArgc; GVArgc.IntVal = APInt(32, argv.size()); // Check main() type unsigned NumArgs = Fn->getFunctionType()->getNumParams(); FunctionType *FTy = Fn->getFunctionType(); Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); // Check the argument types. if (NumArgs > 3) report_fatal_error("Invalid number of arguments of main() supplied"); if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) report_fatal_error("Invalid type for third argument of main() supplied"); if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) report_fatal_error("Invalid type for second argument of main() supplied"); if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) report_fatal_error("Invalid type for first argument of main() supplied"); if (!FTy->getReturnType()->isIntegerTy() && !FTy->getReturnType()->isVoidTy()) report_fatal_error("Invalid return type of main() supplied"); ArgvArray CArgv; ArgvArray CEnv; if (NumArgs) { GVArgs.push_back(GVArgc); // Arg #0 = argc. if (NumArgs > 1) { // Arg #1 = argv. GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && "argv[0] was null after CreateArgv"); if (NumArgs > 2) { std::vector EnvVars; for (unsigned i = 0; envp[i]; ++i) EnvVars.emplace_back(envp[i]); // Arg #2 = envp. GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); } } } return runFunction(Fn, GVArgs).IntVal.getZExtValue(); } EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {} EngineBuilder::EngineBuilder(std::unique_ptr M) : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr), OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr), RelocModel(Reloc::Default), CMModel(CodeModel::JITDefault), UseOrcMCJITReplacement(false) { // IR module verification is enabled by default in debug builds, and disabled // by default in release builds. #ifndef NDEBUG VerifyModules = true; #else VerifyModules = false; #endif } EngineBuilder::~EngineBuilder() = default; EngineBuilder &EngineBuilder::setMCJITMemoryManager( std::unique_ptr mcjmm) { auto SharedMM = std::shared_ptr(std::move(mcjmm)); MemMgr = SharedMM; Resolver = SharedMM; return *this; } EngineBuilder& EngineBuilder::setMemoryManager(std::unique_ptr MM) { MemMgr = std::shared_ptr(std::move(MM)); return *this; } EngineBuilder& EngineBuilder::setSymbolResolver(std::unique_ptr SR) { Resolver = std::shared_ptr(std::move(SR)); return *this; } ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { std::unique_ptr TheTM(TM); // Take ownership. // Make sure we can resolve symbols in the program as well. The zero arg // to the function tells DynamicLibrary to load the program, not a library. if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) return nullptr; // If the user specified a memory manager but didn't specify which engine to // create, we assume they only want the JIT, and we fail if they only want // the interpreter. if (MemMgr) { if (WhichEngine & EngineKind::JIT) WhichEngine = EngineKind::JIT; else { if (ErrorStr) *ErrorStr = "Cannot create an interpreter with a memory manager."; return nullptr; } } // Unless the interpreter was explicitly selected or the JIT is not linked, // try making a JIT. if ((WhichEngine & EngineKind::JIT) && TheTM) { Triple TT(M->getTargetTriple()); if (!TM->getTarget().hasJIT()) { errs() << "WARNING: This target JIT is not designed for the host" << " you are running. If bad things happen, please choose" << " a different -march switch.\n"; } ExecutionEngine *EE = nullptr; if (ExecutionEngine::OrcMCJITReplacementCtor && UseOrcMCJITReplacement) { EE = ExecutionEngine::OrcMCJITReplacementCtor(ErrorStr, std::move(MemMgr), std::move(Resolver), std::move(TheTM)); EE->addModule(std::move(M)); } else if (ExecutionEngine::MCJITCtor) EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr), std::move(Resolver), std::move(TheTM)); if (EE) { EE->setVerifyModules(VerifyModules); return EE; } } // If we can't make a JIT and we didn't request one specifically, try making // an interpreter instead. if (WhichEngine & EngineKind::Interpreter) { if (ExecutionEngine::InterpCtor) return ExecutionEngine::InterpCtor(std::move(M), ErrorStr); if (ErrorStr) *ErrorStr = "Interpreter has not been linked in."; return nullptr; } if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) { if (ErrorStr) *ErrorStr = "JIT has not been linked in."; } return nullptr; } void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { if (Function *F = const_cast(dyn_cast(GV))) return getPointerToFunction(F); MutexGuard locked(lock); if (void* P = getPointerToGlobalIfAvailable(GV)) return P; // Global variable might have been added since interpreter started. if (GlobalVariable *GVar = const_cast(dyn_cast(GV))) EmitGlobalVariable(GVar); else llvm_unreachable("Global hasn't had an address allocated yet!"); return getPointerToGlobalIfAvailable(GV); } /// \brief Converts a Constant* into a GenericValue, including handling of /// ConstantExpr values. GenericValue ExecutionEngine::getConstantValue(const Constant *C) { // If its undefined, return the garbage. if (isa(C)) { GenericValue Result; switch (C->getType()->getTypeID()) { default: break; case Type::IntegerTyID: case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: // Although the value is undefined, we still have to construct an APInt // with the correct bit width. Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); break; case Type::StructTyID: { // if the whole struct is 'undef' just reserve memory for the value. if(StructType *STy = dyn_cast(C->getType())) { unsigned int elemNum = STy->getNumElements(); Result.AggregateVal.resize(elemNum); for (unsigned int i = 0; i < elemNum; ++i) { Type *ElemTy = STy->getElementType(i); if (ElemTy->isIntegerTy()) Result.AggregateVal[i].IntVal = APInt(ElemTy->getPrimitiveSizeInBits(), 0); else if (ElemTy->isAggregateType()) { const Constant *ElemUndef = UndefValue::get(ElemTy); Result.AggregateVal[i] = getConstantValue(ElemUndef); } } } } break; case Type::VectorTyID: // if the whole vector is 'undef' just reserve memory for the value. const VectorType* VTy = dyn_cast(C->getType()); const Type *ElemTy = VTy->getElementType(); unsigned int elemNum = VTy->getNumElements(); Result.AggregateVal.resize(elemNum); if (ElemTy->isIntegerTy()) for (unsigned int i = 0; i < elemNum; ++i) Result.AggregateVal[i].IntVal = APInt(ElemTy->getPrimitiveSizeInBits(), 0); break; } return Result; } // Otherwise, if the value is a ConstantExpr... if (const ConstantExpr *CE = dyn_cast(C)) { Constant *Op0 = CE->getOperand(0); switch (CE->getOpcode()) { case Instruction::GetElementPtr: { // Compute the index GenericValue Result = getConstantValue(Op0); APInt Offset(DL.getPointerSizeInBits(), 0); cast(CE)->accumulateConstantOffset(DL, Offset); char* tmp = (char*) Result.PointerVal; Result = PTOGV(tmp + Offset.getSExtValue()); return Result; } case Instruction::Trunc: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); GV.IntVal = GV.IntVal.trunc(BitWidth); return GV; } case Instruction::ZExt: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); GV.IntVal = GV.IntVal.zext(BitWidth); return GV; } case Instruction::SExt: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); GV.IntVal = GV.IntVal.sext(BitWidth); return GV; } case Instruction::FPTrunc: { // FIXME long double GenericValue GV = getConstantValue(Op0); GV.FloatVal = float(GV.DoubleVal); return GV; } case Instruction::FPExt:{ // FIXME long double GenericValue GV = getConstantValue(Op0); GV.DoubleVal = double(GV.FloatVal); return GV; } case Instruction::UIToFP: { GenericValue GV = getConstantValue(Op0); if (CE->getType()->isFloatTy()) GV.FloatVal = float(GV.IntVal.roundToDouble()); else if (CE->getType()->isDoubleTy()) GV.DoubleVal = GV.IntVal.roundToDouble(); else if (CE->getType()->isX86_FP80Ty()) { APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); (void)apf.convertFromAPInt(GV.IntVal, false, APFloat::rmNearestTiesToEven); GV.IntVal = apf.bitcastToAPInt(); } return GV; } case Instruction::SIToFP: { GenericValue GV = getConstantValue(Op0); if (CE->getType()->isFloatTy()) GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); else if (CE->getType()->isDoubleTy()) GV.DoubleVal = GV.IntVal.signedRoundToDouble(); else if (CE->getType()->isX86_FP80Ty()) { APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); (void)apf.convertFromAPInt(GV.IntVal, true, APFloat::rmNearestTiesToEven); GV.IntVal = apf.bitcastToAPInt(); } return GV; } case Instruction::FPToUI: // double->APInt conversion handles sign case Instruction::FPToSI: { GenericValue GV = getConstantValue(Op0); uint32_t BitWidth = cast(CE->getType())->getBitWidth(); if (Op0->getType()->isFloatTy()) GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); else if (Op0->getType()->isDoubleTy()) GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); else if (Op0->getType()->isX86_FP80Ty()) { APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); uint64_t v; bool ignored; (void)apf.convertToInteger(&v, BitWidth, CE->getOpcode()==Instruction::FPToSI, APFloat::rmTowardZero, &ignored); GV.IntVal = v; // endian? } return GV; } case Instruction::PtrToInt: { GenericValue GV = getConstantValue(Op0); uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType()); assert(PtrWidth <= 64 && "Bad pointer width"); GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType()); GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); return GV; } case Instruction::IntToPtr: { GenericValue GV = getConstantValue(Op0); uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType()); GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); return GV; } case Instruction::BitCast: { GenericValue GV = getConstantValue(Op0); Type* DestTy = CE->getType(); switch (Op0->getType()->getTypeID()) { default: llvm_unreachable("Invalid bitcast operand"); case Type::IntegerTyID: assert(DestTy->isFloatingPointTy() && "invalid bitcast"); if (DestTy->isFloatTy()) GV.FloatVal = GV.IntVal.bitsToFloat(); else if (DestTy->isDoubleTy()) GV.DoubleVal = GV.IntVal.bitsToDouble(); break; case Type::FloatTyID: assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); GV.IntVal = APInt::floatToBits(GV.FloatVal); break; case Type::DoubleTyID: assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); GV.IntVal = APInt::doubleToBits(GV.DoubleVal); break; case Type::PointerTyID: assert(DestTy->isPointerTy() && "Invalid bitcast"); break; // getConstantValue(Op0) above already converted it } return GV; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: { GenericValue LHS = getConstantValue(Op0); GenericValue RHS = getConstantValue(CE->getOperand(1)); GenericValue GV; switch (CE->getOperand(0)->getType()->getTypeID()) { default: llvm_unreachable("Bad add type!"); case Type::IntegerTyID: switch (CE->getOpcode()) { default: llvm_unreachable("Invalid integer opcode"); case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; } break; case Type::FloatTyID: switch (CE->getOpcode()) { default: llvm_unreachable("Invalid float opcode"); case Instruction::FAdd: GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; case Instruction::FSub: GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; case Instruction::FMul: GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; case Instruction::FDiv: GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; case Instruction::FRem: GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; } break; case Type::DoubleTyID: switch (CE->getOpcode()) { default: llvm_unreachable("Invalid double opcode"); case Instruction::FAdd: GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; case Instruction::FSub: GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; case Instruction::FMul: GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; case Instruction::FDiv: GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; case Instruction::FRem: GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; } break; case Type::X86_FP80TyID: case Type::PPC_FP128TyID: case Type::FP128TyID: { const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); APFloat apfLHS = APFloat(Sem, LHS.IntVal); switch (CE->getOpcode()) { default: llvm_unreachable("Invalid long double opcode"); case Instruction::FAdd: apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::FSub: apfLHS.subtract(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::FMul: apfLHS.multiply(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::FDiv: apfLHS.divide(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; case Instruction::FRem: apfLHS.mod(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); GV.IntVal = apfLHS.bitcastToAPInt(); break; } } break; } return GV; } default: break; } SmallString<256> Msg; raw_svector_ostream OS(Msg); OS << "ConstantExpr not handled: " << *CE; report_fatal_error(OS.str()); } // Otherwise, we have a simple constant. GenericValue Result; switch (C->getType()->getTypeID()) { case Type::FloatTyID: Result.FloatVal = cast(C)->getValueAPF().convertToFloat(); break; case Type::DoubleTyID: Result.DoubleVal = cast(C)->getValueAPF().convertToDouble(); break; case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: Result.IntVal = cast (C)->getValueAPF().bitcastToAPInt(); break; case Type::IntegerTyID: Result.IntVal = cast(C)->getValue(); break; case Type::PointerTyID: if (isa(C)) Result.PointerVal = nullptr; else if (const Function *F = dyn_cast(C)) Result = PTOGV(getPointerToFunctionOrStub(const_cast(F))); else if (const GlobalVariable *GV = dyn_cast(C)) Result = PTOGV(getOrEmitGlobalVariable(const_cast(GV))); else llvm_unreachable("Unknown constant pointer type!"); break; case Type::VectorTyID: { unsigned elemNum; Type* ElemTy; const ConstantDataVector *CDV = dyn_cast(C); const ConstantVector *CV = dyn_cast(C); const ConstantAggregateZero *CAZ = dyn_cast(C); if (CDV) { elemNum = CDV->getNumElements(); ElemTy = CDV->getElementType(); } else if (CV || CAZ) { VectorType* VTy = dyn_cast(C->getType()); elemNum = VTy->getNumElements(); ElemTy = VTy->getElementType(); } else { llvm_unreachable("Unknown constant vector type!"); } Result.AggregateVal.resize(elemNum); // Check if vector holds floats. if(ElemTy->isFloatTy()) { if (CAZ) { GenericValue floatZero; floatZero.FloatVal = 0.f; std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), floatZero); break; } if(CV) { for (unsigned i = 0; i < elemNum; ++i) if (!isa(CV->getOperand(i))) Result.AggregateVal[i].FloatVal = cast( CV->getOperand(i))->getValueAPF().convertToFloat(); break; } if(CDV) for (unsigned i = 0; i < elemNum; ++i) Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); break; } // Check if vector holds doubles. if (ElemTy->isDoubleTy()) { if (CAZ) { GenericValue doubleZero; doubleZero.DoubleVal = 0.0; std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), doubleZero); break; } if(CV) { for (unsigned i = 0; i < elemNum; ++i) if (!isa(CV->getOperand(i))) Result.AggregateVal[i].DoubleVal = cast( CV->getOperand(i))->getValueAPF().convertToDouble(); break; } if(CDV) for (unsigned i = 0; i < elemNum; ++i) Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); break; } // Check if vector holds integers. if (ElemTy->isIntegerTy()) { if (CAZ) { GenericValue intZero; intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), intZero); break; } if(CV) { for (unsigned i = 0; i < elemNum; ++i) if (!isa(CV->getOperand(i))) Result.AggregateVal[i].IntVal = cast( CV->getOperand(i))->getValue(); else { Result.AggregateVal[i].IntVal = APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); } break; } if(CDV) for (unsigned i = 0; i < elemNum; ++i) Result.AggregateVal[i].IntVal = APInt( CDV->getElementType()->getPrimitiveSizeInBits(), CDV->getElementAsInteger(i)); break; } llvm_unreachable("Unknown constant pointer type!"); } break; default: SmallString<256> Msg; raw_svector_ostream OS(Msg); OS << "ERROR: Constant unimplemented for type: " << *C->getType(); report_fatal_error(OS.str()); } return Result; } /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst /// with the integer held in IntVal. static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes) { assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); if (sys::IsLittleEndianHost) { // Little-endian host - the source is ordered from LSB to MSB. Order the // destination from LSB to MSB: Do a straight copy. memcpy(Dst, Src, StoreBytes); } else { // Big-endian host - the source is an array of 64 bit words ordered from // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination // from MSB to LSB: Reverse the word order, but not the bytes in a word. while (StoreBytes > sizeof(uint64_t)) { StoreBytes -= sizeof(uint64_t); // May not be aligned so use memcpy. memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); Src += sizeof(uint64_t); } memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); } } void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty) { const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty); switch (Ty->getTypeID()) { default: dbgs() << "Cannot store value of type " << *Ty << "!\n"; break; case Type::IntegerTyID: StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); break; case Type::FloatTyID: *((float*)Ptr) = Val.FloatVal; break; case Type::DoubleTyID: *((double*)Ptr) = Val.DoubleVal; break; case Type::X86_FP80TyID: memcpy(Ptr, Val.IntVal.getRawData(), 10); break; case Type::PointerTyID: // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. if (StoreBytes != sizeof(PointerTy)) memset(&(Ptr->PointerVal), 0, StoreBytes); *((PointerTy*)Ptr) = Val.PointerVal; break; case Type::VectorTyID: for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { if (cast(Ty)->getElementType()->isDoubleTy()) *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; if (cast(Ty)->getElementType()->isFloatTy()) *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; if (cast(Ty)->getElementType()->isIntegerTy()) { unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; StoreIntToMemory(Val.AggregateVal[i].IntVal, (uint8_t*)Ptr + numOfBytes*i, numOfBytes); } } break; } if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian()) // Host and target are different endian - reverse the stored bytes. std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); } /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting /// from Src into IntVal, which is assumed to be wide enough and to hold zero. static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); uint8_t *Dst = reinterpret_cast( const_cast(IntVal.getRawData())); if (sys::IsLittleEndianHost) // Little-endian host - the destination must be ordered from LSB to MSB. // The source is ordered from LSB to MSB: Do a straight copy. memcpy(Dst, Src, LoadBytes); else { // Big-endian - the destination is an array of 64 bit words ordered from // LSW to MSW. Each word must be ordered from MSB to LSB. The source is // ordered from MSB to LSB: Reverse the word order, but not the bytes in // a word. while (LoadBytes > sizeof(uint64_t)) { LoadBytes -= sizeof(uint64_t); // May not be aligned so use memcpy. memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); Dst += sizeof(uint64_t); } memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); } } /// FIXME: document /// void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty) { const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty); switch (Ty->getTypeID()) { case Type::IntegerTyID: // An APInt with all words initially zero. Result.IntVal = APInt(cast(Ty)->getBitWidth(), 0); LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); break; case Type::FloatTyID: Result.FloatVal = *((float*)Ptr); break; case Type::DoubleTyID: Result.DoubleVal = *((double*)Ptr); break; case Type::PointerTyID: Result.PointerVal = *((PointerTy*)Ptr); break; case Type::X86_FP80TyID: { // This is endian dependent, but it will only work on x86 anyway. // FIXME: Will not trap if loading a signaling NaN. uint64_t y[2]; memcpy(y, Ptr, 10); Result.IntVal = APInt(80, y); break; } case Type::VectorTyID: { const VectorType *VT = cast(Ty); const Type *ElemT = VT->getElementType(); const unsigned numElems = VT->getNumElements(); if (ElemT->isFloatTy()) { Result.AggregateVal.resize(numElems); for (unsigned i = 0; i < numElems; ++i) Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); } if (ElemT->isDoubleTy()) { Result.AggregateVal.resize(numElems); for (unsigned i = 0; i < numElems; ++i) Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); } if (ElemT->isIntegerTy()) { GenericValue intZero; const unsigned elemBitWidth = cast(ElemT)->getBitWidth(); intZero.IntVal = APInt(elemBitWidth, 0); Result.AggregateVal.resize(numElems, intZero); for (unsigned i = 0; i < numElems; ++i) LoadIntFromMemory(Result.AggregateVal[i].IntVal, (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); } break; } default: SmallString<256> Msg; raw_svector_ostream OS(Msg); OS << "Cannot load value of type " << *Ty << "!"; report_fatal_error(OS.str()); } } void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); DEBUG(Init->dump()); if (isa(Init)) return; if (const ConstantVector *CP = dyn_cast(Init)) { unsigned ElementSize = getDataLayout().getTypeAllocSize(CP->getType()->getElementType()); for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); return; } if (isa(Init)) { memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType())); return; } if (const ConstantArray *CPA = dyn_cast(Init)) { unsigned ElementSize = getDataLayout().getTypeAllocSize(CPA->getType()->getElementType()); for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); return; } if (const ConstantStruct *CPS = dyn_cast(Init)) { const StructLayout *SL = getDataLayout().getStructLayout(cast(CPS->getType())); for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); return; } if (const ConstantDataSequential *CDS = dyn_cast(Init)) { // CDS is already laid out in host memory order. StringRef Data = CDS->getRawDataValues(); memcpy(Addr, Data.data(), Data.size()); return; } if (Init->getType()->isFirstClassType()) { GenericValue Val = getConstantValue(Init); StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); return; } DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); llvm_unreachable("Unknown constant type to initialize memory with!"); } /// EmitGlobals - Emit all of the global variables to memory, storing their /// addresses into GlobalAddress. This must make sure to copy the contents of /// their initializers into the memory. void ExecutionEngine::emitGlobals() { // Loop over all of the global variables in the program, allocating the memory // to hold them. If there is more than one module, do a prepass over globals // to figure out how the different modules should link together. std::map, const GlobalValue*> LinkedGlobalsMap; if (Modules.size() != 1) { for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]; for (const auto &GV : M.globals()) { if (GV.hasLocalLinkage() || GV.isDeclaration() || GV.hasAppendingLinkage() || !GV.hasName()) continue;// Ignore external globals and globals with internal linkage. const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; // If this is the first time we've seen this global, it is the canonical // version. if (!GVEntry) { GVEntry = &GV; continue; } // If the existing global is strong, never replace it. if (GVEntry->hasExternalLinkage()) continue; // Otherwise, we know it's linkonce/weak, replace it if this is a strong // symbol. FIXME is this right for common? if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) GVEntry = &GV; } } } std::vector NonCanonicalGlobals; for (unsigned m = 0, e = Modules.size(); m != e; ++m) { Module &M = *Modules[m]; for (const auto &GV : M.globals()) { // In the multi-module case, see what this global maps to. if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { // If something else is the canonical global, ignore this one. if (GVEntry != &GV) { NonCanonicalGlobals.push_back(&GV); continue; } } } if (!GV.isDeclaration()) { addGlobalMapping(&GV, getMemoryForGV(&GV)); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) addGlobalMapping(&GV, SymAddr); else { report_fatal_error("Could not resolve external global address: " +GV.getName()); } } } // If there are multiple modules, map the non-canonical globals to their // canonical location. if (!NonCanonicalGlobals.empty()) { for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { const GlobalValue *GV = NonCanonicalGlobals[i]; const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; void *Ptr = getPointerToGlobalIfAvailable(CGV); assert(Ptr && "Canonical global wasn't codegen'd!"); addGlobalMapping(GV, Ptr); } } // Now that all of the globals are set up in memory, loop through them all // and initialize their contents. for (const auto &GV : M.globals()) { if (!GV.isDeclaration()) { if (!LinkedGlobalsMap.empty()) { if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) if (GVEntry != &GV) // Not the canonical variable. continue; } EmitGlobalVariable(&GV); } } } } // EmitGlobalVariable - This method emits the specified global variable to the // address specified in GlobalAddresses, or allocates new memory if it's not // already in the map. void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { void *GA = getPointerToGlobalIfAvailable(GV); if (!GA) { // If it's not already specified, allocate memory for the global. GA = getMemoryForGV(GV); // If we failed to allocate memory for this global, return. if (!GA) return; addGlobalMapping(GV, GA); } // Don't initialize if it's thread local, let the client do it. if (!GV->isThreadLocal()) InitializeMemory(GV->getInitializer(), GA); Type *ElTy = GV->getType()->getElementType(); size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy); NumInitBytes += (unsigned)GVSize; ++NumGlobals; }