//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetAsmParser.h" #include "X86.h" #include "X86Subtarget.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmParser.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; namespace { struct X86Operand; class X86ATTAsmParser : public TargetAsmParser { MCAsmParser &Parser; TargetMachine &TM; protected: unsigned Is64Bit : 1; private: MCAsmParser &getParser() const { return Parser; } MCAsmLexer &getLexer() const { return Parser.getLexer(); } bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc); X86Operand *ParseOperand(); X86Operand *ParseMemOperand(unsigned SegReg, SMLoc StartLoc); bool ParseDirectiveWord(unsigned Size, SMLoc L); bool MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out); /// @name Auto-generated Matcher Functions /// { #define GET_ASSEMBLER_HEADER #include "X86GenAsmMatcher.inc" /// } public: X86ATTAsmParser(const Target &T, MCAsmParser &parser, TargetMachine &TM) : TargetAsmParser(T), Parser(parser), TM(TM) { // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures( &TM.getSubtarget())); } virtual bool ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands); virtual bool ParseDirective(AsmToken DirectiveID); }; class X86_32ATTAsmParser : public X86ATTAsmParser { public: X86_32ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) : X86ATTAsmParser(T, Parser, TM) { Is64Bit = false; } }; class X86_64ATTAsmParser : public X86ATTAsmParser { public: X86_64ATTAsmParser(const Target &T, MCAsmParser &Parser, TargetMachine &TM) : X86ATTAsmParser(T, Parser, TM) { Is64Bit = true; } }; } // end anonymous namespace /// @name Auto-generated Match Functions /// { static unsigned MatchRegisterName(StringRef Name); /// } namespace { /// X86Operand - Instances of this class represent a parsed X86 machine /// instruction. struct X86Operand : public MCParsedAsmOperand { enum KindTy { Token, Register, Immediate, Memory } Kind; SMLoc StartLoc, EndLoc; union { struct { const char *Data; unsigned Length; } Tok; struct { unsigned RegNo; } Reg; struct { const MCExpr *Val; } Imm; struct { unsigned SegReg; const MCExpr *Disp; unsigned BaseReg; unsigned IndexReg; unsigned Scale; } Mem; }; X86Operand(KindTy K, SMLoc Start, SMLoc End) : Kind(K), StartLoc(Start), EndLoc(End) {} /// getStartLoc - Get the location of the first token of this operand. SMLoc getStartLoc() const { return StartLoc; } /// getEndLoc - Get the location of the last token of this operand. SMLoc getEndLoc() const { return EndLoc; } virtual void dump(raw_ostream &OS) const {} StringRef getToken() const { assert(Kind == Token && "Invalid access!"); return StringRef(Tok.Data, Tok.Length); } void setTokenValue(StringRef Value) { assert(Kind == Token && "Invalid access!"); Tok.Data = Value.data(); Tok.Length = Value.size(); } unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNo; } const MCExpr *getImm() const { assert(Kind == Immediate && "Invalid access!"); return Imm.Val; } const MCExpr *getMemDisp() const { assert(Kind == Memory && "Invalid access!"); return Mem.Disp; } unsigned getMemSegReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.SegReg; } unsigned getMemBaseReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.BaseReg; } unsigned getMemIndexReg() const { assert(Kind == Memory && "Invalid access!"); return Mem.IndexReg; } unsigned getMemScale() const { assert(Kind == Memory && "Invalid access!"); return Mem.Scale; } bool isToken() const {return Kind == Token; } bool isImm() const { return Kind == Immediate; } bool isImmSExti16i8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. uint64_t Value = CE->getValue(); return (( Value <= 0x000000000000007FULL)|| (0x000000000000FF80ULL <= Value && Value <= 0x000000000000FFFFULL)|| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } bool isImmSExti32i8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. uint64_t Value = CE->getValue(); return (( Value <= 0x000000000000007FULL)|| (0x00000000FFFFFF80ULL <= Value && Value <= 0x00000000FFFFFFFFULL)|| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } bool isImmSExti64i8() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. uint64_t Value = CE->getValue(); return (( Value <= 0x000000000000007FULL)|| (0xFFFFFFFFFFFFFF80ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } bool isImmSExti64i32() const { if (!isImm()) return false; // If this isn't a constant expr, just assume it fits and let relaxation // handle it. const MCConstantExpr *CE = dyn_cast(getImm()); if (!CE) return true; // Otherwise, check the value is in a range that makes sense for this // extension. uint64_t Value = CE->getValue(); return (( Value <= 0x000000007FFFFFFFULL)|| (0xFFFFFFFF80000000ULL <= Value && Value <= 0xFFFFFFFFFFFFFFFFULL)); } bool isMem() const { return Kind == Memory; } bool isAbsMem() const { return Kind == Memory && !getMemSegReg() && !getMemBaseReg() && !getMemIndexReg() && getMemScale() == 1; } bool isReg() const { return Kind == Register; } void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. if (const MCConstantExpr *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands!"); addExpr(Inst, getImm()); } void addMemOperands(MCInst &Inst, unsigned N) const { assert((N == 5) && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateReg(getMemBaseReg())); Inst.addOperand(MCOperand::CreateImm(getMemScale())); Inst.addOperand(MCOperand::CreateReg(getMemIndexReg())); addExpr(Inst, getMemDisp()); Inst.addOperand(MCOperand::CreateReg(getMemSegReg())); } void addAbsMemOperands(MCInst &Inst, unsigned N) const { assert((N == 1) && "Invalid number of operands!"); Inst.addOperand(MCOperand::CreateExpr(getMemDisp())); } static X86Operand *CreateToken(StringRef Str, SMLoc Loc) { X86Operand *Res = new X86Operand(Token, Loc, Loc); Res->Tok.Data = Str.data(); Res->Tok.Length = Str.size(); return Res; } static X86Operand *CreateReg(unsigned RegNo, SMLoc StartLoc, SMLoc EndLoc) { X86Operand *Res = new X86Operand(Register, StartLoc, EndLoc); Res->Reg.RegNo = RegNo; return Res; } static X86Operand *CreateImm(const MCExpr *Val, SMLoc StartLoc, SMLoc EndLoc){ X86Operand *Res = new X86Operand(Immediate, StartLoc, EndLoc); Res->Imm.Val = Val; return Res; } /// Create an absolute memory operand. static X86Operand *CreateMem(const MCExpr *Disp, SMLoc StartLoc, SMLoc EndLoc) { X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); Res->Mem.SegReg = 0; Res->Mem.Disp = Disp; Res->Mem.BaseReg = 0; Res->Mem.IndexReg = 0; Res->Mem.Scale = 1; return Res; } /// Create a generalized memory operand. static X86Operand *CreateMem(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale, SMLoc StartLoc, SMLoc EndLoc) { // We should never just have a displacement, that should be parsed as an // absolute memory operand. assert((SegReg || BaseReg || IndexReg) && "Invalid memory operand!"); // The scale should always be one of {1,2,4,8}. assert(((Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8)) && "Invalid scale!"); X86Operand *Res = new X86Operand(Memory, StartLoc, EndLoc); Res->Mem.SegReg = SegReg; Res->Mem.Disp = Disp; Res->Mem.BaseReg = BaseReg; Res->Mem.IndexReg = IndexReg; Res->Mem.Scale = Scale; return Res; } }; } // end anonymous namespace. bool X86ATTAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { RegNo = 0; const AsmToken &TokPercent = Parser.getTok(); assert(TokPercent.is(AsmToken::Percent) && "Invalid token kind!"); StartLoc = TokPercent.getLoc(); Parser.Lex(); // Eat percent token. const AsmToken &Tok = Parser.getTok(); if (Tok.isNot(AsmToken::Identifier)) return Error(Tok.getLoc(), "invalid register name"); // FIXME: Validate register for the current architecture; we have to do // validation later, so maybe there is no need for this here. RegNo = MatchRegisterName(Tok.getString()); // If the match failed, try the register name as lowercase. if (RegNo == 0) RegNo = MatchRegisterName(LowercaseString(Tok.getString())); // FIXME: This should be done using Requires and // Requires so "eiz" usage in 64-bit instructions // can be also checked. if (RegNo == X86::RIZ && !Is64Bit) return Error(Tok.getLoc(), "riz register in 64-bit mode only"); // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { RegNo = X86::ST0; EndLoc = Tok.getLoc(); Parser.Lex(); // Eat 'st' // Check to see if we have '(4)' after %st. if (getLexer().isNot(AsmToken::LParen)) return false; // Lex the paren. getParser().Lex(); const AsmToken &IntTok = Parser.getTok(); if (IntTok.isNot(AsmToken::Integer)) return Error(IntTok.getLoc(), "expected stack index"); switch (IntTok.getIntVal()) { case 0: RegNo = X86::ST0; break; case 1: RegNo = X86::ST1; break; case 2: RegNo = X86::ST2; break; case 3: RegNo = X86::ST3; break; case 4: RegNo = X86::ST4; break; case 5: RegNo = X86::ST5; break; case 6: RegNo = X86::ST6; break; case 7: RegNo = X86::ST7; break; default: return Error(IntTok.getLoc(), "invalid stack index"); } if (getParser().Lex().isNot(AsmToken::RParen)) return Error(Parser.getTok().getLoc(), "expected ')'"); EndLoc = Tok.getLoc(); Parser.Lex(); // Eat ')' return false; } // If this is "db[0-7]", match it as an alias // for dr[0-7]. if (RegNo == 0 && Tok.getString().size() == 3 && Tok.getString().startswith("db")) { switch (Tok.getString()[2]) { case '0': RegNo = X86::DR0; break; case '1': RegNo = X86::DR1; break; case '2': RegNo = X86::DR2; break; case '3': RegNo = X86::DR3; break; case '4': RegNo = X86::DR4; break; case '5': RegNo = X86::DR5; break; case '6': RegNo = X86::DR6; break; case '7': RegNo = X86::DR7; break; } if (RegNo != 0) { EndLoc = Tok.getLoc(); Parser.Lex(); // Eat it. return false; } } if (RegNo == 0) return Error(Tok.getLoc(), "invalid register name"); EndLoc = Tok.getLoc(); Parser.Lex(); // Eat identifier token. return false; } X86Operand *X86ATTAsmParser::ParseOperand() { switch (getLexer().getKind()) { default: // Parse a memory operand with no segment register. return ParseMemOperand(0, Parser.getTok().getLoc()); case AsmToken::Percent: { // Read the register. unsigned RegNo; SMLoc Start, End; if (ParseRegister(RegNo, Start, End)) return 0; if (RegNo == X86::EIZ || RegNo == X86::RIZ) { Error(Start, "eiz and riz can only be used as index registers"); return 0; } // If this is a segment register followed by a ':', then this is the start // of a memory reference, otherwise this is a normal register reference. if (getLexer().isNot(AsmToken::Colon)) return X86Operand::CreateReg(RegNo, Start, End); getParser().Lex(); // Eat the colon. return ParseMemOperand(RegNo, Start); } case AsmToken::Dollar: { // $42 -> immediate. SMLoc Start = Parser.getTok().getLoc(), End; Parser.Lex(); const MCExpr *Val; if (getParser().ParseExpression(Val, End)) return 0; return X86Operand::CreateImm(Val, Start, End); } } } /// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix /// has already been parsed if present. X86Operand *X86ATTAsmParser::ParseMemOperand(unsigned SegReg, SMLoc MemStart) { // We have to disambiguate a parenthesized expression "(4+5)" from the start // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The // only way to do this without lookahead is to eat the '(' and see what is // after it. const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext()); if (getLexer().isNot(AsmToken::LParen)) { SMLoc ExprEnd; if (getParser().ParseExpression(Disp, ExprEnd)) return 0; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (getLexer().isNot(AsmToken::LParen)) { // Unless we have a segment register, treat this as an immediate. if (SegReg == 0) return X86Operand::CreateMem(Disp, MemStart, ExprEnd); return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); } // Eat the '('. Parser.Lex(); } else { // Okay, we have a '('. We don't know if this is an expression or not, but // so we have to eat the ( to see beyond it. SMLoc LParenLoc = Parser.getTok().getLoc(); Parser.Lex(); // Eat the '('. if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { // Nothing to do here, fall into the code below with the '(' part of the // memory operand consumed. } else { SMLoc ExprEnd; // It must be an parenthesized expression, parse it now. if (getParser().ParseParenExpression(Disp, ExprEnd)) return 0; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (getLexer().isNot(AsmToken::LParen)) { // Unless we have a segment register, treat this as an immediate. if (SegReg == 0) return X86Operand::CreateMem(Disp, LParenLoc, ExprEnd); return X86Operand::CreateMem(SegReg, Disp, 0, 0, 1, MemStart, ExprEnd); } // Eat the '('. Parser.Lex(); } } // If we reached here, then we just ate the ( of the memory operand. Process // the rest of the memory operand. unsigned BaseReg = 0, IndexReg = 0, Scale = 1; if (getLexer().is(AsmToken::Percent)) { SMLoc L; if (ParseRegister(BaseReg, L, L)) return 0; if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { Error(L, "eiz and riz can only be used as index registers"); return 0; } } if (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Following the comma we should have either an index register, or a scale // value. We don't support the later form, but we want to parse it // correctly. // // Not that even though it would be completely consistent to support syntax // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. if (getLexer().is(AsmToken::Percent)) { SMLoc L; if (ParseRegister(IndexReg, L, L)) return 0; if (getLexer().isNot(AsmToken::RParen)) { // Parse the scale amount: // ::= ',' [scale-expression] if (getLexer().isNot(AsmToken::Comma)) { Error(Parser.getTok().getLoc(), "expected comma in scale expression"); return 0; } Parser.Lex(); // Eat the comma. if (getLexer().isNot(AsmToken::RParen)) { SMLoc Loc = Parser.getTok().getLoc(); int64_t ScaleVal; if (getParser().ParseAbsoluteExpression(ScaleVal)) return 0; // Validate the scale amount. if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){ Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); return 0; } Scale = (unsigned)ScaleVal; } } } else if (getLexer().isNot(AsmToken::RParen)) { // A scale amount without an index is ignored. // index. SMLoc Loc = Parser.getTok().getLoc(); int64_t Value; if (getParser().ParseAbsoluteExpression(Value)) return 0; if (Value != 1) Warning(Loc, "scale factor without index register is ignored"); Scale = 1; } } // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. if (getLexer().isNot(AsmToken::RParen)) { Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); return 0; } SMLoc MemEnd = Parser.getTok().getLoc(); Parser.Lex(); // Eat the ')'. return X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale, MemStart, MemEnd); } bool X86ATTAsmParser:: ParseInstruction(StringRef Name, SMLoc NameLoc, SmallVectorImpl &Operands) { StringRef PatchedName = Name; // FIXME: Hack to recognize cmp{ss,sd,ps,pd}. const MCExpr *ExtraImmOp = 0; if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && (PatchedName.endswith("ss") || PatchedName.endswith("sd") || PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { bool IsVCMP = PatchedName.startswith("vcmp"); unsigned SSECCIdx = IsVCMP ? 4 : 3; unsigned SSEComparisonCode = StringSwitch( PatchedName.slice(SSECCIdx, PatchedName.size() - 2)) .Case("eq", 0) .Case("lt", 1) .Case("le", 2) .Case("unord", 3) .Case("neq", 4) .Case("nlt", 5) .Case("nle", 6) .Case("ord", 7) .Case("eq_uq", 8) .Case("nge", 9) .Case("ngt", 0x0A) .Case("false", 0x0B) .Case("neq_oq", 0x0C) .Case("ge", 0x0D) .Case("gt", 0x0E) .Case("true", 0x0F) .Case("eq_os", 0x10) .Case("lt_oq", 0x11) .Case("le_oq", 0x12) .Case("unord_s", 0x13) .Case("neq_us", 0x14) .Case("nlt_uq", 0x15) .Case("nle_uq", 0x16) .Case("ord_s", 0x17) .Case("eq_us", 0x18) .Case("nge_uq", 0x19) .Case("ngt_uq", 0x1A) .Case("false_os", 0x1B) .Case("neq_os", 0x1C) .Case("ge_oq", 0x1D) .Case("gt_oq", 0x1E) .Case("true_us", 0x1F) .Default(~0U); if (SSEComparisonCode != ~0U) { ExtraImmOp = MCConstantExpr::Create(SSEComparisonCode, getParser().getContext()); if (PatchedName.endswith("ss")) { PatchedName = IsVCMP ? "vcmpss" : "cmpss"; } else if (PatchedName.endswith("sd")) { PatchedName = IsVCMP ? "vcmpsd" : "cmpsd"; } else if (PatchedName.endswith("ps")) { PatchedName = IsVCMP ? "vcmpps" : "cmpps"; } else { assert(PatchedName.endswith("pd") && "Unexpected mnemonic!"); PatchedName = IsVCMP ? "vcmppd" : "cmppd"; } } } // FIXME: Hack to recognize vpclmuldq if (PatchedName.startswith("vpclmul")) { unsigned CLMULQuadWordSelect = StringSwitch( PatchedName.slice(7, PatchedName.size() - 2)) .Case("lqlq", 0x00) // src1[63:0], src2[63:0] .Case("hqlq", 0x01) // src1[127:64], src2[63:0] .Case("lqhq", 0x10) // src1[63:0], src2[127:64] .Case("hqhq", 0x11) // src1[127:64], src2[127:64] .Default(~0U); if (CLMULQuadWordSelect != ~0U) { ExtraImmOp = MCConstantExpr::Create(CLMULQuadWordSelect, getParser().getContext()); assert(PatchedName.endswith("dq") && "Unexpected mnemonic!"); PatchedName = "vpclmulqdq"; } } Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); if (ExtraImmOp) Operands.push_back(X86Operand::CreateImm(ExtraImmOp, NameLoc, NameLoc)); // Determine whether this is an instruction prefix. bool isPrefix = Name == "lock" || Name == "rep" || Name == "repe" || Name == "repz" || Name == "repne" || Name == "repnz"; // This does the actual operand parsing. Don't parse any more if we have a // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we // just want to parse the "lock" as the first instruction and the "incl" as // the next one. if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { // Parse '*' modifier. if (getLexer().is(AsmToken::Star)) { SMLoc Loc = Parser.getTok().getLoc(); Operands.push_back(X86Operand::CreateToken("*", Loc)); Parser.Lex(); // Eat the star. } // Read the first operand. if (X86Operand *Op = ParseOperand()) Operands.push_back(Op); else { Parser.EatToEndOfStatement(); return true; } while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); // Eat the comma. // Parse and remember the operand. if (X86Operand *Op = ParseOperand()) Operands.push_back(Op); else { Parser.EatToEndOfStatement(); return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { Parser.EatToEndOfStatement(); return TokError("unexpected token in argument list"); } } if (getLexer().is(AsmToken::EndOfStatement)) Parser.Lex(); // Consume the EndOfStatement // Hack to allow 'movq , ' as an alias for movabsq. if ((Name == "movq" || Name == "mov") && Operands.size() == 3 && static_cast(Operands[2])->isReg() && static_cast(Operands[1])->isImm() && !static_cast(Operands[1])->isImmSExti64i32()) { delete Operands[0]; Operands[0] = X86Operand::CreateToken("movabsq", NameLoc); } // FIXME: Hack to handle recognize s{hr,ar,hl} $1, . Canonicalize to // "shift ". if ((Name.startswith("shr") || Name.startswith("sar") || Name.startswith("shl") || Name.startswith("sal")) && Operands.size() == 3) { X86Operand *Op1 = static_cast(Operands[1]); if (Op1->isImm() && isa(Op1->getImm()) && cast(Op1->getImm())->getValue() == 1) { delete Operands[1]; Operands.erase(Operands.begin() + 1); } } // FIXME: Hack to handle recognize "rc[lr] " -> "rcl $1, ". if ((Name.startswith("rcl") || Name.startswith("rcr")) && Operands.size() == 2) { const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext()); Operands.push_back(X86Operand::CreateImm(One, NameLoc, NameLoc)); std::swap(Operands[1], Operands[2]); } // FIXME: Hack to handle recognize "sh[lr]d op,op" -> "shld $1, op,op". if ((Name.startswith("shld") || Name.startswith("shrd")) && Operands.size() == 3) { const MCExpr *One = MCConstantExpr::Create(1, getParser().getContext()); Operands.insert(Operands.begin()+1, X86Operand::CreateImm(One, NameLoc, NameLoc)); } // FIXME: Hack to handle recognize "in[bwl] ". Canonicalize it to // "inb , %al". if ((Name == "inb" || Name == "inw" || Name == "inl") && Operands.size() == 2) { unsigned Reg; if (Name[2] == 'b') Reg = MatchRegisterName("al"); else if (Name[2] == 'w') Reg = MatchRegisterName("ax"); else Reg = MatchRegisterName("eax"); SMLoc Loc = Operands.back()->getEndLoc(); Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc)); } // FIXME: Hack to handle recognize "out[bwl] ". Canonicalize it to // "outb %al, ". if ((Name == "outb" || Name == "outw" || Name == "outl") && Operands.size() == 2) { unsigned Reg; if (Name[3] == 'b') Reg = MatchRegisterName("al"); else if (Name[3] == 'w') Reg = MatchRegisterName("ax"); else Reg = MatchRegisterName("eax"); SMLoc Loc = Operands.back()->getEndLoc(); Operands.push_back(X86Operand::CreateReg(Reg, Loc, Loc)); std::swap(Operands[1], Operands[2]); } // FIXME: Hack to handle "out[bwl]? %al, (%dx)" -> "outb %al, %dx". if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && Operands.size() == 3) { X86Operand &Op = *(X86Operand*)Operands.back(); if (Op.isMem() && Op.Mem.SegReg == 0 && isa(Op.Mem.Disp) && cast(Op.Mem.Disp)->getValue() == 0 && Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { SMLoc Loc = Op.getEndLoc(); Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); delete &Op; } } // FIXME: Hack to handle "f{mul*,add*,sub*,div*} $op, st(0)" the same as // "f{mul*,add*,sub*,div*} $op" if ((Name.startswith("fmul") || Name.startswith("fadd") || Name.startswith("fsub") || Name.startswith("fdiv")) && Operands.size() == 3 && static_cast(Operands[2])->isReg() && static_cast(Operands[2])->getReg() == X86::ST0) { delete Operands[2]; Operands.erase(Operands.begin() + 2); } // FIXME: Hack to handle "f{mulp,addp} st(0), $op" the same as // "f{mulp,addp} $op", since they commute. We also allow fdivrp/fsubrp even // though they don't commute, solely because gas does support this. if ((Name=="fmulp" || Name=="faddp" || Name=="fsubrp" || Name=="fdivrp") && Operands.size() == 3 && static_cast(Operands[1])->isReg() && static_cast(Operands[1])->getReg() == X86::ST0) { delete Operands[1]; Operands.erase(Operands.begin() + 1); } // FIXME: Hack to handle "imul , B" which is an alias for "imul , B, // B". if (Name.startswith("imul") && Operands.size() == 3 && static_cast(Operands[1])->isImm() && static_cast(Operands.back())->isReg()) { X86Operand *Op = static_cast(Operands.back()); Operands.push_back(X86Operand::CreateReg(Op->getReg(), Op->getStartLoc(), Op->getEndLoc())); } // 'sldt ' can be encoded with either sldtw or sldtq with the same // effect (both store to a 16-bit mem). Force to sldtw to avoid ambiguity // errors, since its encoding is the most compact. if (Name == "sldt" && Operands.size() == 2 && static_cast(Operands[1])->isMem()) { delete Operands[0]; Operands[0] = X86Operand::CreateToken("sldtw", NameLoc); } // The assembler accepts "xchgX , " and "xchgX , " as // synonyms. Our tables only have the ", " form, so if we see the // other operand order, swap them. if (Name == "xchgb" || Name == "xchgw" || Name == "xchgl" || Name == "xchgq"|| Name == "xchg") if (Operands.size() == 3 && static_cast(Operands[1])->isMem() && static_cast(Operands[2])->isReg()) { std::swap(Operands[1], Operands[2]); } // The assembler accepts "testX , " and "testX , " as // synonyms. Our tables only have the ", " form, so if we see the // other operand order, swap them. if (Name == "testb" || Name == "testw" || Name == "testl" || Name == "testq"|| Name == "test") if (Operands.size() == 3 && static_cast(Operands[1])->isReg() && static_cast(Operands[2])->isMem()) { std::swap(Operands[1], Operands[2]); } // The assembler accepts these instructions with no operand as a synonym for // an instruction acting on st(1). e.g. "fxch" -> "fxch %st(1)". if ((Name == "fxch" || Name == "fucom" || Name == "fucomp" || Name == "faddp" || Name == "fsubp" || Name == "fsubrp" || Name == "fmulp" || Name == "fdivp" || Name == "fdivrp") && Operands.size() == 1) { Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"), NameLoc, NameLoc)); } // The assembler accepts these instructions with two few operands as a synonym // for taking %st(1),%st(0) or X, %st(0). if ((Name == "fcomi" || Name == "fucomi" || Name == "fucompi" || Name == "fcompi" ) && Operands.size() < 3) { if (Operands.size() == 1) Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(1)"), NameLoc, NameLoc)); Operands.push_back(X86Operand::CreateReg(MatchRegisterName("st(0)"), NameLoc, NameLoc)); } // The assembler accepts various amounts of brokenness for fnstsw. if (Name == "fnstsw" || Name == "fnstsww") { if (Operands.size() == 2 && static_cast(Operands[1])->isReg()) { // "fnstsw al" and "fnstsw eax" -> "fnstw" unsigned Reg = static_cast(Operands[1])->Reg.RegNo; if (Reg == MatchRegisterName("eax") || Reg == MatchRegisterName("al")) { delete Operands[1]; Operands.pop_back(); } } // "fnstw" -> "fnstw %ax" if (Operands.size() == 1) Operands.push_back(X86Operand::CreateReg(MatchRegisterName("ax"), NameLoc, NameLoc)); } // jmp $42,$5 -> ljmp, similarly for call. if ((Name.startswith("call") || Name.startswith("jmp")) && Operands.size() == 3 && static_cast(Operands[1])->isImm() && static_cast(Operands[2])->isImm()) { const char *NewOpName = StringSwitch(Name) .Case("jmp", "ljmp") .Case("jmpw", "ljmpw") .Case("jmpl", "ljmpl") .Case("jmpq", "ljmpq") .Case("call", "lcall") .Case("callw", "lcallw") .Case("calll", "lcalll") .Case("callq", "lcallq") .Default(0); if (NewOpName) { delete Operands[0]; Operands[0] = X86Operand::CreateToken(NewOpName, NameLoc); Name = NewOpName; } } // lcall and ljmp -> lcalll and ljmpl if ((Name == "lcall" || Name == "ljmp") && Operands.size() == 3) { delete Operands[0]; Operands[0] = X86Operand::CreateToken(Name == "lcall" ? "lcalll" : "ljmpl", NameLoc); } // movsd -> movsl (when no operands are specified). if (Name == "movsd" && Operands.size() == 1) { delete Operands[0]; Operands[0] = X86Operand::CreateToken("movsl", NameLoc); } // fstp -> fstps . Without this, we'll default to fstpl due to // suffix searching. if (Name == "fstp" && Operands.size() == 2 && static_cast(Operands[1])->isMem()) { delete Operands[0]; Operands[0] = X86Operand::CreateToken("fstps", NameLoc); } // "clr " -> "xor , ". if ((Name == "clrb" || Name == "clrw" || Name == "clrl" || Name == "clrq" || Name == "clr") && Operands.size() == 2 && static_cast(Operands[1])->isReg()) { unsigned RegNo = static_cast(Operands[1])->getReg(); Operands.push_back(X86Operand::CreateReg(RegNo, NameLoc, NameLoc)); delete Operands[0]; Operands[0] = X86Operand::CreateToken("xor", NameLoc); } // FIXME: Hack to handle recognize "aa[dm]" -> "aa[dm] $0xA". if ((Name.startswith("aad") || Name.startswith("aam")) && Operands.size() == 1) { const MCExpr *A = MCConstantExpr::Create(0xA, getParser().getContext()); Operands.push_back(X86Operand::CreateImm(A, NameLoc, NameLoc)); } return false; } bool X86ATTAsmParser:: MatchAndEmitInstruction(SMLoc IDLoc, SmallVectorImpl &Operands, MCStreamer &Out) { assert(!Operands.empty() && "Unexpect empty operand list!"); X86Operand *Op = static_cast(Operands[0]); assert(Op->isToken() && "Leading operand should always be a mnemonic!"); // First, handle aliases that expand to multiple instructions. // FIXME: This should be replaced with a real .td file alias mechanism. if (Op->getToken() == "fstsw" || Op->getToken() == "fstcw" || Op->getToken() == "fstsww" || Op->getToken() == "fstcww" || Op->getToken() == "finit" || Op->getToken() == "fsave" || Op->getToken() == "fstenv" || Op->getToken() == "fclex") { MCInst Inst; Inst.setOpcode(X86::WAIT); Out.EmitInstruction(Inst); const char *Repl = StringSwitch(Op->getToken()) .Case("finit", "fninit") .Case("fsave", "fnsave") .Case("fstcw", "fnstcw") .Case("fstcww", "fnstcw") .Case("fstenv", "fnstenv") .Case("fstsw", "fnstsw") .Case("fstsww", "fnstsw") .Case("fclex", "fnclex") .Default(0); assert(Repl && "Unknown wait-prefixed instruction"); delete Operands[0]; Operands[0] = X86Operand::CreateToken(Repl, IDLoc); } bool WasOriginallyInvalidOperand = false; unsigned OrigErrorInfo; MCInst Inst; // First, try a direct match. switch (MatchInstructionImpl(Operands, Inst, OrigErrorInfo)) { case Match_Success: Out.EmitInstruction(Inst); return false; case Match_MissingFeature: Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; case Match_InvalidOperand: WasOriginallyInvalidOperand = true; break; case Match_MnemonicFail: break; } // FIXME: Ideally, we would only attempt suffix matches for things which are // valid prefixes, and we could just infer the right unambiguous // type. However, that requires substantially more matcher support than the // following hack. // Change the operand to point to a temporary token. StringRef Base = Op->getToken(); SmallString<16> Tmp; Tmp += Base; Tmp += ' '; Op->setTokenValue(Tmp.str()); // Check for the various suffix matches. Tmp[Base.size()] = 'b'; unsigned BErrorInfo, WErrorInfo, LErrorInfo, QErrorInfo; MatchResultTy MatchB = MatchInstructionImpl(Operands, Inst, BErrorInfo); Tmp[Base.size()] = 'w'; MatchResultTy MatchW = MatchInstructionImpl(Operands, Inst, WErrorInfo); Tmp[Base.size()] = 'l'; MatchResultTy MatchL = MatchInstructionImpl(Operands, Inst, LErrorInfo); Tmp[Base.size()] = 'q'; MatchResultTy MatchQ = MatchInstructionImpl(Operands, Inst, QErrorInfo); // Restore the old token. Op->setTokenValue(Base); // If exactly one matched, then we treat that as a successful match (and the // instruction will already have been filled in correctly, since the failing // matches won't have modified it). unsigned NumSuccessfulMatches = (MatchB == Match_Success) + (MatchW == Match_Success) + (MatchL == Match_Success) + (MatchQ == Match_Success); if (NumSuccessfulMatches == 1) { Out.EmitInstruction(Inst); return false; } // Otherwise, the match failed, try to produce a decent error message. // If we had multiple suffix matches, then identify this as an ambiguous // match. if (NumSuccessfulMatches > 1) { char MatchChars[4]; unsigned NumMatches = 0; if (MatchB == Match_Success) MatchChars[NumMatches++] = 'b'; if (MatchW == Match_Success) MatchChars[NumMatches++] = 'w'; if (MatchL == Match_Success) MatchChars[NumMatches++] = 'l'; if (MatchQ == Match_Success) MatchChars[NumMatches++] = 'q'; SmallString<126> Msg; raw_svector_ostream OS(Msg); OS << "ambiguous instructions require an explicit suffix (could be "; for (unsigned i = 0; i != NumMatches; ++i) { if (i != 0) OS << ", "; if (i + 1 == NumMatches) OS << "or "; OS << "'" << Base << MatchChars[i] << "'"; } OS << ")"; Error(IDLoc, OS.str()); return true; } // Okay, we know that none of the variants matched successfully. // If all of the instructions reported an invalid mnemonic, then the original // mnemonic was invalid. if ((MatchB == Match_MnemonicFail) && (MatchW == Match_MnemonicFail) && (MatchL == Match_MnemonicFail) && (MatchQ == Match_MnemonicFail)) { if (!WasOriginallyInvalidOperand) { Error(IDLoc, "invalid instruction mnemonic '" + Base + "'"); return true; } // Recover location info for the operand if we know which was the problem. SMLoc ErrorLoc = IDLoc; if (OrigErrorInfo != ~0U) { if (OrigErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((X86Operand*)Operands[OrigErrorInfo])->getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } // If one instruction matched with a missing feature, report this as a // missing feature. if ((MatchB == Match_MissingFeature) + (MatchW == Match_MissingFeature) + (MatchL == Match_MissingFeature) + (MatchQ == Match_MissingFeature) == 1){ Error(IDLoc, "instruction requires a CPU feature not currently enabled"); return true; } // If one instruction matched with an invalid operand, report this as an // operand failure. if ((MatchB == Match_InvalidOperand) + (MatchW == Match_InvalidOperand) + (MatchL == Match_InvalidOperand) + (MatchQ == Match_InvalidOperand) == 1){ Error(IDLoc, "invalid operand for instruction"); return true; } // If all of these were an outright failure, report it in a useless way. // FIXME: We should give nicer diagnostics about the exact failure. Error(IDLoc, "unknown use of instruction mnemonic without a size suffix"); return true; } bool X86ATTAsmParser::ParseDirective(AsmToken DirectiveID) { StringRef IDVal = DirectiveID.getIdentifier(); if (IDVal == ".word") return ParseDirectiveWord(2, DirectiveID.getLoc()); return true; } /// ParseDirectiveWord /// ::= .word [ expression (, expression)* ] bool X86ATTAsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { const MCExpr *Value; if (getParser().ParseExpression(Value)) return true; getParser().getStreamer().EmitValue(Value, Size, 0 /*addrspace*/); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) return Error(L, "unexpected token in directive"); Parser.Lex(); } } Parser.Lex(); return false; } extern "C" void LLVMInitializeX86AsmLexer(); // Force static initialization. extern "C" void LLVMInitializeX86AsmParser() { RegisterAsmParser X(TheX86_32Target); RegisterAsmParser Y(TheX86_64Target); LLVMInitializeX86AsmLexer(); } #define GET_REGISTER_MATCHER #define GET_MATCHER_IMPLEMENTATION #include "X86GenAsmMatcher.inc"