//===- ARM64InstrFormats.td - ARM64 Instruction Formats ------*- tblgen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Describe ARM64 instructions format here // // Format specifies the encoding used by the instruction. This is part of the // ad-hoc solution used to emit machine instruction encodings by our machine // code emitter. class Format val> { bits<2> Value = val; } def PseudoFrm : Format<0>; def NormalFrm : Format<1>; // Do we need any others? // ARM64 Instruction Format class ARM64Inst : Instruction { field bits<32> Inst; // Instruction encoding. // Mask of bits that cause an encoding to be UNPREDICTABLE. // If a bit is set, then if the corresponding bit in the // target encoding differs from its value in the "Inst" field, // the instruction is UNPREDICTABLE (SoftFail in abstract parlance). field bits<32> Unpredictable = 0; // SoftFail is the generic name for this field, but we alias it so // as to make it more obvious what it means in ARM-land. field bits<32> SoftFail = Unpredictable; let Namespace = "ARM64"; Format F = f; bits<2> Form = F.Value; let Pattern = []; let Constraints = cstr; } // Pseudo instructions (don't have encoding information) class Pseudo pattern, string cstr = ""> : ARM64Inst { dag OutOperandList = oops; dag InOperandList = iops; let Pattern = pattern; let isCodeGenOnly = 1; } // Real instructions (have encoding information) class EncodedI pattern> : ARM64Inst { let Pattern = pattern; let Size = 4; } // Normal instructions class I pattern> : EncodedI { dag OutOperandList = oops; dag InOperandList = iops; let AsmString = !strconcat(asm, operands); } class TriOpFrag : PatFrag<(ops node:$LHS, node:$MHS, node:$RHS), res>; class BinOpFrag : PatFrag<(ops node:$LHS, node:$RHS), res>; class UnOpFrag : PatFrag<(ops node:$LHS), res>; // Helper fragment for an extract of the high portion of a 128-bit vector. def extract_high_v16i8 : UnOpFrag<(extract_subvector (v16i8 node:$LHS), (i64 8))>; def extract_high_v8i16 : UnOpFrag<(extract_subvector (v8i16 node:$LHS), (i64 4))>; def extract_high_v4i32 : UnOpFrag<(extract_subvector (v4i32 node:$LHS), (i64 2))>; def extract_high_v2i64 : UnOpFrag<(extract_subvector (v2i64 node:$LHS), (i64 1))>; //===----------------------------------------------------------------------===// // Asm Operand Classes. // // Shifter operand for arithmetic shifted encodings. def ShifterOperand : AsmOperandClass { let Name = "Shifter"; } // Shifter operand for mov immediate encodings. def MovImm32ShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "MovImm32Shifter"; } def MovImm64ShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "MovImm64Shifter"; } // Shifter operand for arithmetic register shifted encodings. def ArithmeticShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "ArithmeticShifter"; } // Shifter operand for arithmetic shifted encodings for ADD/SUB instructions. def AddSubShifterOperand : AsmOperandClass { let SuperClasses = [ArithmeticShifterOperand]; let Name = "AddSubShifter"; } // Shifter operand for logical vector 128/64-bit shifted encodings. def LogicalVecShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "LogicalVecShifter"; } def LogicalVecHalfWordShifterOperand : AsmOperandClass { let SuperClasses = [LogicalVecShifterOperand]; let Name = "LogicalVecHalfWordShifter"; } // The "MSL" shifter on the vector MOVI instruction. def MoveVecShifterOperand : AsmOperandClass { let SuperClasses = [ShifterOperand]; let Name = "MoveVecShifter"; } // Extend operand for arithmetic encodings. def ExtendOperand : AsmOperandClass { let Name = "Extend"; } def ExtendOperand64 : AsmOperandClass { let SuperClasses = [ExtendOperand]; let Name = "Extend64"; } // 'extend' that's a lsl of a 64-bit register. def ExtendOperandLSL64 : AsmOperandClass { let SuperClasses = [ExtendOperand]; let Name = "ExtendLSL64"; } // 8-bit floating-point immediate encodings. def FPImmOperand : AsmOperandClass { let Name = "FPImm"; let ParserMethod = "tryParseFPImm"; } // 8-bit immediate for AdvSIMD where 64-bit values of the form: // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // are encoded as the eight bit value 'abcdefgh'. def SIMDImmType10Operand : AsmOperandClass { let Name = "SIMDImmType10"; } //===----------------------------------------------------------------------===// // Operand Definitions. // // ADR[P] instruction labels. def AdrpOperand : AsmOperandClass { let Name = "AdrpLabel"; let ParserMethod = "tryParseAdrpLabel"; let DiagnosticType = "InvalidLabel"; } def adrplabel : Operand { let EncoderMethod = "getAdrLabelOpValue"; let PrintMethod = "printAdrpLabel"; let ParserMatchClass = AdrpOperand; } def AdrOperand : AsmOperandClass { let Name = "AdrLabel"; let ParserMethod = "tryParseAdrLabel"; let DiagnosticType = "InvalidLabel"; } def adrlabel : Operand { let EncoderMethod = "getAdrLabelOpValue"; let ParserMatchClass = AdrOperand; } // simm9 predicate - True if the immediate is in the range [-256, 255]. def SImm9Operand : AsmOperandClass { let Name = "SImm9"; let DiagnosticType = "InvalidMemoryIndexedSImm9"; } def simm9 : Operand, ImmLeaf= -256 && Imm < 256; }]> { let ParserMatchClass = SImm9Operand; } // simm7s4 predicate - True if the immediate is a multiple of 4 in the range // [-256, 252]. def SImm7s4Operand : AsmOperandClass { let Name = "SImm7s4"; let DiagnosticType = "InvalidMemoryIndexed32SImm7"; } def simm7s4 : Operand { let ParserMatchClass = SImm7s4Operand; let PrintMethod = "printImmScale4"; } // simm7s8 predicate - True if the immediate is a multiple of 8 in the range // [-512, 504]. def SImm7s8Operand : AsmOperandClass { let Name = "SImm7s8"; let DiagnosticType = "InvalidMemoryIndexed64SImm7"; } def simm7s8 : Operand { let ParserMatchClass = SImm7s8Operand; let PrintMethod = "printImmScale8"; } // simm7s16 predicate - True if the immediate is a multiple of 16 in the range // [-1024, 1008]. def SImm7s16Operand : AsmOperandClass { let Name = "SImm7s16"; let DiagnosticType = "InvalidMemoryIndexed64SImm7"; } def simm7s16 : Operand { let ParserMatchClass = SImm7s16Operand; let PrintMethod = "printImmScale16"; } // imm0_65535 predicate - True if the immediate is in the range [0,65535]. def Imm0_65535Operand : AsmOperandClass { let Name = "Imm0_65535"; } def imm0_65535 : Operand, ImmLeaf { let ParserMatchClass = Imm0_65535Operand; } def Imm1_8Operand : AsmOperandClass { let Name = "Imm1_8"; let DiagnosticType = "InvalidImm1_8"; } def Imm1_16Operand : AsmOperandClass { let Name = "Imm1_16"; let DiagnosticType = "InvalidImm1_16"; } def Imm1_32Operand : AsmOperandClass { let Name = "Imm1_32"; let DiagnosticType = "InvalidImm1_32"; } def Imm1_64Operand : AsmOperandClass { let Name = "Imm1_64"; let DiagnosticType = "InvalidImm1_64"; } def MovZSymbolG3AsmOperand : AsmOperandClass { let Name = "MovZSymbolG3"; let RenderMethod = "addImmOperands"; } def movz_symbol_g3 : Operand { let ParserMatchClass = MovZSymbolG3AsmOperand; } def MovZSymbolG2AsmOperand : AsmOperandClass { let Name = "MovZSymbolG2"; let RenderMethod = "addImmOperands"; } def movz_symbol_g2 : Operand { let ParserMatchClass = MovZSymbolG2AsmOperand; } def MovZSymbolG1AsmOperand : AsmOperandClass { let Name = "MovZSymbolG1"; let RenderMethod = "addImmOperands"; } def movz_symbol_g1 : Operand { let ParserMatchClass = MovZSymbolG1AsmOperand; } def MovZSymbolG0AsmOperand : AsmOperandClass { let Name = "MovZSymbolG0"; let RenderMethod = "addImmOperands"; } def movz_symbol_g0 : Operand { let ParserMatchClass = MovZSymbolG0AsmOperand; } def MovKSymbolG2AsmOperand : AsmOperandClass { let Name = "MovKSymbolG2"; let RenderMethod = "addImmOperands"; } def movk_symbol_g2 : Operand { let ParserMatchClass = MovKSymbolG2AsmOperand; } def MovKSymbolG1AsmOperand : AsmOperandClass { let Name = "MovKSymbolG1"; let RenderMethod = "addImmOperands"; } def movk_symbol_g1 : Operand { let ParserMatchClass = MovKSymbolG1AsmOperand; } def MovKSymbolG0AsmOperand : AsmOperandClass { let Name = "MovKSymbolG0"; let RenderMethod = "addImmOperands"; } def movk_symbol_g0 : Operand { let ParserMatchClass = MovKSymbolG0AsmOperand; } class fixedpoint_i32 : Operand, ComplexPattern", [fpimm, ld]> { let EncoderMethod = "getFixedPointScaleOpValue"; let DecoderMethod = "DecodeFixedPointScaleImm32"; let ParserMatchClass = Imm1_32Operand; } class fixedpoint_i64 : Operand, ComplexPattern", [fpimm, ld]> { let EncoderMethod = "getFixedPointScaleOpValue"; let DecoderMethod = "DecodeFixedPointScaleImm64"; let ParserMatchClass = Imm1_64Operand; } def fixedpoint_f32_i32 : fixedpoint_i32; def fixedpoint_f64_i32 : fixedpoint_i32; def fixedpoint_f32_i64 : fixedpoint_i64; def fixedpoint_f64_i64 : fixedpoint_i64; def vecshiftR8 : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 9); }]> { let EncoderMethod = "getVecShiftR8OpValue"; let DecoderMethod = "DecodeVecShiftR8Imm"; let ParserMatchClass = Imm1_8Operand; } def vecshiftR16 : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 17); }]> { let EncoderMethod = "getVecShiftR16OpValue"; let DecoderMethod = "DecodeVecShiftR16Imm"; let ParserMatchClass = Imm1_16Operand; } def vecshiftR16Narrow : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 9); }]> { let EncoderMethod = "getVecShiftR16OpValue"; let DecoderMethod = "DecodeVecShiftR16ImmNarrow"; let ParserMatchClass = Imm1_8Operand; } def vecshiftR32 : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 33); }]> { let EncoderMethod = "getVecShiftR32OpValue"; let DecoderMethod = "DecodeVecShiftR32Imm"; let ParserMatchClass = Imm1_32Operand; } def vecshiftR32Narrow : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 17); }]> { let EncoderMethod = "getVecShiftR32OpValue"; let DecoderMethod = "DecodeVecShiftR32ImmNarrow"; let ParserMatchClass = Imm1_16Operand; } def vecshiftR64 : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 65); }]> { let EncoderMethod = "getVecShiftR64OpValue"; let DecoderMethod = "DecodeVecShiftR64Imm"; let ParserMatchClass = Imm1_64Operand; } def vecshiftR64Narrow : Operand, ImmLeaf 0) && (((uint32_t)Imm) < 33); }]> { let EncoderMethod = "getVecShiftR64OpValue"; let DecoderMethod = "DecodeVecShiftR64ImmNarrow"; let ParserMatchClass = Imm1_32Operand; } def Imm0_7Operand : AsmOperandClass { let Name = "Imm0_7"; } def Imm0_15Operand : AsmOperandClass { let Name = "Imm0_15"; } def Imm0_31Operand : AsmOperandClass { let Name = "Imm0_31"; } def Imm0_63Operand : AsmOperandClass { let Name = "Imm0_63"; } def vecshiftL8 : Operand, ImmLeaf { let EncoderMethod = "getVecShiftL8OpValue"; let DecoderMethod = "DecodeVecShiftL8Imm"; let ParserMatchClass = Imm0_7Operand; } def vecshiftL16 : Operand, ImmLeaf { let EncoderMethod = "getVecShiftL16OpValue"; let DecoderMethod = "DecodeVecShiftL16Imm"; let ParserMatchClass = Imm0_15Operand; } def vecshiftL32 : Operand, ImmLeaf { let EncoderMethod = "getVecShiftL32OpValue"; let DecoderMethod = "DecodeVecShiftL32Imm"; let ParserMatchClass = Imm0_31Operand; } def vecshiftL64 : Operand, ImmLeaf { let EncoderMethod = "getVecShiftL64OpValue"; let DecoderMethod = "DecodeVecShiftL64Imm"; let ParserMatchClass = Imm0_63Operand; } // Crazy immediate formats used by 32-bit and 64-bit logical immediate // instructions for splatting repeating bit patterns across the immediate. def logical_imm32_XFORM : SDNodeXFormgetZExtValue(), 32); return CurDAG->getTargetConstant(enc, MVT::i32); }]>; def logical_imm64_XFORM : SDNodeXFormgetZExtValue(), 64); return CurDAG->getTargetConstant(enc, MVT::i32); }]>; def LogicalImm32Operand : AsmOperandClass { let Name = "LogicalImm32"; } def LogicalImm64Operand : AsmOperandClass { let Name = "LogicalImm64"; } def logical_imm32 : Operand, PatLeaf<(imm), [{ return ARM64_AM::isLogicalImmediate(N->getZExtValue(), 32); }], logical_imm32_XFORM> { let PrintMethod = "printLogicalImm32"; let ParserMatchClass = LogicalImm32Operand; } def logical_imm64 : Operand, PatLeaf<(imm), [{ return ARM64_AM::isLogicalImmediate(N->getZExtValue(), 64); }], logical_imm64_XFORM> { let PrintMethod = "printLogicalImm64"; let ParserMatchClass = LogicalImm64Operand; } // imm0_255 predicate - True if the immediate is in the range [0,255]. def Imm0_255Operand : AsmOperandClass { let Name = "Imm0_255"; } def imm0_255 : Operand, ImmLeaf { let ParserMatchClass = Imm0_255Operand; } // imm0_127 predicate - True if the immediate is in the range [0,127] def Imm0_127Operand : AsmOperandClass { let Name = "Imm0_127"; } def imm0_127 : Operand, ImmLeaf { let ParserMatchClass = Imm0_127Operand; } // NOTE: These imm0_N operands have to be of type i64 because i64 is the size // for all shift-amounts. // imm0_63 predicate - True if the immediate is in the range [0,63] def imm0_63 : Operand, ImmLeaf { let ParserMatchClass = Imm0_63Operand; } // imm0_31 predicate - True if the immediate is in the range [0,31] def imm0_31 : Operand, ImmLeaf { let ParserMatchClass = Imm0_31Operand; } // imm0_15 predicate - True if the immediate is in the range [0,15] def imm0_15 : Operand, ImmLeaf { let ParserMatchClass = Imm0_15Operand; } // imm0_7 predicate - True if the immediate is in the range [0,7] def imm0_7 : Operand, ImmLeaf { let ParserMatchClass = Imm0_7Operand; } // An arithmetic shifter operand: // {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr // {5-0} - imm6 def arith_shift : Operand { let PrintMethod = "printShifter"; let ParserMatchClass = ArithmeticShifterOperand; } class arith_shifted_reg : Operand, ComplexPattern { let PrintMethod = "printShiftedRegister"; let MIOperandInfo = (ops regclass, arith_shift); } def arith_shifted_reg32 : arith_shifted_reg; def arith_shifted_reg64 : arith_shifted_reg; // An arithmetic shifter operand: // {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr, 11 = ror // {5-0} - imm6 def logical_shift : Operand { let PrintMethod = "printShifter"; let ParserMatchClass = ShifterOperand; } class logical_shifted_reg : Operand, ComplexPattern { let PrintMethod = "printShiftedRegister"; let MIOperandInfo = (ops regclass, logical_shift); } def logical_shifted_reg32 : logical_shifted_reg; def logical_shifted_reg64 : logical_shifted_reg; // A logical vector shifter operand: // {7-6} - shift type: 00 = lsl // {5-0} - imm6: #0, #8, #16, or #24 def logical_vec_shift : Operand { let PrintMethod = "printShifter"; let EncoderMethod = "getVecShifterOpValue"; let ParserMatchClass = LogicalVecShifterOperand; } // A logical vector half-word shifter operand: // {7-6} - shift type: 00 = lsl // {5-0} - imm6: #0 or #8 def logical_vec_hw_shift : Operand { let PrintMethod = "printShifter"; let EncoderMethod = "getVecShifterOpValue"; let ParserMatchClass = LogicalVecHalfWordShifterOperand; } // A vector move shifter operand: // {0} - imm1: #8 or #16 def move_vec_shift : Operand { let PrintMethod = "printShifter"; let EncoderMethod = "getMoveVecShifterOpValue"; let ParserMatchClass = MoveVecShifterOperand; } // An ADD/SUB immediate shifter operand: // {7-6} - shift type: 00 = lsl // {5-0} - imm6: #0 or #12 def addsub_shift : Operand { let ParserMatchClass = AddSubShifterOperand; } class addsub_shifted_imm : Operand, ComplexPattern { let PrintMethod = "printAddSubImm"; let EncoderMethod = "getAddSubImmOpValue"; let MIOperandInfo = (ops i32imm, addsub_shift); } def addsub_shifted_imm32 : addsub_shifted_imm; def addsub_shifted_imm64 : addsub_shifted_imm; class neg_addsub_shifted_imm : Operand, ComplexPattern { let PrintMethod = "printAddSubImm"; let EncoderMethod = "getAddSubImmOpValue"; let MIOperandInfo = (ops i32imm, addsub_shift); } def neg_addsub_shifted_imm32 : neg_addsub_shifted_imm; def neg_addsub_shifted_imm64 : neg_addsub_shifted_imm; // An extend operand: // {5-3} - extend type // {2-0} - imm3 def arith_extend : Operand { let PrintMethod = "printExtend"; let ParserMatchClass = ExtendOperand; } def arith_extend64 : Operand { let PrintMethod = "printExtend"; let ParserMatchClass = ExtendOperand64; } // 'extend' that's a lsl of a 64-bit register. def arith_extendlsl64 : Operand { let PrintMethod = "printExtend"; let ParserMatchClass = ExtendOperandLSL64; } class arith_extended_reg32 : Operand, ComplexPattern { let PrintMethod = "printExtendedRegister"; let MIOperandInfo = (ops GPR32, arith_extend); } class arith_extended_reg32to64 : Operand, ComplexPattern { let PrintMethod = "printExtendedRegister"; let MIOperandInfo = (ops GPR32, arith_extend64); } // Floating-point immediate. def fpimm32 : Operand, PatLeaf<(f32 fpimm), [{ return ARM64_AM::getFP32Imm(N->getValueAPF()) != -1; }], SDNodeXFormgetValueAPF(); uint32_t enc = ARM64_AM::getFP32Imm(InVal); return CurDAG->getTargetConstant(enc, MVT::i32); }]>> { let ParserMatchClass = FPImmOperand; let PrintMethod = "printFPImmOperand"; } def fpimm64 : Operand, PatLeaf<(f64 fpimm), [{ return ARM64_AM::getFP64Imm(N->getValueAPF()) != -1; }], SDNodeXFormgetValueAPF(); uint32_t enc = ARM64_AM::getFP64Imm(InVal); return CurDAG->getTargetConstant(enc, MVT::i32); }]>> { let ParserMatchClass = FPImmOperand; let PrintMethod = "printFPImmOperand"; } def fpimm8 : Operand { let ParserMatchClass = FPImmOperand; let PrintMethod = "printFPImmOperand"; } def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; // 8-bit immediate for AdvSIMD where 64-bit values of the form: // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // are encoded as the eight bit value 'abcdefgh'. def simdimmtype10 : Operand, PatLeaf<(f64 fpimm), [{ return ARM64_AM::isAdvSIMDModImmType10(N->getValueAPF() .bitcastToAPInt() .getZExtValue()); }], SDNodeXFormgetValueAPF(); uint32_t enc = ARM64_AM::encodeAdvSIMDModImmType10(N->getValueAPF() .bitcastToAPInt() .getZExtValue()); return CurDAG->getTargetConstant(enc, MVT::i32); }]>> { let ParserMatchClass = SIMDImmType10Operand; let PrintMethod = "printSIMDType10Operand"; } //--- // System management //--- // Base encoding for system instruction operands. let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class BaseSystemI : I { let Inst{31-22} = 0b1101010100; let Inst{21} = L; } // System instructions which do not have an Rt register. class SimpleSystemI : BaseSystemI { let Inst{4-0} = 0b11111; } // System instructions which have an Rt register. class RtSystemI : BaseSystemI, Sched<[WriteSys]> { bits<5> Rt; let Inst{4-0} = Rt; } // Hint instructions that take both a CRm and a 3-bit immediate. class HintI : SimpleSystemI<0, (ins imm0_127:$imm), mnemonic#" $imm", "">, Sched<[WriteHint]> { bits <7> imm; let Inst{20-12} = 0b000110010; let Inst{11-5} = imm; } // System instructions taking a single literal operand which encodes into // CRm. op2 differentiates the opcodes. def BarrierAsmOperand : AsmOperandClass { let Name = "Barrier"; let ParserMethod = "tryParseBarrierOperand"; } def barrier_op : Operand { let PrintMethod = "printBarrierOption"; let ParserMatchClass = BarrierAsmOperand; } class CRmSystemI opc, string asm> : SimpleSystemI<0, (ins crmtype:$CRm), asm, "\t$CRm">, Sched<[WriteBarrier]> { bits<4> CRm; let Inst{20-12} = 0b000110011; let Inst{11-8} = CRm; let Inst{7-5} = opc; } // MRS/MSR system instructions. These have different operand classes because // a different subset of registers can be accessed through each instruction. def MRSSystemRegisterOperand : AsmOperandClass { let Name = "MRSSystemRegister"; let ParserMethod = "tryParseSysReg"; } // concatenation of 1, op0, op1, CRn, CRm, op2. 16-bit immediate. def mrs_sysreg_op : Operand { let ParserMatchClass = MRSSystemRegisterOperand; let DecoderMethod = "DecodeMRSSystemRegister"; let PrintMethod = "printMRSSystemRegister"; } def MSRSystemRegisterOperand : AsmOperandClass { let Name = "MSRSystemRegister"; let ParserMethod = "tryParseSysReg"; } def msr_sysreg_op : Operand { let ParserMatchClass = MSRSystemRegisterOperand; let DecoderMethod = "DecodeMSRSystemRegister"; let PrintMethod = "printMSRSystemRegister"; } class MRSI : RtSystemI<1, (outs GPR64:$Rt), (ins mrs_sysreg_op:$systemreg), "mrs", "\t$Rt, $systemreg"> { bits<15> systemreg; let Inst{20} = 1; let Inst{19-5} = systemreg; } // FIXME: Some of these def CPSR, others don't. Best way to model that? // Explicitly modeling each of the system register as a register class // would do it, but feels like overkill at this point. class MSRI : RtSystemI<0, (outs), (ins msr_sysreg_op:$systemreg, GPR64:$Rt), "msr", "\t$systemreg, $Rt"> { bits<15> systemreg; let Inst{20} = 1; let Inst{19-5} = systemreg; } def SystemCPSRFieldOperand : AsmOperandClass { let Name = "SystemCPSRField"; let ParserMethod = "tryParseSysReg"; } def cpsrfield_op : Operand { let ParserMatchClass = SystemCPSRFieldOperand; let PrintMethod = "printSystemCPSRField"; } let Defs = [CPSR] in class MSRcpsrI : SimpleSystemI<0, (ins cpsrfield_op:$cpsr_field, imm0_15:$imm), "msr", "\t$cpsr_field, $imm">, Sched<[WriteSys]> { bits<6> cpsrfield; bits<4> imm; let Inst{20-19} = 0b00; let Inst{18-16} = cpsrfield{5-3}; let Inst{15-12} = 0b0100; let Inst{11-8} = imm; let Inst{7-5} = cpsrfield{2-0}; let DecoderMethod = "DecodeSystemCPSRInstruction"; } // SYS and SYSL generic system instructions. def SysCRAsmOperand : AsmOperandClass { let Name = "SysCR"; let ParserMethod = "tryParseSysCROperand"; } def sys_cr_op : Operand { let PrintMethod = "printSysCROperand"; let ParserMatchClass = SysCRAsmOperand; } class SystemXtI : RtSystemI { bits<3> op1; bits<4> Cn; bits<4> Cm; bits<3> op2; let Inst{20-19} = 0b01; let Inst{18-16} = op1; let Inst{15-12} = Cn; let Inst{11-8} = Cm; let Inst{7-5} = op2; } class SystemLXtI : RtSystemI { bits<3> op1; bits<4> Cn; bits<4> Cm; bits<3> op2; let Inst{20-19} = 0b01; let Inst{18-16} = op1; let Inst{15-12} = Cn; let Inst{11-8} = Cm; let Inst{7-5} = op2; } // Branch (register) instructions: // // case opc of // 0001 blr // 0000 br // 0101 dret // 0100 eret // 0010 ret // otherwise UNDEFINED class BaseBranchReg opc, dag oops, dag iops, string asm, string operands, list pattern> : I, Sched<[WriteBrReg]> { let Inst{31-25} = 0b1101011; let Inst{24-21} = opc; let Inst{20-16} = 0b11111; let Inst{15-10} = 0b000000; let Inst{4-0} = 0b00000; } class BranchReg opc, string asm, list pattern> : BaseBranchReg { bits<5> Rn; let Inst{9-5} = Rn; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1, isReturn = 1 in class SpecialReturn opc, string asm> : BaseBranchReg { let Inst{9-5} = 0b11111; } //--- // Conditional branch instruction. //--- // Branch condition code. // 4-bit immediate. Pretty-printed as . def dotCcode : Operand { let PrintMethod = "printDotCondCode"; } // Conditional branch target. 19-bit immediate. The low two bits of the target // offset are implied zero and so are not part of the immediate. def BranchTarget19Operand : AsmOperandClass { let Name = "BranchTarget19"; } def am_brcond : Operand { let EncoderMethod = "getCondBranchTargetOpValue"; let DecoderMethod = "DecodeCondBranchTarget"; let PrintMethod = "printAlignedBranchTarget"; let ParserMatchClass = BranchTarget19Operand; } class BranchCond : I<(outs), (ins dotCcode:$cond, am_brcond:$target), "b", "$cond\t$target", "", [(ARM64brcond bb:$target, imm:$cond, CPSR)]>, Sched<[WriteBr]> { let isBranch = 1; let isTerminator = 1; let Uses = [CPSR]; bits<4> cond; bits<19> target; let Inst{31-24} = 0b01010100; let Inst{23-5} = target; let Inst{4} = 0; let Inst{3-0} = cond; } //--- // Compare-and-branch instructions. //--- class BaseCmpBranch : I<(outs), (ins regtype:$Rt, am_brcond:$target), asm, "\t$Rt, $target", "", [(node regtype:$Rt, bb:$target)]>, Sched<[WriteBr]> { let isBranch = 1; let isTerminator = 1; bits<5> Rt; bits<19> target; let Inst{30-25} = 0b011010; let Inst{24} = op; let Inst{23-5} = target; let Inst{4-0} = Rt; } multiclass CmpBranch { def W : BaseCmpBranch { let Inst{31} = 0; } def X : BaseCmpBranch { let Inst{31} = 1; } } //--- // Test-bit-and-branch instructions. //--- // Test-and-branch target. 14-bit sign-extended immediate. The low two bits of // the target offset are implied zero and so are not part of the immediate. def BranchTarget14Operand : AsmOperandClass { let Name = "BranchTarget14"; } def am_tbrcond : Operand { let EncoderMethod = "getTestBranchTargetOpValue"; let PrintMethod = "printAlignedBranchTarget"; let ParserMatchClass = BranchTarget14Operand; } class TestBranch : I<(outs), (ins GPR64:$Rt, imm0_63:$bit_off, am_tbrcond:$target), asm, "\t$Rt, $bit_off, $target", "", [(node GPR64:$Rt, imm0_63:$bit_off, bb:$target)]>, Sched<[WriteBr]> { let isBranch = 1; let isTerminator = 1; bits<5> Rt; bits<6> bit_off; bits<14> target; let Inst{31} = bit_off{5}; let Inst{30-25} = 0b011011; let Inst{24} = op; let Inst{23-19} = bit_off{4-0}; let Inst{18-5} = target; let Inst{4-0} = Rt; let DecoderMethod = "DecodeTestAndBranch"; } //--- // Unconditional branch (immediate) instructions. //--- def BranchTarget26Operand : AsmOperandClass { let Name = "BranchTarget26"; } def am_b_target : Operand { let EncoderMethod = "getBranchTargetOpValue"; let PrintMethod = "printAlignedBranchTarget"; let ParserMatchClass = BranchTarget26Operand; } def am_bl_target : Operand { let EncoderMethod = "getBranchTargetOpValue"; let PrintMethod = "printAlignedBranchTarget"; let ParserMatchClass = BranchTarget26Operand; } class BImm pattern> : I<(outs), iops, asm, "\t$addr", "", pattern>, Sched<[WriteBr]> { bits<26> addr; let Inst{31} = op; let Inst{30-26} = 0b00101; let Inst{25-0} = addr; let DecoderMethod = "DecodeUnconditionalBranch"; } class BranchImm pattern> : BImm; class CallImm pattern> : BImm; //--- // Basic one-operand data processing instructions. //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseOneOperandData opc, RegisterClass regtype, string asm, SDPatternOperator node> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "", [(set regtype:$Rd, (node regtype:$Rn))]>, Sched<[WriteI]> { bits<5> Rd; bits<5> Rn; let Inst{30-13} = 0b101101011000000000; let Inst{12-10} = opc; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass OneOperandData opc, string asm, SDPatternOperator node = null_frag> { def Wr : BaseOneOperandData { let Inst{31} = 0; } def Xr : BaseOneOperandData { let Inst{31} = 1; } } class OneWRegData opc, string asm, SDPatternOperator node> : BaseOneOperandData { let Inst{31} = 0; } class OneXRegData opc, string asm, SDPatternOperator node> : BaseOneOperandData { let Inst{31} = 1; } //--- // Basic two-operand data processing instructions. //--- class BaseBaseAddSubCarry pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pattern>, Sched<[WriteI]> { let Uses = [CPSR]; bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{30} = isSub; let Inst{28-21} = 0b11010000; let Inst{20-16} = Rm; let Inst{15-10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseAddSubCarry : BaseBaseAddSubCarry; class BaseAddSubCarrySetFlags : BaseBaseAddSubCarry { let Defs = [CPSR]; } multiclass AddSubCarry { def Wr : BaseAddSubCarry { let Inst{31} = 0; let Inst{29} = 0; } def Xr : BaseAddSubCarry { let Inst{31} = 1; let Inst{29} = 0; } // Sets flags. def SWr : BaseAddSubCarrySetFlags { let Inst{31} = 0; let Inst{29} = 1; } def SXr : BaseAddSubCarrySetFlags { let Inst{31} = 1; let Inst{29} = 1; } } class BaseTwoOperand opc, RegisterClass regtype, string asm, SDPatternOperator OpNode> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{30-21} = 0b0011010110; let Inst{20-16} = Rm; let Inst{15-14} = 0b00; let Inst{13-10} = opc; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseDiv : BaseTwoOperand<{0,0,1,?}, regtype, asm, OpNode> { let Inst{10} = isSigned; } multiclass Div { def Wr : BaseDiv, Sched<[WriteID32]> { let Inst{31} = 0; } def Xr : BaseDiv, Sched<[WriteID64]> { let Inst{31} = 1; } } class BaseShift shift_type, RegisterClass regtype, string asm, SDPatternOperator OpNode = null_frag> : BaseTwoOperand<{1,0,?,?}, regtype, asm, OpNode>, Sched<[WriteIS]> { let Inst{11-10} = shift_type; } multiclass Shift shift_type, string asm, SDNode OpNode> { def Wr : BaseShift { let Inst{31} = 0; } def Xr : BaseShift { let Inst{31} = 1; } def : Pat<(i32 (OpNode GPR32:$Rn, i64:$Rm)), (!cast(NAME # "Wr") GPR32:$Rn, (EXTRACT_SUBREG i64:$Rm, sub_32))>; def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (zext GPR32:$Rm)))), (!cast(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>; def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (anyext GPR32:$Rm)))), (!cast(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>; def : Pat<(i32 (OpNode GPR32:$Rn, (i64 (sext GPR32:$Rm)))), (!cast(NAME # "Wr") GPR32:$Rn, GPR32:$Rm)>; } class ShiftAlias : InstAlias; class BaseMulAccum opc, RegisterClass multype, RegisterClass addtype, string asm, list pattern> : I<(outs addtype:$Rd), (ins multype:$Rn, multype:$Rm, addtype:$Ra), asm, "\t$Rd, $Rn, $Rm, $Ra", "", pattern> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<5> Ra; let Inst{30-24} = 0b0011011; let Inst{23-21} = opc; let Inst{20-16} = Rm; let Inst{15} = isSub; let Inst{14-10} = Ra; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass MulAccum { def Wrrr : BaseMulAccum, Sched<[WriteIM32]> { let Inst{31} = 0; } def Xrrr : BaseMulAccum, Sched<[WriteIM64]> { let Inst{31} = 1; } } class WideMulAccum opc, string asm, SDNode AccNode, SDNode ExtNode> : BaseMulAccum, Sched<[WriteIM32]> { let Inst{31} = 1; } class MulHi opc, string asm, SDNode OpNode> : I<(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set GPR64:$Rd, (OpNode GPR64:$Rn, GPR64:$Rm))]>, Sched<[WriteIM64]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-24} = 0b10011011; let Inst{23-21} = opc; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; // The Ra field of SMULH and UMULH is unused: it should be assembled as 31 // (i.e. all bits 1) but is ignored by the processor. let PostEncoderMethod = "fixMulHigh"; } class MulAccumWAlias : InstAlias; class MulAccumXAlias : InstAlias; class WideMulAccumAlias : InstAlias; class BaseCRC32 sz, bit C, RegisterClass StreamReg, SDPatternOperator OpNode, string asm> : I<(outs GPR32:$Rd), (ins GPR32:$Rn, StreamReg:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set GPR32:$Rd, (OpNode GPR32:$Rn, StreamReg:$Rm))]>, Sched<[WriteISReg]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = sf; let Inst{30-21} = 0b0011010110; let Inst{20-16} = Rm; let Inst{15-13} = 0b010; let Inst{12} = C; let Inst{11-10} = sz; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } //--- // Address generation. //--- class ADRI pattern> : I<(outs GPR64:$Xd), (ins adr:$label), asm, "\t$Xd, $label", "", pattern>, Sched<[WriteI]> { bits<5> Xd; bits<21> label; let Inst{31} = page; let Inst{30-29} = label{1-0}; let Inst{28-24} = 0b10000; let Inst{23-5} = label{20-2}; let Inst{4-0} = Xd; let DecoderMethod = "DecodeAdrInstruction"; } //--- // Move immediate. //--- def movimm32_imm : Operand { let ParserMatchClass = Imm0_65535Operand; let EncoderMethod = "getMoveWideImmOpValue"; } def movimm32_shift : Operand { let PrintMethod = "printShifter"; let ParserMatchClass = MovImm32ShifterOperand; } def movimm64_shift : Operand { let PrintMethod = "printShifter"; let ParserMatchClass = MovImm64ShifterOperand; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseMoveImmediate opc, RegisterClass regtype, Operand shifter, string asm> : I<(outs regtype:$Rd), (ins movimm32_imm:$imm, shifter:$shift), asm, "\t$Rd, $imm$shift", "", []>, Sched<[WriteImm]> { bits<5> Rd; bits<16> imm; bits<6> shift; let Inst{30-29} = opc; let Inst{28-23} = 0b100101; let Inst{22-21} = shift{5-4}; let Inst{20-5} = imm; let Inst{4-0} = Rd; let DecoderMethod = "DecodeMoveImmInstruction"; } multiclass MoveImmediate opc, string asm> { def Wi : BaseMoveImmediate { let Inst{31} = 0; } def Xi : BaseMoveImmediate { let Inst{31} = 1; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseInsertImmediate opc, RegisterClass regtype, Operand shifter, string asm> : I<(outs regtype:$Rd), (ins regtype:$src, movimm32_imm:$imm, shifter:$shift), asm, "\t$Rd, $imm$shift", "$src = $Rd", []>, Sched<[WriteI]> { bits<5> Rd; bits<16> imm; bits<6> shift; let Inst{30-29} = opc; let Inst{28-23} = 0b100101; let Inst{22-21} = shift{5-4}; let Inst{20-5} = imm; let Inst{4-0} = Rd; let DecoderMethod = "DecodeMoveImmInstruction"; } multiclass InsertImmediate opc, string asm> { def Wi : BaseInsertImmediate { let Inst{31} = 0; } def Xi : BaseInsertImmediate { let Inst{31} = 1; } } //--- // Add/Subtract //--- class BaseAddSubImm : I<(outs dstRegtype:$Rd), (ins srcRegtype:$Rn, immtype:$imm), asm, "\t$Rd, $Rn, $imm", "", [(set dstRegtype:$Rd, (OpNode srcRegtype:$Rn, immtype:$imm))]>, Sched<[WriteI]> { bits<5> Rd; bits<5> Rn; bits<14> imm; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b10001; let Inst{23-22} = imm{13-12}; // '00' => lsl #0, '01' => lsl #12 let Inst{21-10} = imm{11-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeBaseAddSubImm"; } class BaseAddSubRegPseudo : Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>, Sched<[WriteI]>; class BaseAddSubSReg : I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", [(set regtype:$Rd, (OpNode regtype:$Rn, shifted_regtype:$Rm))]>, Sched<[WriteISReg]> { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> src1; bits<5> src2; bits<8> shift; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b01011; let Inst{23-22} = shift{7-6}; let Inst{21} = 0; let Inst{20-16} = src2; let Inst{15-10} = shift{5-0}; let Inst{9-5} = src1; let Inst{4-0} = dst; let DecoderMethod = "DecodeThreeAddrSRegInstruction"; } class BaseAddSubEReg : I<(outs dstRegtype:$R1), (ins src1Regtype:$R2, src2Regtype:$R3), asm, "\t$R1, $R2, $R3", "", [(set dstRegtype:$R1, (OpNode src1Regtype:$R2, src2Regtype:$R3))]>, Sched<[WriteIEReg]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<6> ext; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b01011; let Inst{23-21} = 0b001; let Inst{20-16} = Rm; let Inst{15-13} = ext{5-3}; let Inst{12-10} = ext{2-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeAddSubERegInstruction"; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseAddSubEReg64 : I<(outs dstRegtype:$Rd), (ins src1Regtype:$Rn, src2Regtype:$Rm, ext_op:$ext), asm, "\t$Rd, $Rn, $Rm$ext", "", []>, Sched<[WriteIEReg]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<6> ext; let Inst{30} = isSub; let Inst{29} = setFlags; let Inst{28-24} = 0b01011; let Inst{23-21} = 0b001; let Inst{20-16} = Rm; let Inst{15} = ext{5}; let Inst{12-10} = ext{2-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeAddSubERegInstruction"; } // Aliases for register+register add/subtract. class AddSubRegAlias : InstAlias; multiclass AddSub { let hasSideEffects = 0 in { // Add/Subtract immediate def Wri : BaseAddSubImm { let Inst{31} = 0; } def Xri : BaseAddSubImm { let Inst{31} = 1; } // Add/Subtract register - Only used for CodeGen def Wrr : BaseAddSubRegPseudo; def Xrr : BaseAddSubRegPseudo; // Add/Subtract shifted register def Wrs : BaseAddSubSReg { let Inst{31} = 0; } def Xrs : BaseAddSubSReg { let Inst{31} = 1; } } // Add/Subtract extended register let AddedComplexity = 1, hasSideEffects = 0 in { def Wrx : BaseAddSubEReg, mnemonic, OpNode> { let Inst{31} = 0; } def Xrx : BaseAddSubEReg, mnemonic, OpNode> { let Inst{31} = 1; } } def Xrx64 : BaseAddSubEReg64 { // UXTX and SXTX only. let Inst{14-13} = 0b11; let Inst{31} = 1; } // Register/register aliases with no shift when SP is not used. def : AddSubRegAlias(NAME#"Wrs"), GPR32, GPR32, GPR32, 0>; def : AddSubRegAlias(NAME#"Xrs"), GPR64, GPR64, GPR64, 0>; // Register/register aliases with no shift when either the destination or // first source register is SP. This relies on the shifted register aliases // above matching first in the case when SP is not used. def : AddSubRegAlias(NAME#"Wrx"), GPR32sp, GPR32sp, GPR32, 16>; // UXTW #0 def : AddSubRegAlias(NAME#"Xrx64"), GPR64sp, GPR64sp, GPR64, 24>; // UXTX #0 } multiclass AddSubS { let isCompare = 1, Defs = [CPSR] in { // Add/Subtract immediate def Wri : BaseAddSubImm { let Inst{31} = 0; } def Xri : BaseAddSubImm { let Inst{31} = 1; } // Add/Subtract register def Wrr : BaseAddSubRegPseudo; def Xrr : BaseAddSubRegPseudo; // Add/Subtract shifted register def Wrs : BaseAddSubSReg { let Inst{31} = 0; } def Xrs : BaseAddSubSReg { let Inst{31} = 1; } // Add/Subtract extended register let AddedComplexity = 1 in { def Wrx : BaseAddSubEReg, mnemonic, OpNode> { let Inst{31} = 0; } def Xrx : BaseAddSubEReg, mnemonic, OpNode> { let Inst{31} = 1; } } def Xrx64 : BaseAddSubEReg64 { // UXTX and SXTX only. let Inst{14-13} = 0b11; let Inst{31} = 1; } } // Defs = [CPSR] // Register/register aliases with no shift when SP is not used. def : AddSubRegAlias(NAME#"Wrs"), GPR32, GPR32, GPR32, 0>; def : AddSubRegAlias(NAME#"Xrs"), GPR64, GPR64, GPR64, 0>; // Register/register aliases with no shift when the first source register // is SP. This relies on the shifted register aliases above matching first // in the case when SP is not used. def : AddSubRegAlias(NAME#"Wrx"), GPR32, GPR32sp, GPR32, 16>; // UXTW #0 def : AddSubRegAlias(NAME#"Xrx64"), GPR64, GPR64sp, GPR64, 24>; // UXTX #0 } //--- // Extract //--- def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisPtrTy<3>]>; def ARM64Extr : SDNode<"ARM64ISD::EXTR", SDTA64EXTR>; class BaseExtractImm patterns> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, imm_type:$imm), asm, "\t$Rd, $Rn, $Rm, $imm", "", patterns>, Sched<[WriteExtr, ReadExtrHi]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<6> imm; let Inst{30-23} = 0b00100111; let Inst{21} = 0; let Inst{20-16} = Rm; let Inst{15-10} = imm; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass ExtractImm { def Wrri : BaseExtractImm { let Inst{31} = 0; let Inst{22} = 0; // imm<5> must be zero. let imm{5} = 0; } def Xrri : BaseExtractImm { let Inst{31} = 1; let Inst{22} = 1; } } //--- // Bitfield //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseBitfieldImm opc, RegisterClass regtype, Operand imm_type, string asm> : I<(outs regtype:$Rd), (ins regtype:$Rn, imm_type:$immr, imm_type:$imms), asm, "\t$Rd, $Rn, $immr, $imms", "", []>, Sched<[WriteIS]> { bits<5> Rd; bits<5> Rn; bits<6> immr; bits<6> imms; let Inst{30-29} = opc; let Inst{28-23} = 0b100110; let Inst{21-16} = immr; let Inst{15-10} = imms; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass BitfieldImm opc, string asm> { def Wri : BaseBitfieldImm { let Inst{31} = 0; let Inst{22} = 0; // imms<5> and immr<5> must be zero, else ReservedValue(). let Inst{21} = 0; let Inst{15} = 0; } def Xri : BaseBitfieldImm { let Inst{31} = 1; let Inst{22} = 1; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseBitfieldImmWith2RegArgs opc, RegisterClass regtype, Operand imm_type, string asm> : I<(outs regtype:$Rd), (ins regtype:$src, regtype:$Rn, imm_type:$immr, imm_type:$imms), asm, "\t$Rd, $Rn, $immr, $imms", "$src = $Rd", []>, Sched<[WriteIS]> { bits<5> Rd; bits<5> Rn; bits<6> immr; bits<6> imms; let Inst{30-29} = opc; let Inst{28-23} = 0b100110; let Inst{21-16} = immr; let Inst{15-10} = imms; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass BitfieldImmWith2RegArgs opc, string asm> { def Wri : BaseBitfieldImmWith2RegArgs { let Inst{31} = 0; let Inst{22} = 0; // imms<5> and immr<5> must be zero, else ReservedValue(). let Inst{21} = 0; let Inst{15} = 0; } def Xri : BaseBitfieldImmWith2RegArgs { let Inst{31} = 1; let Inst{22} = 1; } } //--- // Logical //--- // Logical (immediate) class BaseLogicalImm opc, RegisterClass dregtype, RegisterClass sregtype, Operand imm_type, string asm, list pattern> : I<(outs dregtype:$Rd), (ins sregtype:$Rn, imm_type:$imm), asm, "\t$Rd, $Rn, $imm", "", pattern>, Sched<[WriteI]> { bits<5> Rd; bits<5> Rn; bits<13> imm; let Inst{30-29} = opc; let Inst{28-23} = 0b100100; let Inst{22} = imm{12}; let Inst{21-16} = imm{11-6}; let Inst{15-10} = imm{5-0}; let Inst{9-5} = Rn; let Inst{4-0} = Rd; let DecoderMethod = "DecodeLogicalImmInstruction"; } // Logical (shifted register) class BaseLogicalSReg opc, bit N, RegisterClass regtype, logical_shifted_reg shifted_regtype, string asm, list pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, shifted_regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pattern>, Sched<[WriteISReg]> { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> src1; bits<5> src2; bits<8> shift; let Inst{30-29} = opc; let Inst{28-24} = 0b01010; let Inst{23-22} = shift{7-6}; let Inst{21} = N; let Inst{20-16} = src2; let Inst{15-10} = shift{5-0}; let Inst{9-5} = src1; let Inst{4-0} = dst; let DecoderMethod = "DecodeThreeAddrSRegInstruction"; } // Aliases for register+register logical instructions. class LogicalRegAlias : InstAlias; let AddedComplexity = 6 in multiclass LogicalImm opc, string mnemonic, SDNode OpNode> { def Wri : BaseLogicalImm { let Inst{31} = 0; let Inst{22} = 0; // 64-bit version has an additional bit of immediate. } def Xri : BaseLogicalImm { let Inst{31} = 1; } } multiclass LogicalImmS opc, string mnemonic, SDNode OpNode> { let isCompare = 1, Defs = [CPSR] in { def Wri : BaseLogicalImm { let Inst{31} = 0; let Inst{22} = 0; // 64-bit version has an additional bit of immediate. } def Xri : BaseLogicalImm { let Inst{31} = 1; } } // end Defs = [CPSR] } class BaseLogicalRegPseudo : Pseudo<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), [(set regtype:$Rd, (OpNode regtype:$Rn, regtype:$Rm))]>, Sched<[WriteI]>; // Split from LogicalImm as not all instructions have both. multiclass LogicalReg opc, bit N, string mnemonic, SDPatternOperator OpNode> { def Wrr : BaseLogicalRegPseudo; def Xrr : BaseLogicalRegPseudo; def Wrs : BaseLogicalSReg { let Inst{31} = 0; } def Xrs : BaseLogicalSReg { let Inst{31} = 1; } def : LogicalRegAlias(NAME#"Wrs"), GPR32>; def : LogicalRegAlias(NAME#"Xrs"), GPR64>; } // Split from LogicalReg to allow setting CPSR Defs multiclass LogicalRegS opc, bit N, string mnemonic> { let Defs = [CPSR], mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def Wrs : BaseLogicalSReg{ let Inst{31} = 0; } def Xrs : BaseLogicalSReg{ let Inst{31} = 1; } } // Defs = [CPSR] def : LogicalRegAlias(NAME#"Wrs"), GPR32>; def : LogicalRegAlias(NAME#"Xrs"), GPR64>; } //--- // Conditionally set flags //--- // Condition code. // 4-bit immediate. Pretty-printed as def ccode : Operand { let PrintMethod = "printCondCode"; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseCondSetFlagsImm : I<(outs), (ins regtype:$Rn, imm0_31:$imm, imm0_15:$nzcv, ccode:$cond), asm, "\t$Rn, $imm, $nzcv, $cond", "", []>, Sched<[WriteI]> { let Uses = [CPSR]; let Defs = [CPSR]; bits<5> Rn; bits<5> imm; bits<4> nzcv; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b111010010; let Inst{20-16} = imm; let Inst{15-12} = cond; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4} = 0b0; let Inst{3-0} = nzcv; } multiclass CondSetFlagsImm { def Wi : BaseCondSetFlagsImm { let Inst{31} = 0; } def Xi : BaseCondSetFlagsImm { let Inst{31} = 1; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseCondSetFlagsReg : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond), asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>, Sched<[WriteI]> { let Uses = [CPSR]; let Defs = [CPSR]; bits<5> Rn; bits<5> Rm; bits<4> nzcv; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b111010010; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4} = 0b0; let Inst{3-0} = nzcv; } multiclass CondSetFlagsReg { def Wr : BaseCondSetFlagsReg { let Inst{31} = 0; } def Xr : BaseCondSetFlagsReg { let Inst{31} = 1; } } //--- // Conditional select //--- class BaseCondSelect op2, RegisterClass regtype, string asm> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond), asm, "\t$Rd, $Rn, $Rm, $cond", "", [(set regtype:$Rd, (ARM64csel regtype:$Rn, regtype:$Rm, (i32 imm:$cond), CPSR))]>, Sched<[WriteI]> { let Uses = [CPSR]; bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b011010100; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = op2; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass CondSelect op2, string asm> { def Wr : BaseCondSelect { let Inst{31} = 0; } def Xr : BaseCondSelect { let Inst{31} = 1; } } class BaseCondSelectOp op2, RegisterClass regtype, string asm, PatFrag frag> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond), asm, "\t$Rd, $Rn, $Rm, $cond", "", [(set regtype:$Rd, (ARM64csel regtype:$Rn, (frag regtype:$Rm), (i32 imm:$cond), CPSR))]>, Sched<[WriteI]> { let Uses = [CPSR]; bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> cond; let Inst{30} = op; let Inst{29-21} = 0b011010100; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = op2; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } def inv_cond_XFORM : SDNodeXForm(N->getZExtValue()); return CurDAG->getTargetConstant(ARM64CC::getInvertedCondCode(CC), MVT::i32); }]>; multiclass CondSelectOp op2, string asm, PatFrag frag> { def Wr : BaseCondSelectOp { let Inst{31} = 0; } def Xr : BaseCondSelectOp { let Inst{31} = 1; } def : Pat<(ARM64csel (frag GPR32:$Rm), GPR32:$Rn, (i32 imm:$cond), CPSR), (!cast(NAME # Wr) GPR32:$Rn, GPR32:$Rm, (inv_cond_XFORM imm:$cond))>; def : Pat<(ARM64csel (frag GPR64:$Rm), GPR64:$Rn, (i32 imm:$cond), CPSR), (!cast(NAME # Xr) GPR64:$Rn, GPR64:$Rm, (inv_cond_XFORM imm:$cond))>; } //--- // Special Mask Value //--- def maski8_or_more : Operand, ImmLeaf { } def maski16_or_more : Operand, ImmLeaf { } //--- // Load/store //--- // (unsigned immediate) // Indexed for 8-bit registers. offset is in range [0,4095]. def MemoryIndexed8Operand : AsmOperandClass { let Name = "MemoryIndexed8"; let DiagnosticType = "InvalidMemoryIndexed8"; } def am_indexed8 : Operand, ComplexPattern { let PrintMethod = "printAMIndexed8"; let EncoderMethod = "getAMIndexed8OpValue"; let ParserMatchClass = MemoryIndexed8Operand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } // Indexed for 16-bit registers. offset is multiple of 2 in range [0,8190], // stored as immval/2 (the 12-bit literal that encodes directly into the insn). def MemoryIndexed16Operand : AsmOperandClass { let Name = "MemoryIndexed16"; let DiagnosticType = "InvalidMemoryIndexed16"; } def am_indexed16 : Operand, ComplexPattern { let PrintMethod = "printAMIndexed16"; let EncoderMethod = "getAMIndexed8OpValue"; let ParserMatchClass = MemoryIndexed16Operand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } // Indexed for 32-bit registers. offset is multiple of 4 in range [0,16380], // stored as immval/4 (the 12-bit literal that encodes directly into the insn). def MemoryIndexed32Operand : AsmOperandClass { let Name = "MemoryIndexed32"; let DiagnosticType = "InvalidMemoryIndexed32"; } def am_indexed32 : Operand, ComplexPattern { let PrintMethod = "printAMIndexed32"; let EncoderMethod = "getAMIndexed8OpValue"; let ParserMatchClass = MemoryIndexed32Operand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } // Indexed for 64-bit registers. offset is multiple of 8 in range [0,32760], // stored as immval/8 (the 12-bit literal that encodes directly into the insn). def MemoryIndexed64Operand : AsmOperandClass { let Name = "MemoryIndexed64"; let DiagnosticType = "InvalidMemoryIndexed64"; } def am_indexed64 : Operand, ComplexPattern { let PrintMethod = "printAMIndexed64"; let EncoderMethod = "getAMIndexed8OpValue"; let ParserMatchClass = MemoryIndexed64Operand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } // Indexed for 128-bit registers. offset is multiple of 16 in range [0,65520], // stored as immval/16 (the 12-bit literal that encodes directly into the insn). def MemoryIndexed128Operand : AsmOperandClass { let Name = "MemoryIndexed128"; let DiagnosticType = "InvalidMemoryIndexed128"; } def am_indexed128 : Operand, ComplexPattern { let PrintMethod = "printAMIndexed128"; let EncoderMethod = "getAMIndexed8OpValue"; let ParserMatchClass = MemoryIndexed128Operand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } // No offset. def MemoryNoIndexOperand : AsmOperandClass { let Name = "MemoryNoIndex"; } def am_noindex : Operand, ComplexPattern { let PrintMethod = "printAMNoIndex"; let ParserMatchClass = MemoryNoIndexOperand; let MIOperandInfo = (ops GPR64sp:$base); } class BaseLoadStoreUI sz, bit V, bits<2> opc, dag oops, dag iops, string asm, list pattern> : I { bits<5> dst; bits<17> addr; bits<5> base = addr{4-0}; bits<12> offset = addr{16-5}; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b01; let Inst{23-22} = opc; let Inst{21-10} = offset; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeUnsignedLdStInstruction"; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class LoadUI sz, bit V, bits<2> opc, RegisterClass regtype, Operand indextype, string asm, list pattern> : BaseLoadStoreUI, Sched<[WriteLD]>; let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in class StoreUI sz, bit V, bits<2> opc, RegisterClass regtype, Operand indextype, string asm, list pattern> : BaseLoadStoreUI, Sched<[WriteST]>; def PrefetchOperand : AsmOperandClass { let Name = "Prefetch"; let ParserMethod = "tryParsePrefetch"; } def prfop : Operand { let PrintMethod = "printPrefetchOp"; let ParserMatchClass = PrefetchOperand; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class PrefetchUI sz, bit V, bits<2> opc, string asm, list pat> : BaseLoadStoreUI, Sched<[WriteLD]>; //--- // Load literal //--- let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class LoadLiteral opc, bit V, RegisterClass regtype, string asm> : I<(outs regtype:$Rt), (ins am_brcond:$label), asm, "\t$Rt, $label", "", []>, Sched<[WriteLD]> { bits<5> Rt; bits<19> label; let Inst{31-30} = opc; let Inst{29-27} = 0b011; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-5} = label; let Inst{4-0} = Rt; } let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class PrefetchLiteral opc, bit V, string asm, list pat> : I<(outs), (ins prfop:$Rt, am_brcond:$label), asm, "\t$Rt, $label", "", pat>, Sched<[WriteLD]> { bits<5> Rt; bits<19> label; let Inst{31-30} = opc; let Inst{29-27} = 0b011; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-5} = label; let Inst{4-0} = Rt; } //--- // Load/store register offset //--- class MemROAsmOperand : AsmOperandClass { let Name = "MemoryRegisterOffset"#sz; } def MemROAsmOperand8 : MemROAsmOperand<8>; def MemROAsmOperand16 : MemROAsmOperand<16>; def MemROAsmOperand32 : MemROAsmOperand<32>; def MemROAsmOperand64 : MemROAsmOperand<64>; def MemROAsmOperand128 : MemROAsmOperand<128>; class ro_indexed : Operand { // ComplexPattern<...> let PrintMethod = "printMemoryRegOffset"#sz; let MIOperandInfo = (ops GPR64sp:$base, GPR64:$offset, i32imm:$extend); } def ro_indexed8 : ro_indexed<8>, ComplexPattern { let ParserMatchClass = MemROAsmOperand8; } def ro_indexed16 : ro_indexed<16>, ComplexPattern { let ParserMatchClass = MemROAsmOperand16; } def ro_indexed32 : ro_indexed<32>, ComplexPattern { let ParserMatchClass = MemROAsmOperand32; } def ro_indexed64 : ro_indexed<64>, ComplexPattern { let ParserMatchClass = MemROAsmOperand64; } def ro_indexed128 : ro_indexed<128>, ComplexPattern { let ParserMatchClass = MemROAsmOperand128; } class LoadStore8RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list pat> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<5> offset; bits<4> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = offset; let Inst{15-13} = extend{3-1}; let Inst{12} = extend{0}; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeRegOffsetLdStInstruction"; } class Load8RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore8RO, Sched<[WriteLDIdx, ReadAdrBase]>; class Store8RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore8RO, Sched<[WriteSTIdx, ReadAdrBase]>; class LoadStore16RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list pat> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<5> offset; bits<4> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = offset; let Inst{15-13} = extend{3-1}; let Inst{12} = extend{0}; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeRegOffsetLdStInstruction"; } class Load16RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore16RO, Sched<[WriteLDIdx, ReadAdrBase]>; class Store16RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore16RO, Sched<[WriteSTIdx, ReadAdrBase]>; class LoadStore32RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list pat> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<5> offset; bits<4> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = offset; let Inst{15-13} = extend{3-1}; let Inst{12} = extend{0}; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeRegOffsetLdStInstruction"; } class Load32RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore32RO, Sched<[WriteLDIdx, ReadAdrBase]>; class Store32RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore32RO, Sched<[WriteSTIdx, ReadAdrBase]>; class LoadStore64RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list pat> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<5> offset; bits<4> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = offset; let Inst{15-13} = extend{3-1}; let Inst{12} = extend{0}; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeRegOffsetLdStInstruction"; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class Load64RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore64RO, Sched<[WriteLDIdx, ReadAdrBase]>; let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in class Store64RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore64RO, Sched<[WriteSTIdx, ReadAdrBase]>; class LoadStore128RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, dag ins, dag outs, list pat> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<5> offset; bits<4> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = offset; let Inst{15-13} = extend{3-1}; let Inst{12} = extend{0}; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeRegOffsetLdStInstruction"; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class Load128RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore128RO, Sched<[WriteLDIdx, ReadAdrBase]>; let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in class Store128RO sz, bit V, bits<2> opc, RegisterClass regtype, string asm, list pat> : LoadStore128RO, Sched<[WriteSTIdx, ReadAdrBase]>; let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class PrefetchRO sz, bit V, bits<2> opc, string asm, list pat> : I<(outs), (ins prfop:$Rt, ro_indexed64:$addr), asm, "\t$Rt, $addr", "", pat>, Sched<[WriteLD]> { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<5> offset; bits<4> extend; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 1; let Inst{20-16} = offset; let Inst{15-13} = extend{3-1}; let Inst{12} = extend{0}; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeRegOffsetLdStInstruction"; } //--- // Load/store unscaled immediate //--- def MemoryUnscaledOperand : AsmOperandClass { let Name = "MemoryUnscaled"; let DiagnosticType = "InvalidMemoryIndexedSImm9"; } class am_unscaled_operand : Operand { let PrintMethod = "printAMUnscaled"; let ParserMatchClass = MemoryUnscaledOperand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } class am_unscaled_wb_operand : Operand { let PrintMethod = "printAMUnscaledWB"; let ParserMatchClass = MemoryUnscaledOperand; let MIOperandInfo = (ops GPR64sp:$base, i64imm:$offset); } def am_unscaled : am_unscaled_operand; def am_unscaled_wb: am_unscaled_wb_operand; def am_unscaled8 : am_unscaled_operand, ComplexPattern; def am_unscaled16 : am_unscaled_operand, ComplexPattern; def am_unscaled32 : am_unscaled_operand, ComplexPattern; def am_unscaled64 : am_unscaled_operand, ComplexPattern; def am_unscaled128 : am_unscaled_operand, ComplexPattern; class BaseLoadStoreUnscale sz, bit V, bits<2> opc, dag oops, dag iops, string asm, list pattern> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 0; let Inst{20-12} = offset; let Inst{11-10} = 0b00; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeSignedLdStInstruction"; } let AddedComplexity = 1 in // try this before LoadUI class LoadUnscaled sz, bit V, bits<2> opc, RegisterClass regtype, Operand amtype, string asm, list pattern> : BaseLoadStoreUnscale, Sched<[WriteLD]>; let AddedComplexity = 1 in // try this before StoreUI class StoreUnscaled sz, bit V, bits<2> opc, RegisterClass regtype, Operand amtype, string asm, list pattern> : BaseLoadStoreUnscale, Sched<[WriteST]>; let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class PrefetchUnscaled sz, bit V, bits<2> opc, string asm, list pat> : BaseLoadStoreUnscale, Sched<[WriteLD]>; //--- // Load/store unscaled immediate, unprivileged //--- class BaseLoadStoreUnprivileged sz, bit V, bits<2> opc, dag oops, dag iops, string asm> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> base; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 0; let Inst{20-12} = offset; let Inst{11-10} = 0b10; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeSignedLdStInstruction"; } let mayStore = 0, mayLoad = 1, hasSideEffects = 0 in { class LoadUnprivileged sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStoreUnprivileged, Sched<[WriteLD]>; } let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in { class StoreUnprivileged sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStoreUnprivileged, Sched<[WriteST]>; } //--- // Load/store pre-indexed //--- class BaseLoadStorePreIdx sz, bit V, bits<2> opc, dag oops, dag iops, string asm, string cstr> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. bits<5> dst; bits<5> base; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0; let Inst{23-22} = opc; let Inst{21} = 0; let Inst{20-12} = offset; let Inst{11-10} = 0b11; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeSignedLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in // FIXME: Modeling the write-back of these instructions for isel is tricky. // we need the complex addressing mode for the memory reference, but // we also need the write-back specified as a tied operand to the // base register. That combination does not play nicely with // the asm matcher and friends. class LoadPreIdx sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStorePreIdx, Sched<[WriteLD, WriteAdr]>; let mayStore = 1, mayLoad = 0 in class StorePreIdx sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStorePreIdx, Sched<[WriteAdr, WriteST]>; } // hasSideEffects = 0 // ISel pseudo-instructions which have the tied operands. When the MC lowering // logic finally gets smart enough to strip off tied operands that are just // for isel convenience, we can get rid of these pseudos and just reference // the real instructions directly. // // Ironically, also because of the writeback operands, we can't put the // matcher pattern directly on the instruction, but need to define it // separately. // // Loads aren't matched with patterns here at all, but rather in C++ // custom lowering. let mayStore = 0, mayLoad = 1, hasSideEffects = 0 in { class LoadPreIdxPseudo : Pseudo<(outs regtype:$Rt, GPR64sp:$wback), (ins am_noindex:$addr, simm9:$offset), [], "$addr.base = $wback,@earlyclobber $wback">, Sched<[WriteLD, WriteAdr]>; class LoadPostIdxPseudo : Pseudo<(outs regtype:$Rt, GPR64sp:$wback), (ins am_noindex:$addr, simm9:$offset), [], "$addr.base = $wback,@earlyclobber $wback">, Sched<[WriteLD, WriteI]>; } multiclass StorePreIdxPseudo { let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in def _isel: Pseudo<(outs GPR64sp:$wback), (ins regtype:$Rt, am_noindex:$addr, simm9:$offset), [], "$addr.base = $wback,@earlyclobber $wback">, Sched<[WriteAdr, WriteST]>; def : Pat<(OpNode (Ty regtype:$Rt), am_noindex:$addr, simm9:$offset), (!cast(NAME#_isel) regtype:$Rt, am_noindex:$addr, simm9:$offset)>; } //--- // Load/store post-indexed //--- // (pre-index) load/stores. class BaseLoadStorePostIdx sz, bit V, bits<2> opc, dag oops, dag iops, string asm, string cstr> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. bits<5> dst; bits<5> base; bits<9> offset; let Inst{31-30} = sz; let Inst{29-27} = 0b111; let Inst{26} = V; let Inst{25-24} = 0b00; let Inst{23-22} = opc; let Inst{21} = 0b0; let Inst{20-12} = offset; let Inst{11-10} = 0b01; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodeSignedLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in // FIXME: Modeling the write-back of these instructions for isel is tricky. // we need the complex addressing mode for the memory reference, but // we also need the write-back specified as a tied operand to the // base register. That combination does not play nicely with // the asm matcher and friends. class LoadPostIdx sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStorePostIdx, Sched<[WriteLD, WriteI]>; let mayStore = 1, mayLoad = 0 in class StorePostIdx sz, bit V, bits<2> opc, RegisterClass regtype, string asm> : BaseLoadStorePostIdx, Sched<[WriteAdr, WriteST, ReadAdrBase]>; } // hasSideEffects = 0 // ISel pseudo-instructions which have the tied operands. When the MC lowering // logic finally gets smart enough to strip off tied operands that are just // for isel convenience, we can get rid of these pseudos and just reference // the real instructions directly. // // Ironically, also because of the writeback operands, we can't put the // matcher pattern directly on the instruction, but need to define it // separately. multiclass StorePostIdxPseudo { let mayStore = 1, mayLoad = 0, hasSideEffects = 0 in def _isel: Pseudo<(outs GPR64sp:$wback), (ins regtype:$Rt, am_noindex:$addr, simm9:$idx), [], "$addr.base = $wback,@earlyclobber $wback">, PseudoInstExpansion<(Insn regtype:$Rt, am_noindex:$addr, simm9:$idx)>, Sched<[WriteAdr, WriteST, ReadAdrBase]>; def : Pat<(OpNode (Ty regtype:$Rt), am_noindex:$addr, simm9:$idx), (!cast(NAME#_isel) regtype:$Rt, am_noindex:$addr, simm9:$idx)>; } //--- // Load/store pair //--- // (indexed, offset) class BaseLoadStorePairOffset opc, bit V, bit L, dag oops, dag iops, string asm> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> dst2; bits<5> base; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b010; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = dst2; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodePairLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPairOffset opc, bit V, RegisterClass regtype, Operand indextype, string asm> : BaseLoadStorePairOffset, Sched<[WriteLD, WriteLDHi]>; let mayLoad = 0, mayStore = 1 in class StorePairOffset opc, bit V, RegisterClass regtype, Operand indextype, string asm> : BaseLoadStorePairOffset, Sched<[WriteSTP]>; } // hasSideEffects = 0 // (pre-indexed) def MemoryIndexed32SImm7 : AsmOperandClass { let Name = "MemoryIndexed32SImm7"; let DiagnosticType = "InvalidMemoryIndexed32SImm7"; } def am_indexed32simm7 : Operand { // ComplexPattern<...> let PrintMethod = "printAMIndexed32"; let ParserMatchClass = MemoryIndexed32SImm7; let MIOperandInfo = (ops GPR64sp:$base, i32imm:$offset); } def am_indexed32simm7_wb : Operand { // ComplexPattern<...> let PrintMethod = "printAMIndexed32WB"; let ParserMatchClass = MemoryIndexed32SImm7; let MIOperandInfo = (ops GPR64sp:$base, i32imm:$offset); } def MemoryIndexed64SImm7 : AsmOperandClass { let Name = "MemoryIndexed64SImm7"; let DiagnosticType = "InvalidMemoryIndexed64SImm7"; } def am_indexed64simm7 : Operand { // ComplexPattern<...> let PrintMethod = "printAMIndexed64"; let ParserMatchClass = MemoryIndexed64SImm7; let MIOperandInfo = (ops GPR64sp:$base, i32imm:$offset); } def am_indexed64simm7_wb : Operand { // ComplexPattern<...> let PrintMethod = "printAMIndexed64WB"; let ParserMatchClass = MemoryIndexed64SImm7; let MIOperandInfo = (ops GPR64sp:$base, i32imm:$offset); } def MemoryIndexed128SImm7 : AsmOperandClass { let Name = "MemoryIndexed128SImm7"; let DiagnosticType = "InvalidMemoryIndexed128SImm7"; } def am_indexed128simm7 : Operand { // ComplexPattern<...> let PrintMethod = "printAMIndexed128"; let ParserMatchClass = MemoryIndexed128SImm7; let MIOperandInfo = (ops GPR64sp:$base, i32imm:$offset); } def am_indexed128simm7_wb : Operand { // ComplexPattern<...> let PrintMethod = "printAMIndexed128WB"; let ParserMatchClass = MemoryIndexed128SImm7; let MIOperandInfo = (ops GPR64sp:$base, i32imm:$offset); } class BaseLoadStorePairPreIdx opc, bit V, bit L, dag oops, dag iops, string asm> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> dst2; bits<5> base; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b011; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = dst2; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodePairLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPairPreIdx opc, bit V, RegisterClass regtype, Operand addrmode, string asm> : BaseLoadStorePairPreIdx, Sched<[WriteLD, WriteLDHi, WriteAdr]>; let mayStore = 1, mayLoad = 0 in class StorePairPreIdx opc, bit V, RegisterClass regtype, Operand addrmode, string asm> : BaseLoadStorePairPreIdx, Sched<[WriteAdr, WriteSTP]>; } // hasSideEffects = 0 // (post-indexed) class BaseLoadStorePairPostIdx opc, bit V, bit L, dag oops, dag iops, string asm> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> dst2; bits<5> base; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b001; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = dst2; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodePairLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPairPostIdx opc, bit V, RegisterClass regtype, Operand idxtype, string asm> : BaseLoadStorePairPostIdx, Sched<[WriteLD, WriteLDHi, WriteAdr]>; let mayStore = 1, mayLoad = 0 in class StorePairPostIdx opc, bit V, RegisterClass regtype, Operand idxtype, string asm> : BaseLoadStorePairPostIdx, Sched<[WriteAdr, WriteSTP]>; } // hasSideEffects = 0 // (no-allocate) class BaseLoadStorePairNoAlloc opc, bit V, bit L, dag oops, dag iops, string asm> : I { // The operands are in order to match the 'addr' MI operands, so we // don't need an encoder method and by-name matching. Just use the default // in-order handling. Since we're using by-order, make sure the names // do not match. bits<5> dst; bits<5> dst2; bits<5> base; bits<7> offset; let Inst{31-30} = opc; let Inst{29-27} = 0b101; let Inst{26} = V; let Inst{25-23} = 0b000; let Inst{22} = L; let Inst{21-15} = offset; let Inst{14-10} = dst2; let Inst{9-5} = base; let Inst{4-0} = dst; let DecoderMethod = "DecodePairLdStInstruction"; } let hasSideEffects = 0 in { let mayStore = 0, mayLoad = 1 in class LoadPairNoAlloc opc, bit V, RegisterClass regtype, Operand indextype, string asm> : BaseLoadStorePairNoAlloc, Sched<[WriteLD, WriteLDHi]>; let mayStore = 1, mayLoad = 0 in class StorePairNoAlloc opc, bit V, RegisterClass regtype, Operand indextype, string asm> : BaseLoadStorePairNoAlloc, Sched<[WriteSTP]>; } // hasSideEffects = 0 //--- // Load/store exclusive //--- // True exclusive operations write to and/or read from the system's exclusive // monitors, which as far as a compiler is concerned can be modelled as a // random shared memory address. Hence LoadExclusive mayStore. // // Since these instructions have the undefined register bits set to 1 in // their canonical form, we need a post encoder method to set those bits // to 1 when encoding these instructions. We do this using the // fixLoadStoreExclusive function. This function has template parameters: // // fixLoadStoreExclusive // // hasRs indicates that the instruction uses the Rs field, so we won't set // it to 1 (and the same for Rt2). We don't need template parameters for // the other register fields since Rt and Rn are always used. // let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in class BaseLoadStoreExclusive sz, bit o2, bit L, bit o1, bit o0, dag oops, dag iops, string asm, string operands> : I { let Inst{31-30} = sz; let Inst{29-24} = 0b001000; let Inst{23} = o2; let Inst{22} = L; let Inst{21} = o1; let Inst{15} = o0; let DecoderMethod = "DecodeExclusiveLdStInstruction"; } // Neither Rs nor Rt2 operands. class LoadStoreExclusiveSimple sz, bit o2, bit L, bit o1, bit o0, dag oops, dag iops, string asm, string operands> : BaseLoadStoreExclusive { bits<5> reg; bits<5> base; let Inst{9-5} = base; let Inst{4-0} = reg; let PostEncoderMethod = "fixLoadStoreExclusive<0,0>"; } // Simple load acquires don't set the exclusive monitor let mayLoad = 1, mayStore = 0 in class LoadAcquire sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : LoadStoreExclusiveSimple, Sched<[WriteLD]>; class LoadExclusive sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : LoadStoreExclusiveSimple, Sched<[WriteLD]>; class LoadExclusivePair sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : BaseLoadStoreExclusive, Sched<[WriteLD, WriteLDHi]> { bits<5> dst1; bits<5> dst2; bits<5> base; let Inst{14-10} = dst2; let Inst{9-5} = base; let Inst{4-0} = dst1; let PostEncoderMethod = "fixLoadStoreExclusive<0,1>"; } // Simple store release operations do not check the exclusive monitor. let mayLoad = 0, mayStore = 1 in class StoreRelease sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : LoadStoreExclusiveSimple, Sched<[WriteST]>; let mayLoad = 1, mayStore = 1 in class StoreExclusive sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : BaseLoadStoreExclusive, Sched<[WriteSTX]> { bits<5> status; bits<5> reg; bits<5> base; let Inst{20-16} = status; let Inst{9-5} = base; let Inst{4-0} = reg; let Constraints = "@earlyclobber $Ws"; let PostEncoderMethod = "fixLoadStoreExclusive<1,0>"; } class StoreExclusivePair sz, bit o2, bit L, bit o1, bit o0, RegisterClass regtype, string asm> : BaseLoadStoreExclusive, Sched<[WriteSTX]> { bits<5> status; bits<5> dst1; bits<5> dst2; bits<5> base; let Inst{20-16} = status; let Inst{14-10} = dst2; let Inst{9-5} = base; let Inst{4-0} = dst1; let Constraints = "@earlyclobber $Ws"; } //--- // Exception generation //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in class ExceptionGeneration op1, bits<2> ll, string asm> : I<(outs), (ins imm0_65535:$imm), asm, "\t$imm", "", []>, Sched<[WriteSys]> { bits<16> imm; let Inst{31-24} = 0b11010100; let Inst{23-21} = op1; let Inst{20-5} = imm; let Inst{4-2} = 0b000; let Inst{1-0} = ll; } //--- // Floating point to integer conversion //--- class BaseFPToIntegerUnscaled type, bits<2> rmode, bits<3> opcode, RegisterClass srcType, RegisterClass dstType, string asm, list pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; let Inst{30-29} = 0b00; let Inst{28-24} = 0b11110; let Inst{23-22} = type; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseFPToInteger type, bits<2> rmode, bits<3> opcode, RegisterClass srcType, RegisterClass dstType, Operand immType, string asm, list pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale), asm, "\t$Rd, $Rn, $scale", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; bits<6> scale; let Inst{30-29} = 0b00; let Inst{28-24} = 0b11110; let Inst{23-22} = type; let Inst{21} = 0; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = scale; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass FPToIntegerUnscaled rmode, bits<3> opcode, string asm, SDPatternOperator OpN> { // Unscaled single-precision to 32-bit def UWSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR32, asm, [(set GPR32:$Rd, (OpN FPR32:$Rn))]> { let Inst{31} = 0; // 32-bit GPR flag } // Unscaled single-precision to 64-bit def UXSr : BaseFPToIntegerUnscaled<0b00, rmode, opcode, FPR32, GPR64, asm, [(set GPR64:$Rd, (OpN FPR32:$Rn))]> { let Inst{31} = 1; // 64-bit GPR flag } // Unscaled double-precision to 32-bit def UWDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR32, asm, [(set GPR32:$Rd, (OpN (f64 FPR64:$Rn)))]> { let Inst{31} = 0; // 32-bit GPR flag } // Unscaled double-precision to 64-bit def UXDr : BaseFPToIntegerUnscaled<0b01, rmode, opcode, FPR64, GPR64, asm, [(set GPR64:$Rd, (OpN (f64 FPR64:$Rn)))]> { let Inst{31} = 1; // 64-bit GPR flag } } multiclass FPToIntegerScaled rmode, bits<3> opcode, string asm, SDPatternOperator OpN> { // Scaled single-precision to 32-bit def SWSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR32, fixedpoint_f32_i32, asm, [(set GPR32:$Rd, (OpN (fmul FPR32:$Rn, fixedpoint_f32_i32:$scale)))]> { let Inst{31} = 0; // 32-bit GPR flag let scale{5} = 1; } // Scaled single-precision to 64-bit def SXSri : BaseFPToInteger<0b00, rmode, opcode, FPR32, GPR64, fixedpoint_f32_i64, asm, [(set GPR64:$Rd, (OpN (fmul FPR32:$Rn, fixedpoint_f32_i64:$scale)))]> { let Inst{31} = 1; // 64-bit GPR flag } // Scaled double-precision to 32-bit def SWDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR32, fixedpoint_f64_i32, asm, [(set GPR32:$Rd, (OpN (fmul FPR64:$Rn, fixedpoint_f64_i32:$scale)))]> { let Inst{31} = 0; // 32-bit GPR flag let scale{5} = 1; } // Scaled double-precision to 64-bit def SXDri : BaseFPToInteger<0b01, rmode, opcode, FPR64, GPR64, fixedpoint_f64_i64, asm, [(set GPR64:$Rd, (OpN (fmul FPR64:$Rn, fixedpoint_f64_i64:$scale)))]> { let Inst{31} = 1; // 64-bit GPR flag } } //--- // Integer to floating point conversion //--- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseIntegerToFP pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn, immType:$scale), asm, "\t$Rd, $Rn, $scale", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; bits<6> scale; let Inst{30-23} = 0b00111100; let Inst{21-17} = 0b00001; let Inst{16} = isUnsigned; let Inst{15-10} = scale; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseIntegerToFPUnscaled : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", [(set (dvt dstType:$Rd), (node srcType:$Rn))]>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; bits<6> scale; let Inst{30-23} = 0b00111100; let Inst{21-17} = 0b10001; let Inst{16} = isUnsigned; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass IntegerToFP { // Unscaled def UWSri: BaseIntegerToFPUnscaled { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def UWDri: BaseIntegerToFPUnscaled { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } def UXSri: BaseIntegerToFPUnscaled { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def UXDri: BaseIntegerToFPUnscaled { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } // Scaled def SWSri: BaseIntegerToFP { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag let scale{5} = 1; } def SWDri: BaseIntegerToFP { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag let scale{5} = 1; } def SXSri: BaseIntegerToFP { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def SXDri: BaseIntegerToFP { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } } //--- // Unscaled integer <-> floating point conversion (i.e. FMOV) //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseUnscaledConversion rmode, bits<3> opcode, RegisterClass srcType, RegisterClass dstType, string asm> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", // We use COPY_TO_REGCLASS for these bitconvert operations. // copyPhysReg() expands the resultant COPY instructions after // regalloc is done. This gives greater freedom for the allocator // and related passes (coalescing, copy propagation, et. al.) to // be more effective. [/*(set (dvt dstType:$Rd), (bitconvert (svt srcType:$Rn)))*/]>, Sched<[WriteFCopy]> { bits<5> Rd; bits<5> Rn; let Inst{30-23} = 0b00111100; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseUnscaledConversionToHigh rmode, bits<3> opcode, RegisterClass srcType, RegisterOperand dstType, string asm, string kind> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "{\t$Rd"#kind#"[1], $Rn|"#kind#"\t$Rd[1], $Rn}", "", []>, Sched<[WriteFCopy]> { bits<5> Rd; bits<5> Rn; let Inst{30-23} = 0b00111101; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseUnscaledConversionFromHigh rmode, bits<3> opcode, RegisterOperand srcType, RegisterClass dstType, string asm, string kind> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "{\t$Rd, $Rn"#kind#"[1]|"#kind#"\t$Rd, $Rn[1]}", "", []>, Sched<[WriteFCopy]> { bits<5> Rd; bits<5> Rn; let Inst{30-23} = 0b00111101; let Inst{21} = 1; let Inst{20-19} = rmode; let Inst{18-16} = opcode; let Inst{15-10} = 0b000000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass UnscaledConversion { def WSr : BaseUnscaledConversion<0b00, 0b111, GPR32, FPR32, asm> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def XDr : BaseUnscaledConversion<0b00, 0b111, GPR64, FPR64, asm> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } def SWr : BaseUnscaledConversion<0b00, 0b110, FPR32, GPR32, asm> { let Inst{31} = 0; // 32-bit GPR flag let Inst{22} = 0; // 32-bit FPR flag } def DXr : BaseUnscaledConversion<0b00, 0b110, FPR64, GPR64, asm> { let Inst{31} = 1; // 64-bit GPR flag let Inst{22} = 1; // 64-bit FPR flag } def XDHighr : BaseUnscaledConversionToHigh<0b01, 0b111, GPR64, V128, asm, ".d"> { let Inst{31} = 1; let Inst{22} = 0; } def DXHighr : BaseUnscaledConversionFromHigh<0b01, 0b110, V128, GPR64, asm, ".d"> { let Inst{31} = 1; let Inst{22} = 0; } } //--- // Floating point conversion //--- class BaseFPConversion type, bits<2> opcode, RegisterClass dstType, RegisterClass srcType, string asm, list pattern> : I<(outs dstType:$Rd), (ins srcType:$Rn), asm, "\t$Rd, $Rn", "", pattern>, Sched<[WriteFCvt]> { bits<5> Rd; bits<5> Rn; let Inst{31-24} = 0b00011110; let Inst{23-22} = type; let Inst{21-17} = 0b10001; let Inst{16-15} = opcode; let Inst{14-10} = 0b10000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass FPConversion { // Double-precision to Half-precision def HDr : BaseFPConversion<0b01, 0b11, FPR16, FPR64, asm, [(set FPR16:$Rd, (fround FPR64:$Rn))]>; // Double-precision to Single-precision def SDr : BaseFPConversion<0b01, 0b00, FPR32, FPR64, asm, [(set FPR32:$Rd, (fround FPR64:$Rn))]>; // Half-precision to Double-precision def DHr : BaseFPConversion<0b11, 0b01, FPR64, FPR16, asm, [(set FPR64:$Rd, (fextend FPR16:$Rn))]>; // Half-precision to Single-precision def SHr : BaseFPConversion<0b11, 0b00, FPR32, FPR16, asm, [(set FPR32:$Rd, (fextend FPR16:$Rn))]>; // Single-precision to Double-precision def DSr : BaseFPConversion<0b00, 0b01, FPR64, FPR32, asm, [(set FPR64:$Rd, (fextend FPR32:$Rn))]>; // Single-precision to Half-precision def HSr : BaseFPConversion<0b00, 0b11, FPR16, FPR32, asm, [(set FPR16:$Rd, (fround FPR32:$Rn))]>; } //--- // Single operand floating point data processing //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSingleOperandFPData opcode, RegisterClass regtype, ValueType vt, string asm, SDPatternOperator node> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn", "", [(set (vt regtype:$Rd), (node (vt regtype:$Rn)))]>, Sched<[WriteF]> { bits<5> Rd; bits<5> Rn; let Inst{31-23} = 0b000111100; let Inst{21-19} = 0b100; let Inst{18-15} = opcode; let Inst{14-10} = 0b10000; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SingleOperandFPData opcode, string asm, SDPatternOperator node = null_frag> { def Sr : BaseSingleOperandFPData { let Inst{22} = 0; // 32-bit size flag } def Dr : BaseSingleOperandFPData { let Inst{22} = 1; // 64-bit size flag } } //--- // Two operand floating point data processing //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseTwoOperandFPData opcode, RegisterClass regtype, string asm, list pat> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pat>, Sched<[WriteF]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass TwoOperandFPData opcode, string asm, SDPatternOperator node = null_frag> { def Srr : BaseTwoOperandFPData { let Inst{22} = 0; // 32-bit size flag } def Drr : BaseTwoOperandFPData { let Inst{22} = 1; // 64-bit size flag } } multiclass TwoOperandFPDataNeg opcode, string asm, SDNode node> { def Srr : BaseTwoOperandFPData { let Inst{22} = 0; // 32-bit size flag } def Drr : BaseTwoOperandFPData { let Inst{22} = 1; // 64-bit size flag } } //--- // Three operand floating point data processing //--- class BaseThreeOperandFPData pat> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, regtype: $Ra), asm, "\t$Rd, $Rn, $Rm, $Ra", "", pat>, Sched<[WriteFMul]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<5> Ra; let Inst{31-23} = 0b000111110; let Inst{21} = isNegated; let Inst{20-16} = Rm; let Inst{15} = isSub; let Inst{14-10} = Ra; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass ThreeOperandFPData { def Srrr : BaseThreeOperandFPData { let Inst{22} = 0; // 32-bit size flag } def Drrr : BaseThreeOperandFPData { let Inst{22} = 1; // 64-bit size flag } } //--- // Floating point data comparisons //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseOneOperandFPComparison pat> : I<(outs), (ins regtype:$Rn), asm, "\t$Rn, #0.0", "", pat>, Sched<[WriteFCmp]> { bits<5> Rn; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{15-10} = 0b001000; let Inst{9-5} = Rn; let Inst{4} = signalAllNans; let Inst{3-0} = 0b1000; // Rm should be 0b00000 canonically, but we need to accept any value. let PostEncoderMethod = "fixOneOperandFPComparison"; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseTwoOperandFPComparison pat> : I<(outs), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rn, $Rm", "", pat>, Sched<[WriteFCmp]> { bits<5> Rm; bits<5> Rn; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-10} = 0b001000; let Inst{9-5} = Rn; let Inst{4} = signalAllNans; let Inst{3-0} = 0b0000; } multiclass FPComparison { let Defs = [CPSR] in { def Srr : BaseTwoOperandFPComparison { let Inst{22} = 0; } def Sri : BaseOneOperandFPComparison { let Inst{22} = 0; } def Drr : BaseTwoOperandFPComparison { let Inst{22} = 1; } def Dri : BaseOneOperandFPComparison { let Inst{22} = 1; } } // Defs = [CPSR] } //--- // Floating point conditional comparisons //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseFPCondComparison : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond), asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>, Sched<[WriteFCmp]> { bits<5> Rn; bits<5> Rm; bits<4> nzcv; bits<4> cond; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = 0b01; let Inst{9-5} = Rn; let Inst{4} = signalAllNans; let Inst{3-0} = nzcv; } multiclass FPCondComparison { let Defs = [CPSR], Uses = [CPSR] in { def Srr : BaseFPCondComparison { let Inst{22} = 0; } def Drr : BaseFPCondComparison { let Inst{22} = 1; } } // Defs = [CPSR], Uses = [CPSR] } //--- // Floating point conditional select //--- class BaseFPCondSelect : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, ccode:$cond), asm, "\t$Rd, $Rn, $Rm, $cond", "", [(set regtype:$Rd, (ARM64csel (vt regtype:$Rn), regtype:$Rm, (i32 imm:$cond), CPSR))]>, Sched<[WriteF]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> cond; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = cond; let Inst{11-10} = 0b11; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass FPCondSelect { let Uses = [CPSR] in { def Srrr : BaseFPCondSelect { let Inst{22} = 0; } def Drrr : BaseFPCondSelect { let Inst{22} = 1; } } // Uses = [CPSR] } //--- // Floating move immediate //--- class BaseFPMoveImmediate : I<(outs regtype:$Rd), (ins fpimmtype:$imm), asm, "\t$Rd, $imm", "", [(set regtype:$Rd, fpimmtype:$imm)]>, Sched<[WriteFImm]> { bits<5> Rd; bits<8> imm; let Inst{31-23} = 0b000111100; let Inst{21} = 1; let Inst{20-13} = imm; let Inst{12-5} = 0b10000000; let Inst{4-0} = Rd; } multiclass FPMoveImmediate { def Si : BaseFPMoveImmediate { let Inst{22} = 0; } def Di : BaseFPMoveImmediate { let Inst{22} = 1; } } //---------------------------------------------------------------------------- // AdvSIMD //---------------------------------------------------------------------------- def VectorIndexBOperand : AsmOperandClass { let Name = "VectorIndexB"; } def VectorIndexHOperand : AsmOperandClass { let Name = "VectorIndexH"; } def VectorIndexSOperand : AsmOperandClass { let Name = "VectorIndexS"; } def VectorIndexDOperand : AsmOperandClass { let Name = "VectorIndexD"; } def VectorIndexB : Operand, ImmLeaf { let ParserMatchClass = VectorIndexBOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexH : Operand, ImmLeaf { let ParserMatchClass = VectorIndexHOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexS : Operand, ImmLeaf { let ParserMatchClass = VectorIndexSOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } def VectorIndexD : Operand, ImmLeaf { let ParserMatchClass = VectorIndexDOperand; let PrintMethod = "printVectorIndex"; let MIOperandInfo = (ops i64imm); } //---------------------------------------------------------------------------- // AdvSIMD three register vector instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDThreeSameVector size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, list pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # "|" # kind # "\t$Rd, $Rn, $Rm|}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDThreeSameVectorTied size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, list pattern> : I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn, regtype:$Rm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # "|" # kind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // All operand sizes distinguished in the encoding. multiclass SIMDThreeSameVector opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64, asm, ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128, asm, ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; def v2i64 : BaseSIMDThreeSameVector<1, U, 0b11, opc, V128, asm, ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (v2i64 V128:$Rm)))]>; } // As above, but D sized elements unsupported. multiclass SIMDThreeSameVectorBHS opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64, asm, ".8b", [(set V64:$Rd, (v8i8 (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm))))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128, asm, ".16b", [(set V128:$Rd, (v16i8 (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm))))]>; def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64, asm, ".4h", [(set V64:$Rd, (v4i16 (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm))))]>; def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128, asm, ".8h", [(set V128:$Rd, (v8i16 (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm))))]>; def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64, asm, ".2s", [(set V64:$Rd, (v2i32 (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm))))]>; def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128, asm, ".4s", [(set V128:$Rd, (v4i32 (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm))))]>; } multiclass SIMDThreeSameVectorBHSTied opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVectorTied<0, U, 0b00, opc, V64, asm, ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVectorTied<1, U, 0b00, opc, V128, asm, ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; def v4i16 : BaseSIMDThreeSameVectorTied<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16 : BaseSIMDThreeSameVectorTied<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v2i32 : BaseSIMDThreeSameVectorTied<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32 : BaseSIMDThreeSameVectorTied<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; } // As above, but only B sized elements supported. multiclass SIMDThreeSameVectorB opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVector<0, U, 0b00, opc, V64, asm, ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, 0b00, opc, V128, asm, ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; } // As above, but only S and D sized floating point elements supported. multiclass SIMDThreeSameVectorFP opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0}, opc, V64, asm, ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>; def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0}, opc, V128, asm, ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>; def v2f64 : BaseSIMDThreeSameVector<1, U, {S,1}, opc, V128, asm, ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>; } multiclass SIMDThreeSameVectorFPCmp opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDThreeSameVector<0, U, {S,0}, opc, V64, asm, ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>; def v4f32 : BaseSIMDThreeSameVector<1, U, {S,0}, opc, V128, asm, ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>; def v2f64 : BaseSIMDThreeSameVector<1, U, {S,1}, opc, V128, asm, ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>; } multiclass SIMDThreeSameVectorFPTied opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDThreeSameVectorTied<0, U, {S,0}, opc, V64, asm, ".2s", [(set (v2f32 V64:$dst), (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (v2f32 V64:$Rm)))]>; def v4f32 : BaseSIMDThreeSameVectorTied<1, U, {S,0}, opc, V128, asm, ".4s", [(set (v4f32 V128:$dst), (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (v4f32 V128:$Rm)))]>; def v2f64 : BaseSIMDThreeSameVectorTied<1, U, {S,1}, opc, V128, asm, ".2d", [(set (v2f64 V128:$dst), (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (v2f64 V128:$Rm)))]>; } // As above, but D and B sized elements unsupported. multiclass SIMDThreeSameVectorHS opc, string asm, SDPatternOperator OpNode> { def v4i16 : BaseSIMDThreeSameVector<0, U, 0b01, opc, V64, asm, ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 V64:$Rm)))]>; def v8i16 : BaseSIMDThreeSameVector<1, U, 0b01, opc, V128, asm, ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 V128:$Rm)))]>; def v2i32 : BaseSIMDThreeSameVector<0, U, 0b10, opc, V64, asm, ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 V64:$Rm)))]>; def v4i32 : BaseSIMDThreeSameVector<1, U, 0b10, opc, V128, asm, ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 V128:$Rm)))]>; } // Logical three vector ops share opcode bits, and only use B sized elements. multiclass SIMDLogicalThreeVector size, string asm, SDPatternOperator OpNode = null_frag> { def v8i8 : BaseSIMDThreeSameVector<0, U, size, 0b00011, V64, asm, ".8b", [(set (v8i8 V64:$Rd), (OpNode V64:$Rn, V64:$Rm))]>; def v16i8 : BaseSIMDThreeSameVector<1, U, size, 0b00011, V128, asm, ".16b", [(set (v16i8 V128:$Rd), (OpNode V128:$Rn, V128:$Rm))]>; def : Pat<(v4i16 (OpNode V64:$LHS, V64:$RHS)), (!cast(NAME#"v8i8") V64:$LHS, V64:$RHS)>; def : Pat<(v2i32 (OpNode V64:$LHS, V64:$RHS)), (!cast(NAME#"v8i8") V64:$LHS, V64:$RHS)>; def : Pat<(v1i64 (OpNode V64:$LHS, V64:$RHS)), (!cast(NAME#"v8i8") V64:$LHS, V64:$RHS)>; def : Pat<(v8i16 (OpNode V128:$LHS, V128:$RHS)), (!cast(NAME#"v16i8") V128:$LHS, V128:$RHS)>; def : Pat<(v4i32 (OpNode V128:$LHS, V128:$RHS)), (!cast(NAME#"v16i8") V128:$LHS, V128:$RHS)>; def : Pat<(v2i64 (OpNode V128:$LHS, V128:$RHS)), (!cast(NAME#"v16i8") V128:$LHS, V128:$RHS)>; } multiclass SIMDLogicalThreeVectorTied size, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDThreeSameVectorTied<0, U, size, 0b00011, V64, asm, ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm)))]>; def v16i8 : BaseSIMDThreeSameVectorTied<1, U, size, 0b00011, V128, asm, ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (v16i8 V128:$Rm)))]>; def : Pat<(v4i16 (OpNode (v4i16 V64:$LHS), (v4i16 V64:$MHS), (v4i16 V64:$RHS))), (!cast(NAME#"v8i8") V64:$LHS, V64:$MHS, V64:$RHS)>; def : Pat<(v2i32 (OpNode (v2i32 V64:$LHS), (v2i32 V64:$MHS), (v2i32 V64:$RHS))), (!cast(NAME#"v8i8") V64:$LHS, V64:$MHS, V64:$RHS)>; def : Pat<(v1i64 (OpNode (v1i64 V64:$LHS), (v1i64 V64:$MHS), (v1i64 V64:$RHS))), (!cast(NAME#"v8i8") V64:$LHS, V64:$MHS, V64:$RHS)>; def : Pat<(v8i16 (OpNode (v8i16 V128:$LHS), (v8i16 V128:$MHS), (v8i16 V128:$RHS))), (!cast(NAME#"v16i8") V128:$LHS, V128:$MHS, V128:$RHS)>; def : Pat<(v4i32 (OpNode (v4i32 V128:$LHS), (v4i32 V128:$MHS), (v4i32 V128:$RHS))), (!cast(NAME#"v16i8") V128:$LHS, V128:$MHS, V128:$RHS)>; def : Pat<(v2i64 (OpNode (v2i64 V128:$LHS), (v2i64 V128:$MHS), (v2i64 V128:$RHS))), (!cast(NAME#"v16i8") V128:$LHS, V128:$MHS, V128:$RHS)>; } //---------------------------------------------------------------------------- // AdvSIMD two register vector instructions. //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoSameVector size, bits<5> opcode, RegisterOperand regtype, string asm, string dstkind, string srckind, list pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "{\t$Rd" # dstkind # ", $Rn" # srckind # "|" # dstkind # "\t$Rd, $Rn}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoSameVectorTied size, bits<5> opcode, RegisterOperand regtype, string asm, string dstkind, string srckind, list pattern> : I<(outs regtype:$dst), (ins regtype:$Rd, regtype:$Rn), asm, "{\t$Rd" # dstkind # ", $Rn" # srckind # "|" # dstkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // Supports B, H, and S element sizes. multiclass SIMDTwoVectorBHS opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>; def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; } class BaseSIMDVectorLShiftLongBySize size, RegisterOperand regtype, string asm, string dstkind, string srckind, string amount> : I<(outs V128:$Rd), (ins regtype:$Rn), asm, "{\t$Rd" # dstkind # ", $Rn" # srckind # ", #" # amount # "|" # dstkind # "\t$Rd, $Rn, #" # amount # "}", "", []>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-24} = 0b101110; let Inst{23-22} = size; let Inst{21-10} = 0b100001001110; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDVectorLShiftLongBySizeBHS { let neverHasSideEffects = 1 in { def v8i8 : BaseSIMDVectorLShiftLongBySize<0, 0b00, V64, "shll", ".8h", ".8b", "8">; def v16i8 : BaseSIMDVectorLShiftLongBySize<1, 0b00, V128, "shll2", ".8h", ".16b", "8">; def v4i16 : BaseSIMDVectorLShiftLongBySize<0, 0b01, V64, "shll", ".4s", ".4h", "16">; def v8i16 : BaseSIMDVectorLShiftLongBySize<1, 0b01, V128, "shll2", ".4s", ".8h", "16">; def v2i32 : BaseSIMDVectorLShiftLongBySize<0, 0b10, V64, "shll", ".2d", ".2s", "32">; def v4i32 : BaseSIMDVectorLShiftLongBySize<1, 0b10, V128, "shll2", ".2d", ".4s", "32">; } } // Supports all element sizes. multiclass SIMDLongTwoVector opc, string asm, SDPatternOperator OpNode> { def v8i8_v4i16 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".4h", ".8b", [(set (v4i16 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8_v8i16 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".8h", ".16b", [(set (v8i16 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; def v4i16_v2i32 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".2s", ".4h", [(set (v2i32 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>; def v8i16_v4i32 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".4s", ".8h", [(set (v4i32 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v2i32_v1i64 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64, asm, ".1d", ".2s", [(set (v1i64 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32_v2i64 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128, asm, ".2d", ".4s", [(set (v2i64 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; } multiclass SIMDLongTwoVectorTied opc, string asm, SDPatternOperator OpNode> { def v8i8_v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, V64, asm, ".4h", ".8b", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v8i8 V64:$Rn)))]>; def v16i8_v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, V128, asm, ".8h", ".16b", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v16i8 V128:$Rn)))]>; def v4i16_v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, V64, asm, ".2s", ".4h", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v4i16 V64:$Rn)))]>; def v8i16_v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, V128, asm, ".4s", ".8h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v8i16 V128:$Rn)))]>; def v2i32_v1i64 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, V64, asm, ".1d", ".2s", [(set (v1i64 V64:$dst), (OpNode (v1i64 V64:$Rd), (v2i32 V64:$Rn)))]>; def v4i32_v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, V128, asm, ".2d", ".4s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v4i32 V128:$Rn)))]>; } // Supports all element sizes, except 1xD. multiclass SIMDTwoVectorBHSDTied opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVectorTied<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVectorTied<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn)))]>; def v4i16 : BaseSIMDTwoSameVectorTied<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn)))]>; def v8i16 : BaseSIMDTwoSameVectorTied<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn)))]>; def v2i32 : BaseSIMDTwoSameVectorTied<0, U, 0b10, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVectorTied<1, U, 0b10, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn)))]>; def v2i64 : BaseSIMDTwoSameVectorTied<1, U, 0b11, opc, V128, asm, ".2d", ".2d", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn)))]>; } multiclass SIMDTwoVectorBHSD opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn)))]>; def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v2i32 : BaseSIMDTwoSameVector<0, U, 0b10, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVector<1, U, 0b10, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; def v2i64 : BaseSIMDTwoSameVector<1, U, 0b11, opc, V128, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>; } // Supports only B element sizes. multiclass SIMDTwoVectorB size, bits<5> opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVector<0, U, size, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn)))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, size, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn)))]>; } // Supports only B and H element sizes. multiclass SIMDTwoVectorBH opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDTwoSameVector<0, U, 0b00, opc, V64, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode V64:$Rn))]>; def v16i8 : BaseSIMDTwoSameVector<1, U, 0b00, opc, V128, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode V128:$Rn))]>; def v4i16 : BaseSIMDTwoSameVector<0, U, 0b01, opc, V64, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode V64:$Rn))]>; def v8i16 : BaseSIMDTwoSameVector<1, U, 0b01, opc, V128, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode V128:$Rn))]>; } // Supports only S and D element sizes, uses high bit of the size field // as an extra opcode bit. multiclass SIMDTwoVectorFP opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>; def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>; def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128, asm, ".2d", ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>; } // Supports only S element size. multiclass SIMDTwoVectorS opc, string asm, SDPatternOperator OpNode> { def v2i32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4i32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; } multiclass SIMDTwoVectorFPToInt opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn)))]>; def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn)))]>; def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn)))]>; } multiclass SIMDTwoVectorIntToFP opc, string asm, SDPatternOperator OpNode> { def v2f32 : BaseSIMDTwoSameVector<0, U, {S,0}, opc, V64, asm, ".2s", ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn)))]>; def v4f32 : BaseSIMDTwoSameVector<1, U, {S,0}, opc, V128, asm, ".4s", ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn)))]>; def v2f64 : BaseSIMDTwoSameVector<1, U, {S,1}, opc, V128, asm, ".2d", ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn)))]>; } class BaseSIMDMixedTwoVector size, bits<5> opcode, RegisterOperand inreg, RegisterOperand outreg, string asm, string outkind, string inkind, list pattern> : I<(outs outreg:$Rd), (ins inreg:$Rn), asm, "{\t$Rd" # outkind # ", $Rn" # inkind # "|" # outkind # "\t$Rd, $Rn}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseSIMDMixedTwoVectorTied size, bits<5> opcode, RegisterOperand inreg, RegisterOperand outreg, string asm, string outkind, string inkind, list pattern> : I<(outs outreg:$dst), (ins outreg:$Rd, inreg:$Rn), asm, "{\t$Rd" # outkind # ", $Rn" # inkind # "|" # outkind # "\t$Rd, $Rn}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDMixedTwoVector opc, string asm, SDPatternOperator OpNode> { def v8i8 : BaseSIMDMixedTwoVector<0, U, 0b00, opc, V128, V64, asm, ".8b", ".8h", [(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn)))]>; def v16i8 : BaseSIMDMixedTwoVectorTied<1, U, 0b00, opc, V128, V128, asm#"2", ".16b", ".8h", []>; def v4i16 : BaseSIMDMixedTwoVector<0, U, 0b01, opc, V128, V64, asm, ".4h", ".4s", [(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn)))]>; def v8i16 : BaseSIMDMixedTwoVectorTied<1, U, 0b01, opc, V128, V128, asm#"2", ".8h", ".4s", []>; def v2i32 : BaseSIMDMixedTwoVector<0, U, 0b10, opc, V128, V64, asm, ".2s", ".2d", [(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn)))]>; def v4i32 : BaseSIMDMixedTwoVectorTied<1, U, 0b10, opc, V128, V128, asm#"2", ".4s", ".2d", []>; def : Pat<(concat_vectors (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn))), (!cast(NAME # "v16i8") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn))), (!cast(NAME # "v8i16") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn))), (!cast(NAME # "v4i32") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; } class BaseSIMDCmpTwoVector size, bits<5> opcode, RegisterOperand regtype, string asm, string kind, ValueType dty, ValueType sty, SDNode OpNode> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", #0" # "|" # kind # "\t$Rd, $Rn, #0}", "", [(set (dty regtype:$Rd), (OpNode (sty regtype:$Rn)))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // Comparisons support all element sizes, except 1xD. multiclass SIMDCmpTwoVector opc, string asm, SDNode OpNode> { def v8i8rz : BaseSIMDCmpTwoVector<0, U, 0b00, opc, V64, asm, ".8b", v8i8, v8i8, OpNode>; def v16i8rz : BaseSIMDCmpTwoVector<1, U, 0b00, opc, V128, asm, ".16b", v16i8, v16i8, OpNode>; def v4i16rz : BaseSIMDCmpTwoVector<0, U, 0b01, opc, V64, asm, ".4h", v4i16, v4i16, OpNode>; def v8i16rz : BaseSIMDCmpTwoVector<1, U, 0b01, opc, V128, asm, ".8h", v8i16, v8i16, OpNode>; def v2i32rz : BaseSIMDCmpTwoVector<0, U, 0b10, opc, V64, asm, ".2s", v2i32, v2i32, OpNode>; def v4i32rz : BaseSIMDCmpTwoVector<1, U, 0b10, opc, V128, asm, ".4s", v4i32, v4i32, OpNode>; def v2i64rz : BaseSIMDCmpTwoVector<1, U, 0b11, opc, V128, asm, ".2d", v2i64, v2i64, OpNode>; } // FP Comparisons support only S and D element sizes. multiclass SIMDFPCmpTwoVector opc, string asm, SDNode OpNode> { def v2i32rz : BaseSIMDCmpTwoVector<0, U, {S,0}, opc, V64, asm, ".2s", v2i32, v2f32, OpNode>; def v4i32rz : BaseSIMDCmpTwoVector<1, U, {S,0}, opc, V128, asm, ".4s", v4i32, v4f32, OpNode>; def v2i64rz : BaseSIMDCmpTwoVector<1, U, {S,1}, opc, V128, asm, ".2d", v2i64, v2f64, OpNode>; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDFPCvtTwoVector size, bits<5> opcode, RegisterOperand outtype, RegisterOperand intype, string asm, string VdTy, string VnTy, list pattern> : I<(outs outtype:$Rd), (ins intype:$Rn), asm, !strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class BaseSIMDFPCvtTwoVectorTied size, bits<5> opcode, RegisterOperand outtype, RegisterOperand intype, string asm, string VdTy, string VnTy, list pattern> : I<(outs outtype:$dst), (ins outtype:$Rd, intype:$Rn), asm, !strconcat("\t$Rd", VdTy, ", $Rn", VnTy), "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDFPWidenTwoVector opc, string asm> { def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V128, V64, asm, ".4s", ".4h", []>; def v8i16 : BaseSIMDFPCvtTwoVector<1, U, {S,0}, opc, V128, V128, asm#"2", ".4s", ".8h", []>; def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V128, V64, asm, ".2d", ".2s", []>; def v4i32 : BaseSIMDFPCvtTwoVector<1, U, {S,1}, opc, V128, V128, asm#"2", ".2d", ".4s", []>; } multiclass SIMDFPNarrowTwoVector opc, string asm> { def v4i16 : BaseSIMDFPCvtTwoVector<0, U, {S,0}, opc, V64, V128, asm, ".4h", ".4s", []>; def v8i16 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,0}, opc, V128, V128, asm#"2", ".8h", ".4s", []>; def v2i32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128, asm, ".2s", ".2d", []>; def v4i32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128, asm#"2", ".4s", ".2d", []>; } multiclass SIMDFPInexactCvtTwoVector opc, string asm, Intrinsic OpNode> { def v2f32 : BaseSIMDFPCvtTwoVector<0, U, {S,1}, opc, V64, V128, asm, ".2s", ".2d", [(set (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn)))]>; def v4f32 : BaseSIMDFPCvtTwoVectorTied<1, U, {S,1}, opc, V128, V128, asm#"2", ".4s", ".2d", []>; def : Pat<(concat_vectors (v2f32 V64:$Rd), (OpNode (v2f64 V128:$Rn))), (!cast(NAME # "v4f32") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; } //---------------------------------------------------------------------------- // AdvSIMD three register different-size vector instructions. //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDDifferentThreeVector size, bits<4> opcode, RegisterOperand outtype, RegisterOperand intype1, RegisterOperand intype2, string asm, string outkind, string inkind1, string inkind2, list pattern> : I<(outs outtype:$Rd), (ins intype1:$Rn, intype2:$Rm), asm, "{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 # "|" # outkind # "\t$Rd, $Rn, $Rm}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = size{0}; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size{2-1}; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = opcode; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDDifferentThreeVectorTied size, bits<4> opcode, RegisterOperand outtype, RegisterOperand intype1, RegisterOperand intype2, string asm, string outkind, string inkind1, string inkind2, list pattern> : I<(outs outtype:$dst), (ins outtype:$Rd, intype1:$Rn, intype2:$Rm), asm, "{\t$Rd" # outkind # ", $Rn" # inkind1 # ", $Rm" # inkind2 # "|" # outkind # "\t$Rd, $Rn, $Rm}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = size{0}; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size{2-1}; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-12} = opcode; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } // FIXME: TableGen doesn't know how to deal with expanded types that also // change the element count (in this case, placing the results in // the high elements of the result register rather than the low // elements). Until that's fixed, we can't code-gen those. multiclass SIMDNarrowThreeVectorBHS opc, string asm, Intrinsic IntOp> { def v8i16_v8i8 : BaseSIMDDifferentThreeVector; def v8i16_v16i8 : BaseSIMDDifferentThreeVectorTied; def v4i32_v4i16 : BaseSIMDDifferentThreeVector; def v4i32_v8i16 : BaseSIMDDifferentThreeVectorTied; def v2i64_v2i32 : BaseSIMDDifferentThreeVector; def v2i64_v4i32 : BaseSIMDDifferentThreeVectorTied; // Patterns for the '2' variants involve INSERT_SUBREG, which you can't put in // a version attached to an instruction. def : Pat<(concat_vectors (v8i8 V64:$Rd), (IntOp (v8i16 V128:$Rn), (v8i16 V128:$Rm))), (!cast(NAME # "v8i16_v16i8") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (IntOp (v4i32 V128:$Rn), (v4i32 V128:$Rm))), (!cast(NAME # "v4i32_v8i16") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (IntOp (v2i64 V128:$Rn), (v2i64 V128:$Rm))), (!cast(NAME # "v2i64_v4i32") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, V128:$Rm)>; } multiclass SIMDDifferentThreeVectorBD opc, string asm, Intrinsic IntOp> { def v8i8 : BaseSIMDDifferentThreeVector; def v16i8 : BaseSIMDDifferentThreeVector; def v1i64 : BaseSIMDDifferentThreeVector; def v2i64 : BaseSIMDDifferentThreeVector; def : Pat<(v8i16 (IntOp (v8i8 (extract_high_v16i8 V128:$Rn)), (v8i8 (extract_high_v16i8 V128:$Rm)))), (!cast(NAME#"v16i8") V128:$Rn, V128:$Rm)>; } multiclass SIMDLongThreeVectorHS opc, string asm, SDPatternOperator OpNode> { def v4i16_v4i32 : BaseSIMDDifferentThreeVector; def v8i16_v4i32 : BaseSIMDDifferentThreeVector; def v2i32_v2i64 : BaseSIMDDifferentThreeVector; def v4i32_v2i64 : BaseSIMDDifferentThreeVector; } multiclass SIMDLongThreeVectorBHSabdl opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_v8i16 : BaseSIMDDifferentThreeVector; def v16i8_v8i16 : BaseSIMDDifferentThreeVector; def v4i16_v4i32 : BaseSIMDDifferentThreeVector; def v8i16_v4i32 : BaseSIMDDifferentThreeVector; def v2i32_v2i64 : BaseSIMDDifferentThreeVector; def v4i32_v2i64 : BaseSIMDDifferentThreeVector; } multiclass SIMDLongThreeVectorTiedBHSabal opc, string asm, SDPatternOperator OpNode> { def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied; def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied; def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied; def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied; def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied; def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied; } multiclass SIMDLongThreeVectorBHS opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_v8i16 : BaseSIMDDifferentThreeVector; def v16i8_v8i16 : BaseSIMDDifferentThreeVector; def v4i16_v4i32 : BaseSIMDDifferentThreeVector; def v8i16_v4i32 : BaseSIMDDifferentThreeVector; def v2i32_v2i64 : BaseSIMDDifferentThreeVector; def v4i32_v2i64 : BaseSIMDDifferentThreeVector; } multiclass SIMDLongThreeVectorTiedBHS opc, string asm, SDPatternOperator OpNode> { def v8i8_v8i16 : BaseSIMDDifferentThreeVectorTied; def v16i8_v8i16 : BaseSIMDDifferentThreeVectorTied; def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied; def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied; def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied; def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied; } multiclass SIMDLongThreeVectorSQDMLXTiedHS opc, string asm, SDPatternOperator Accum> { def v4i16_v4i32 : BaseSIMDDifferentThreeVectorTied; def v8i16_v4i32 : BaseSIMDDifferentThreeVectorTied; def v2i32_v2i64 : BaseSIMDDifferentThreeVectorTied; def v4i32_v2i64 : BaseSIMDDifferentThreeVectorTied; } multiclass SIMDWideThreeVectorBHS opc, string asm, SDPatternOperator OpNode> { def v8i8_v8i16 : BaseSIMDDifferentThreeVector; def v16i8_v8i16 : BaseSIMDDifferentThreeVector; def v4i16_v4i32 : BaseSIMDDifferentThreeVector; def v8i16_v4i32 : BaseSIMDDifferentThreeVector; def v2i32_v2i64 : BaseSIMDDifferentThreeVector; def v4i32_v2i64 : BaseSIMDDifferentThreeVector; } //---------------------------------------------------------------------------- // AdvSIMD bitwise extract from vector //---------------------------------------------------------------------------- class BaseSIMDBitwiseExtract : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm, i32imm:$imm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # ", $imm" # "|" # kind # "\t$Rd, $Rn, $Rm, $imm}", "", [(set (vty regtype:$Rd), (ARM64ext regtype:$Rn, regtype:$Rm, (i32 imm:$imm)))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; bits<4> imm; let Inst{31} = 0; let Inst{30} = size; let Inst{29-21} = 0b101110000; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{14-11} = imm; let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDBitwiseExtract { def v8i8 : BaseSIMDBitwiseExtract<0, V64, v8i8, asm, ".8b"> { let imm{3} = 0; } def v16i8 : BaseSIMDBitwiseExtract<1, V128, v16i8, asm, ".16b">; } //---------------------------------------------------------------------------- // AdvSIMD zip vector //---------------------------------------------------------------------------- class BaseSIMDZipVector size, bits<3> opc, RegisterOperand regtype, string asm, string kind, SDNode OpNode, ValueType valty> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "{\t$Rd" # kind # ", $Rn" # kind # ", $Rm" # kind # "|" # kind # "\t$Rd, $Rn, $Rm}", "", [(set (valty regtype:$Rd), (OpNode regtype:$Rn, regtype:$Rm))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = size{0}; let Inst{29-24} = 0b001110; let Inst{23-22} = size{2-1}; let Inst{21} = 0; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{14-12} = opc; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDZipVectoropc, string asm, SDNode OpNode> { def v8i8 : BaseSIMDZipVector<0b000, opc, V64, asm, ".8b", OpNode, v8i8>; def v16i8 : BaseSIMDZipVector<0b001, opc, V128, asm, ".16b", OpNode, v16i8>; def v4i16 : BaseSIMDZipVector<0b010, opc, V64, asm, ".4h", OpNode, v4i16>; def v8i16 : BaseSIMDZipVector<0b011, opc, V128, asm, ".8h", OpNode, v8i16>; def v2i32 : BaseSIMDZipVector<0b100, opc, V64, asm, ".2s", OpNode, v2i32>; def v4i32 : BaseSIMDZipVector<0b101, opc, V128, asm, ".4s", OpNode, v4i32>; def v2i64 : BaseSIMDZipVector<0b111, opc, V128, asm, ".2d", OpNode, v2i64>; def : Pat<(v2f32 (OpNode V64:$Rn, V64:$Rm)), (!cast(NAME#"v2i32") V64:$Rn, V64:$Rm)>; def : Pat<(v4f32 (OpNode V128:$Rn, V128:$Rm)), (!cast(NAME#"v4i32") V128:$Rn, V128:$Rm)>; def : Pat<(v2f64 (OpNode V128:$Rn, V128:$Rm)), (!cast(NAME#"v2i64") V128:$Rn, V128:$Rm)>; } //---------------------------------------------------------------------------- // AdvSIMD three register scalar instructions //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDThreeScalar size, bits<5> opcode, RegisterClass regtype, string asm, list pattern> : I<(outs regtype:$Rd), (ins regtype:$Rn, regtype:$Rm), asm, "\t$Rd, $Rn, $Rm", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDThreeScalarD opc, string asm, SDPatternOperator OpNode> { def v1i64 : BaseSIMDThreeScalar; } multiclass SIMDThreeScalarBHSD opc, string asm, SDPatternOperator OpNode> { def v1i64 : BaseSIMDThreeScalar; def v1i32 : BaseSIMDThreeScalar; def v1i16 : BaseSIMDThreeScalar; def v1i8 : BaseSIMDThreeScalar; def : Pat<(i64 (OpNode (i64 FPR64:$Rn), (i64 FPR64:$Rm))), (!cast(NAME#"v1i64") FPR64:$Rn, FPR64:$Rm)>; def : Pat<(i32 (OpNode (i32 FPR32:$Rn), (i32 FPR32:$Rm))), (!cast(NAME#"v1i32") FPR32:$Rn, FPR32:$Rm)>; } multiclass SIMDThreeScalarHS opc, string asm, SDPatternOperator OpNode> { def v1i32 : BaseSIMDThreeScalar; def v1i16 : BaseSIMDThreeScalar; } multiclass SIMDThreeScalarSD opc, string asm, SDPatternOperator OpNode = null_frag> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def #NAME#64 : BaseSIMDThreeScalar; def #NAME#32 : BaseSIMDThreeScalar; } def : Pat<(v1f64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (!cast(NAME # "64") FPR64:$Rn, FPR64:$Rm)>; } multiclass SIMDThreeScalarFPCmp opc, string asm, SDPatternOperator OpNode = null_frag> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def #NAME#64 : BaseSIMDThreeScalar; def #NAME#32 : BaseSIMDThreeScalar; } def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), (!cast(NAME # "64") FPR64:$Rn, FPR64:$Rm)>; } class BaseSIMDThreeScalarMixed size, bits<5> opcode, dag oops, dag iops, string asm, string cstr, list pat> : I, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21} = 1; let Inst{20-16} = Rm; let Inst{15-11} = opcode; let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDThreeScalarMixedHS opc, string asm, SDPatternOperator OpNode = null_frag> { def i16 : BaseSIMDThreeScalarMixed; def i32 : BaseSIMDThreeScalarMixed; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDThreeScalarMixedTiedHS opc, string asm, SDPatternOperator OpNode = null_frag> { def i16 : BaseSIMDThreeScalarMixed; def i32 : BaseSIMDThreeScalarMixed; } //---------------------------------------------------------------------------- // AdvSIMD two register scalar instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoScalar size, bits<5> opcode, RegisterClass regtype, RegisterClass regtype2, string asm, list pat> : I<(outs regtype:$Rd), (ins regtype2:$Rn), asm, "\t$Rd, $Rn", "", pat>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDTwoScalarTied size, bits<5> opcode, RegisterClass regtype, RegisterClass regtype2, string asm, list pat> : I<(outs regtype:$dst), (ins regtype:$Rd, regtype2:$Rn), asm, "\t$Rd, $Rn", "$Rd = $dst", pat>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDCmpTwoScalar size, bits<5> opcode, RegisterClass regtype, string asm> : I<(outs regtype:$Rd), (ins regtype:$Rn), asm, "\t$Rd, $Rn, #0", "", []>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b10000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SIMDInexactCvtTwoScalar opcode, string asm> : I<(outs FPR32:$Rd), (ins FPR64:$Rn), asm, "\t$Rd, $Rn", "", [(set (f32 FPR32:$Rd), (int_arm64_sisd_fcvtxn (f64 FPR64:$Rn)))]>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-17} = 0b011111100110000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDCmpTwoScalarD opc, string asm, SDPatternOperator OpNode> { def v1i64rz : BaseSIMDCmpTwoScalar; def : Pat<(v1i64 (OpNode FPR64:$Rn)), (!cast(NAME # v1i64rz) FPR64:$Rn)>; } multiclass SIMDCmpTwoScalarSD opc, string asm, SDPatternOperator OpNode> { def v1i64rz : BaseSIMDCmpTwoScalar; def v1i32rz : BaseSIMDCmpTwoScalar; def : Pat<(v1i64 (OpNode (v1f64 FPR64:$Rn))), (!cast(NAME # v1i64rz) FPR64:$Rn)>; } multiclass SIMDTwoScalarD opc, string asm, SDPatternOperator OpNode = null_frag> { def v1i64 : BaseSIMDTwoScalar; def : Pat<(i64 (OpNode (i64 FPR64:$Rn))), (!cast(NAME # "v1i64") FPR64:$Rn)>; } multiclass SIMDTwoScalarSD opc, string asm> { def v1i64 : BaseSIMDTwoScalar; def v1i32 : BaseSIMDTwoScalar; } multiclass SIMDTwoScalarCVTSD opc, string asm, SDPatternOperator OpNode> { def v1i64 : BaseSIMDTwoScalar; def v1i32 : BaseSIMDTwoScalar; } multiclass SIMDTwoScalarBHSD opc, string asm, SDPatternOperator OpNode = null_frag> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v1i64 : BaseSIMDTwoScalar; def v1i32 : BaseSIMDTwoScalar; def v1i16 : BaseSIMDTwoScalar; def v1i8 : BaseSIMDTwoScalar; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn))), (!cast(NAME # v1i64) FPR64:$Rn)>; } multiclass SIMDTwoScalarBHSDTied opc, string asm, Intrinsic OpNode> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v1i64 : BaseSIMDTwoScalarTied; def v1i32 : BaseSIMDTwoScalarTied; def v1i16 : BaseSIMDTwoScalarTied; def v1i8 : BaseSIMDTwoScalarTied; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn))), (!cast(NAME # v1i64) FPR64:$Rd, FPR64:$Rn)>; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDTwoScalarMixedBHS opc, string asm, SDPatternOperator OpNode = null_frag> { def v1i32 : BaseSIMDTwoScalar; def v1i16 : BaseSIMDTwoScalar; def v1i8 : BaseSIMDTwoScalar; } //---------------------------------------------------------------------------- // AdvSIMD scalar pairwise instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDPairwiseScalar size, bits<5> opcode, RegisterOperand regtype, RegisterOperand vectype, string asm, string kind> : I<(outs regtype:$Rd), (ins vectype:$Rn), asm, "{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", []>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-24} = 0b11110; let Inst{23-22} = size; let Inst{21-17} = 0b11000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDPairwiseScalarD opc, string asm> { def v2i64p : BaseSIMDPairwiseScalar; } multiclass SIMDPairwiseScalarSD opc, string asm> { def v2i32p : BaseSIMDPairwiseScalar; def v2i64p : BaseSIMDPairwiseScalar; } //---------------------------------------------------------------------------- // AdvSIMD across lanes instructions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDAcrossLanes size, bits<5> opcode, RegisterClass regtype, RegisterOperand vectype, string asm, string kind, list pattern> : I<(outs regtype:$Rd), (ins vectype:$Rn), asm, "{\t$Rd, $Rn" # kind # "|" # kind # "\t$Rd, $Rn}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-24} = 0b01110; let Inst{23-22} = size; let Inst{21-17} = 0b11000; let Inst{16-12} = opcode; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDAcrossLanesBHS opcode, string asm> { def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR8, V64, asm, ".8b", []>; def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR8, V128, asm, ".16b", []>; def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR16, V64, asm, ".4h", []>; def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR16, V128, asm, ".8h", []>; def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR32, V128, asm, ".4s", []>; } multiclass SIMDAcrossLanesHSD opcode, string asm> { def v8i8v : BaseSIMDAcrossLanes<0, U, 0b00, opcode, FPR16, V64, asm, ".8b", []>; def v16i8v : BaseSIMDAcrossLanes<1, U, 0b00, opcode, FPR16, V128, asm, ".16b", []>; def v4i16v : BaseSIMDAcrossLanes<0, U, 0b01, opcode, FPR32, V64, asm, ".4h", []>; def v8i16v : BaseSIMDAcrossLanes<1, U, 0b01, opcode, FPR32, V128, asm, ".8h", []>; def v4i32v : BaseSIMDAcrossLanes<1, U, 0b10, opcode, FPR64, V128, asm, ".4s", []>; } multiclass SIMDAcrossLanesS opcode, bit sz1, string asm, Intrinsic intOp> { def v4i32v : BaseSIMDAcrossLanes<1, 1, {sz1, 0}, opcode, FPR32, V128, asm, ".4s", [(set FPR32:$Rd, (intOp (v4f32 V128:$Rn)))]>; } //---------------------------------------------------------------------------- // AdvSIMD INS/DUP instructions //---------------------------------------------------------------------------- // FIXME: There has got to be a better way to factor these. ugh. class BaseSIMDInsDup pattern> : I, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = op; let Inst{28-21} = 0b01110000; let Inst{15} = 0; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SIMDDupFromMain imm5, string size, ValueType vectype, RegisterOperand vecreg, RegisterClass regtype> : BaseSIMDInsDup { let Inst{20-16} = imm5; let Inst{14-11} = 0b0001; } class SIMDDupFromElement : BaseSIMDInsDup { let Inst{14-11} = 0b0000; } class SIMDDup64FromElement : SIMDDupFromElement<1, ".2d", ".d", v2i64, v2i64, V128, VectorIndexD, i64, ARM64duplane64> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } class SIMDDup32FromElement : SIMDDupFromElement { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } class SIMDDup16FromElement : SIMDDupFromElement { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } class SIMDDup8FromElement : SIMDDupFromElement { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } class BaseSIMDMov imm4, RegisterClass regtype, Operand idxtype, string asm, list pattern> : BaseSIMDInsDup { let Inst{14-11} = imm4; } class SIMDSMov : BaseSIMDMov; class SIMDUMov : BaseSIMDMov; class SIMDMovAlias : InstAlias; multiclass SMov { def vi8to32 : SIMDSMov<0, ".b", GPR32, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi8to64 : SIMDSMov<1, ".b", GPR64, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi16to32 : SIMDSMov<0, ".h", GPR32, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi16to64 : SIMDSMov<1, ".h", GPR64, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi32to64 : SIMDSMov<1, ".s", GPR64, VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } } multiclass UMov { def vi8 : SIMDUMov<0, ".b", v16i8, GPR32, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi16 : SIMDUMov<0, ".h", v8i16, GPR32, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi32 : SIMDUMov<0, ".s", v4i32, GPR32, VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } def vi64 : SIMDUMov<1, ".d", v2i64, GPR64, VectorIndexD> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } def : SIMDMovAlias<"mov", ".s", !cast(NAME#"vi32"), GPR32, VectorIndexS>; def : SIMDMovAlias<"mov", ".d", !cast(NAME#"vi64"), GPR64, VectorIndexD>; } class SIMDInsFromMain : BaseSIMDInsDup<1, 0, (outs V128:$dst), (ins V128:$Rd, idxtype:$idx, regtype:$Rn), "ins", "{\t$Rd" # size # "$idx, $Rn" # "|" # size # "\t$Rd$idx, $Rn}", "$Rd = $dst", [(set V128:$dst, (vector_insert (vectype V128:$Rd), regtype:$Rn, idxtype:$idx))]> { let Inst{14-11} = 0b0011; } class SIMDInsFromElement : BaseSIMDInsDup<1, 1, (outs V128:$dst), (ins V128:$Rd, idxtype:$idx, V128:$Rn, idxtype:$idx2), "ins", "{\t$Rd" # size # "$idx, $Rn" # size # "$idx2" # "|" # size # "\t$Rd$idx, $Rn$idx2}", "$Rd = $dst", [(set V128:$dst, (vector_insert (vectype V128:$Rd), (elttype (vector_extract (vectype V128:$Rn), idxtype:$idx2)), idxtype:$idx))]>; class SIMDInsMainMovAlias : InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" # "|" # size #"\t$dst$idx, $src}", (inst V128:$dst, idxtype:$idx, regtype:$src)>; class SIMDInsElementMovAlias : InstAlias<"mov" # "{\t$dst" # size # "$idx, $src" # size # "$idx2" # # "|" # size #" $dst$idx, $src$idx2}", (inst V128:$dst, idxtype:$idx, V128:$src, idxtype:$idx2)>; multiclass SIMDIns { def vi8gpr : SIMDInsFromMain<".b", v16i8, GPR32, VectorIndexB> { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def vi16gpr : SIMDInsFromMain<".h", v8i16, GPR32, VectorIndexH> { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def vi32gpr : SIMDInsFromMain<".s", v4i32, GPR32, VectorIndexS> { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } def vi64gpr : SIMDInsFromMain<".d", v2i64, GPR64, VectorIndexD> { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } def vi8lane : SIMDInsFromElement<".b", v16i8, i32, VectorIndexB> { bits<4> idx; bits<4> idx2; let Inst{20-17} = idx; let Inst{16} = 1; let Inst{14-11} = idx2; } def vi16lane : SIMDInsFromElement<".h", v8i16, i32, VectorIndexH> { bits<3> idx; bits<3> idx2; let Inst{20-18} = idx; let Inst{17-16} = 0b10; let Inst{14-12} = idx2; let Inst{11} = 0; } def vi32lane : SIMDInsFromElement<".s", v4i32, i32, VectorIndexS> { bits<2> idx; bits<2> idx2; let Inst{20-19} = idx; let Inst{18-16} = 0b100; let Inst{14-13} = idx2; let Inst{12-11} = 0; } def vi64lane : SIMDInsFromElement<".d", v2i64, i64, VectorIndexD> { bits<1> idx; bits<1> idx2; let Inst{20} = idx; let Inst{19-16} = 0b1000; let Inst{14} = idx2; let Inst{13-11} = 0; } // For all forms of the INS instruction, the "mov" mnemonic is the // preferred alias. Why they didn't just call the instruction "mov" in // the first place is a very good question indeed... def : SIMDInsMainMovAlias<".b", !cast(NAME#"vi8gpr"), GPR32, VectorIndexB>; def : SIMDInsMainMovAlias<".h", !cast(NAME#"vi16gpr"), GPR32, VectorIndexH>; def : SIMDInsMainMovAlias<".s", !cast(NAME#"vi32gpr"), GPR32, VectorIndexS>; def : SIMDInsMainMovAlias<".d", !cast(NAME#"vi64gpr"), GPR64, VectorIndexD>; def : SIMDInsElementMovAlias<".b", !cast(NAME#"vi8lane"), VectorIndexB>; def : SIMDInsElementMovAlias<".h", !cast(NAME#"vi16lane"), VectorIndexH>; def : SIMDInsElementMovAlias<".s", !cast(NAME#"vi32lane"), VectorIndexS>; def : SIMDInsElementMovAlias<".d", !cast(NAME#"vi64lane"), VectorIndexD>; } //---------------------------------------------------------------------------- // AdvSIMD TBL/TBX //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDTableLookup len, bit op, RegisterOperand vectype, RegisterOperand listtype, string asm, string kind> : I<(outs vectype:$Vd), (ins listtype:$Vn, vectype:$Vm), asm, "\t$Vd" # kind # ", $Vn, $Vm" # kind, "", []>, Sched<[WriteV]> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-21} = 0b001110000; let Inst{20-16} = Vm; let Inst{15} = 0; let Inst{14-13} = len; let Inst{12} = op; let Inst{11-10} = 0b00; let Inst{9-5} = Vn; let Inst{4-0} = Vd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDTableLookupTied len, bit op, RegisterOperand vectype, RegisterOperand listtype, string asm, string kind> : I<(outs vectype:$dst), (ins vectype:$Vd, listtype:$Vn, vectype:$Vm), asm, "\t$Vd" # kind # ", $Vn, $Vm" # kind, "$Vd = $dst", []>, Sched<[WriteV]> { bits<5> Vd; bits<5> Vn; bits<5> Vm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-21} = 0b001110000; let Inst{20-16} = Vm; let Inst{15} = 0; let Inst{14-13} = len; let Inst{12} = op; let Inst{11-10} = 0b00; let Inst{9-5} = Vn; let Inst{4-0} = Vd; } class SIMDTableLookupAlias : InstAlias; multiclass SIMDTableLookup { def v8i8One : BaseSIMDTableLookup<0, 0b00, op, V64, VecListOne16b, asm, ".8b">; def v8i8Two : BaseSIMDTableLookup<0, 0b01, op, V64, VecListTwo16b, asm, ".8b">; def v8i8Three : BaseSIMDTableLookup<0, 0b10, op, V64, VecListThree16b, asm, ".8b">; def v8i8Four : BaseSIMDTableLookup<0, 0b11, op, V64, VecListFour16b, asm, ".8b">; def v16i8One : BaseSIMDTableLookup<1, 0b00, op, V128, VecListOne16b, asm, ".16b">; def v16i8Two : BaseSIMDTableLookup<1, 0b01, op, V128, VecListTwo16b, asm, ".16b">; def v16i8Three: BaseSIMDTableLookup<1, 0b10, op, V128, VecListThree16b, asm, ".16b">; def v16i8Four : BaseSIMDTableLookup<1, 0b11, op, V128, VecListFour16b, asm, ".16b">; def : SIMDTableLookupAlias(NAME#"v8i8One"), V64, VecListOne128>; def : SIMDTableLookupAlias(NAME#"v8i8Two"), V64, VecListTwo128>; def : SIMDTableLookupAlias(NAME#"v8i8Three"), V64, VecListThree128>; def : SIMDTableLookupAlias(NAME#"v8i8Four"), V64, VecListFour128>; def : SIMDTableLookupAlias(NAME#"v16i8One"), V128, VecListOne128>; def : SIMDTableLookupAlias(NAME#"v16i8Two"), V128, VecListTwo128>; def : SIMDTableLookupAlias(NAME#"v16i8Three"), V128, VecListThree128>; def : SIMDTableLookupAlias(NAME#"v16i8Four"), V128, VecListFour128>; } multiclass SIMDTableLookupTied { def v8i8One : BaseSIMDTableLookupTied<0, 0b00, op, V64, VecListOne16b, asm, ".8b">; def v8i8Two : BaseSIMDTableLookupTied<0, 0b01, op, V64, VecListTwo16b, asm, ".8b">; def v8i8Three : BaseSIMDTableLookupTied<0, 0b10, op, V64, VecListThree16b, asm, ".8b">; def v8i8Four : BaseSIMDTableLookupTied<0, 0b11, op, V64, VecListFour16b, asm, ".8b">; def v16i8One : BaseSIMDTableLookupTied<1, 0b00, op, V128, VecListOne16b, asm, ".16b">; def v16i8Two : BaseSIMDTableLookupTied<1, 0b01, op, V128, VecListTwo16b, asm, ".16b">; def v16i8Three: BaseSIMDTableLookupTied<1, 0b10, op, V128, VecListThree16b, asm, ".16b">; def v16i8Four : BaseSIMDTableLookupTied<1, 0b11, op, V128, VecListFour16b, asm, ".16b">; def : SIMDTableLookupAlias(NAME#"v8i8One"), V64, VecListOne128>; def : SIMDTableLookupAlias(NAME#"v8i8Two"), V64, VecListTwo128>; def : SIMDTableLookupAlias(NAME#"v8i8Three"), V64, VecListThree128>; def : SIMDTableLookupAlias(NAME#"v8i8Four"), V64, VecListFour128>; def : SIMDTableLookupAlias(NAME#"v16i8One"), V128, VecListOne128>; def : SIMDTableLookupAlias(NAME#"v16i8Two"), V128, VecListTwo128>; def : SIMDTableLookupAlias(NAME#"v16i8Three"), V128, VecListThree128>; def : SIMDTableLookupAlias(NAME#"v16i8Four"), V128, VecListFour128>; } //---------------------------------------------------------------------------- // AdvSIMD scalar CPY //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDScalarCPY : I<(outs regtype:$dst), (ins vectype:$src, idxtype:$idx), "mov", "{\t$dst, $src" # kind # "$idx" # "|\t$dst, $src$idx}", "", []>, Sched<[WriteV]> { bits<5> dst; bits<5> src; let Inst{31-21} = 0b01011110000; let Inst{15-10} = 0b000001; let Inst{9-5} = src; let Inst{4-0} = dst; } class SIMDScalarCPYAlias : InstAlias; multiclass SIMDScalarCPY { def i8 : BaseSIMDScalarCPY { bits<4> idx; let Inst{20-17} = idx; let Inst{16} = 1; } def i16 : BaseSIMDScalarCPY { bits<3> idx; let Inst{20-18} = idx; let Inst{17-16} = 0b10; } def i32 : BaseSIMDScalarCPY { bits<2> idx; let Inst{20-19} = idx; let Inst{18-16} = 0b100; } def i64 : BaseSIMDScalarCPY { bits<1> idx; let Inst{20} = idx; let Inst{19-16} = 0b1000; } // 'DUP' mnemonic aliases. def : SIMDScalarCPYAlias<"dup", ".b", !cast(NAME#"i8"), FPR8, V128, VectorIndexB>; def : SIMDScalarCPYAlias<"dup", ".h", !cast(NAME#"i16"), FPR16, V128, VectorIndexH>; def : SIMDScalarCPYAlias<"dup", ".s", !cast(NAME#"i32"), FPR32, V128, VectorIndexS>; def : SIMDScalarCPYAlias<"dup", ".d", !cast(NAME#"i64"), FPR64, V128, VectorIndexD>; } //---------------------------------------------------------------------------- // AdvSIMD modified immediate instructions //---------------------------------------------------------------------------- class BaseSIMDModifiedImm pattern> : I, Sched<[WriteV]> { bits<5> Rd; bits<8> imm8; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = op; let Inst{28-19} = 0b0111100000; let Inst{18-16} = imm8{7-5}; let Inst{11-10} = 0b01; let Inst{9-5} = imm8{4-0}; let Inst{4-0} = Rd; } class BaseSIMDModifiedImmVector pattern> : BaseSIMDModifiedImm { let DecoderMethod = "DecodeModImmInstruction"; } class BaseSIMDModifiedImmVectorTied pattern> : BaseSIMDModifiedImm { let DecoderMethod = "DecodeModImmTiedInstruction"; } class BaseSIMDModifiedImmVectorShift b15_b12, RegisterOperand vectype, string asm, string kind, list pattern> : BaseSIMDModifiedImmVector { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14-13} = shift; let Inst{12} = b15_b12{0}; } class BaseSIMDModifiedImmVectorShiftTied b15_b12, RegisterOperand vectype, string asm, string kind, list pattern> : BaseSIMDModifiedImmVectorTied { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14-13} = shift; let Inst{12} = b15_b12{0}; } class BaseSIMDModifiedImmVectorShiftHalf b15_b12, RegisterOperand vectype, string asm, string kind, list pattern> : BaseSIMDModifiedImmVector { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14} = 0; let Inst{13} = shift{0}; let Inst{12} = b15_b12{0}; } class BaseSIMDModifiedImmVectorShiftHalfTied b15_b12, RegisterOperand vectype, string asm, string kind, list pattern> : BaseSIMDModifiedImmVectorTied { bits<2> shift; let Inst{15} = b15_b12{1}; let Inst{14} = 0; let Inst{13} = shift{0}; let Inst{12} = b15_b12{0}; } multiclass SIMDModifiedImmVectorShift hw_cmode, bits<2> w_cmode, string asm> { def v4i16 : BaseSIMDModifiedImmVectorShiftHalf<0, op, hw_cmode, V64, asm, ".4h", []>; def v8i16 : BaseSIMDModifiedImmVectorShiftHalf<1, op, hw_cmode, V128, asm, ".8h", []>; def v2i32 : BaseSIMDModifiedImmVectorShift<0, op, w_cmode, V64, asm, ".2s", []>; def v4i32 : BaseSIMDModifiedImmVectorShift<1, op, w_cmode, V128, asm, ".4s", []>; } multiclass SIMDModifiedImmVectorShiftTied hw_cmode, bits<2> w_cmode, string asm, SDNode OpNode> { def v4i16 : BaseSIMDModifiedImmVectorShiftHalfTied<0, op, hw_cmode, V64, asm, ".4h", [(set (v4i16 V64:$dst), (OpNode V64:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; def v8i16 : BaseSIMDModifiedImmVectorShiftHalfTied<1, op, hw_cmode, V128, asm, ".8h", [(set (v8i16 V128:$dst), (OpNode V128:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; def v2i32 : BaseSIMDModifiedImmVectorShiftTied<0, op, w_cmode, V64, asm, ".2s", [(set (v2i32 V64:$dst), (OpNode V64:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; def v4i32 : BaseSIMDModifiedImmVectorShiftTied<1, op, w_cmode, V128, asm, ".4s", [(set (v4i32 V128:$dst), (OpNode V128:$Rd, imm0_255:$imm8, (i32 imm:$shift)))]>; } class SIMDModifiedImmMoveMSL cmode, RegisterOperand vectype, string asm, string kind, list pattern> : BaseSIMDModifiedImmVector { bits<1> shift; let Inst{15-13} = cmode{3-1}; let Inst{12} = shift; } class SIMDModifiedImmVectorNoShift cmode, RegisterOperand vectype, Operand imm_type, string asm, string kind, list pattern> : BaseSIMDModifiedImmVector { let Inst{15-12} = cmode; } class SIMDModifiedImmScalarNoShift cmode, string asm, list pattern> : BaseSIMDModifiedImm { let Inst{15-12} = cmode; let DecoderMethod = "DecodeModImmInstruction"; } //---------------------------------------------------------------------------- // AdvSIMD indexed element //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDIndexed size, bits<4> opc, RegisterOperand dst_reg, RegisterOperand lhs_reg, RegisterOperand rhs_reg, Operand vec_idx, string asm, string apple_kind, string dst_kind, string lhs_kind, string rhs_kind, list pattern> : I<(outs dst_reg:$Rd), (ins lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx), asm, "{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" # "|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28} = Scalar; let Inst{27-24} = 0b1111; let Inst{23-22} = size; // Bit 21 must be set by the derived class. let Inst{20-16} = Rm; let Inst{15-12} = opc; // Bit 11 must be set by the derived class. let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class BaseSIMDIndexedTied size, bits<4> opc, RegisterOperand dst_reg, RegisterOperand lhs_reg, RegisterOperand rhs_reg, Operand vec_idx, string asm, string apple_kind, string dst_kind, string lhs_kind, string rhs_kind, list pattern> : I<(outs dst_reg:$dst), (ins dst_reg:$Rd, lhs_reg:$Rn, rhs_reg:$Rm, vec_idx:$idx), asm, "{\t$Rd" # dst_kind # ", $Rn" # lhs_kind # ", $Rm" # rhs_kind # "$idx" # "|" # apple_kind # "\t$Rd, $Rn, $Rm$idx}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28} = Scalar; let Inst{27-24} = 0b1111; let Inst{23-22} = size; // Bit 21 must be set by the derived class. let Inst{20-16} = Rm; let Inst{15-12} = opc; // Bit 11 must be set by the derived class. let Inst{10} = 0; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDFPIndexedSD opc, string asm, SDPatternOperator OpNode> { def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2f32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (v2f32 (ARM64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4f32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (v4f32 (ARM64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v2i64_indexed : BaseSIMDIndexed<1, U, 0, 0b11, opc, V128, V128, V128, VectorIndexD, asm, ".2d", ".2d", ".2d", ".d", [(set (v2f64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (v2f64 (ARM64duplane64 (v2f64 V128:$Rm), VectorIndexD:$idx))))]> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (f32 FPR32Op:$Rd), (OpNode (f32 FPR32Op:$Rn), (f32 (vector_extract (v4f32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b11, opc, FPR64Op, FPR64Op, V128, VectorIndexD, asm, ".d", "", "", ".d", [(set (f64 FPR64Op:$Rd), (OpNode (f64 FPR64Op:$Rn), (f64 (vector_extract (v2f64 V128:$Rm), VectorIndexD:$idx))))]> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } } multiclass SIMDFPIndexedSDTiedPatterns { // 2 variants for the .2s version: DUPLANE from 128-bit and DUP scalar. def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (ARM64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))), (!cast(INST # v2i32_indexed) V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), (ARM64dup (f32 FPR32Op:$Rm)))), (!cast(INST # "v2i32_indexed") V64:$Rd, V64:$Rn, (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; // 2 variants for the .4s version: DUPLANE from 128-bit and DUP scalar. def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (ARM64duplane32 (v4f32 V128:$Rm), VectorIndexS:$idx))), (!cast(INST # "v4i32_indexed") V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), (ARM64dup (f32 FPR32Op:$Rm)))), (!cast(INST # "v4i32_indexed") V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; // 2 variants for the .2d version: DUPLANE from 128-bit and DUP scalar. def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (ARM64duplane64 (v2f64 V128:$Rm), VectorIndexD:$idx))), (!cast(INST # "v2i64_indexed") V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), (ARM64dup (f64 FPR64Op:$Rm)))), (!cast(INST # "v2i64_indexed") V128:$Rd, V128:$Rn, (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>; // 2 variants for 32-bit scalar version: extract from .2s or from .4s def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), (vector_extract (v4f32 V128:$Rm), VectorIndexS:$idx))), (!cast(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn, V128:$Rm, VectorIndexS:$idx)>; def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), (vector_extract (v2f32 V64:$Rm), VectorIndexS:$idx))), (!cast(INST # "v1i32_indexed") FPR32:$Rd, FPR32:$Rn, (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; // 1 variant for 64-bit scalar version: extract from .1d or from .2d def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn), (vector_extract (v2f64 V128:$Rm), VectorIndexD:$idx))), (!cast(INST # "v1i64_indexed") FPR64:$Rd, FPR64:$Rn, V128:$Rm, VectorIndexD:$idx)>; } multiclass SIMDFPIndexedSDTied opc, string asm> { def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v2i64_indexed : BaseSIMDIndexedTied<1, U, 0, 0b11, opc, V128, V128, V128, VectorIndexD, asm, ".2d", ".2d", ".2d", ".d", []> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b11, opc, FPR64Op, FPR64Op, V128, VectorIndexD, asm, ".d", "", "", ".d", []> { bits<1> idx; let Inst{11} = idx{0}; let Inst{21} = 0; } } multiclass SIMDIndexedHS opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i16_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc, FPR16Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc, FPR32Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (i32 FPR32Op:$Rd), (OpNode FPR32Op:$Rn, (i32 (vector_extract (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDVectorIndexedHS opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDVectorIndexedHSTied opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V64, V64, V128_lo, VectorIndexH, asm, ".4h", ".4h", ".4h", ".h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd),(v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm, ".8h", ".8h", ".8h", ".h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V64, V64, V128, VectorIndexS, asm, ".2s", ".2s", ".2s", ".s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm, ".4s", ".4s", ".4s", ".s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDIndexedLongSD opc, string asm, SDPatternOperator OpNode> { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i32_indexed : BaseSIMDIndexed<1, U, 1, 0b01, opc, FPR32Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v1i64_indexed : BaseSIMDIndexed<1, U, 1, 0b10, opc, FPR64Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", []> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDIndexedLongSQDMLXSDTied opc, string asm, SDPatternOperator Accum> { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_arm64_neon_sqdmull (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } // FIXME: it would be nice to use the scalar (v1i32) instruction here, but an // intermediate EXTRACT_SUBREG would be untyped. def : Pat<(i32 (Accum (i32 FPR32Op:$Rd), (i32 (vector_extract (v4i32 (int_arm64_neon_sqdmull (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx)))), (i64 0))))), (EXTRACT_SUBREG (!cast(NAME # v4i16_indexed) (SUBREG_TO_REG (i32 0), FPR32Op:$Rd, ssub), V64:$Rn, V128_lo:$Rm, VectorIndexH:$idx), ssub)>; def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$dst), (Accum (v4i32 V128:$Rd), (v4i32 (int_arm64_neon_sqdmull (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$dst), (Accum (v2i64 V128:$Rd), (v2i64 (int_arm64_neon_sqdmull (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$dst), (Accum (v2i64 V128:$Rd), (v2i64 (int_arm64_neon_sqdmull (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v1i32_indexed : BaseSIMDIndexedTied<1, U, 1, 0b01, opc, FPR32Op, FPR16Op, V128_lo, VectorIndexH, asm, ".h", "", "", ".h", []> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v1i64_indexed : BaseSIMDIndexedTied<1, U, 1, 0b10, opc, FPR64Op, FPR32Op, V128, VectorIndexS, asm, ".s", "", "", ".s", [(set (i64 FPR64Op:$dst), (Accum (i64 FPR64Op:$Rd), (i64 (int_arm64_neon_sqdmulls_scalar (i32 FPR32Op:$Rn), (i32 (vector_extract (v4i32 V128:$Rm), VectorIndexS:$idx))))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } multiclass SIMDVectorIndexedLongSD opc, string asm, SDPatternOperator OpNode> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v4i16_indexed : BaseSIMDIndexed<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexed<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexed<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexed<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } } multiclass SIMDVectorIndexedLongSDTied opc, string asm, SDPatternOperator OpNode> { let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { def v4i16_indexed : BaseSIMDIndexedTied<0, U, 0, 0b01, opc, V128, V64, V128_lo, VectorIndexH, asm, ".4s", ".4s", ".4h", ".h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v8i16_indexed : BaseSIMDIndexedTied<1, U, 0, 0b01, opc, V128, V128, V128_lo, VectorIndexH, asm#"2", ".4s", ".4s", ".8h", ".h", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (extract_high_v8i16 V128:$Rn), (extract_high_v8i16 (ARM64duplane16 (v8i16 V128_lo:$Rm), VectorIndexH:$idx))))]> { bits<3> idx; let Inst{11} = idx{2}; let Inst{21} = idx{1}; let Inst{20} = idx{0}; } def v2i32_indexed : BaseSIMDIndexedTied<0, U, 0, 0b10, opc, V128, V64, V128, VectorIndexS, asm, ".2d", ".2d", ".2s", ".s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } def v4i32_indexed : BaseSIMDIndexedTied<1, U, 0, 0b10, opc, V128, V128, V128, VectorIndexS, asm#"2", ".2d", ".2d", ".4s", ".s", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (extract_high_v4i32 V128:$Rn), (extract_high_v4i32 (ARM64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))]> { bits<2> idx; let Inst{11} = idx{1}; let Inst{21} = idx{0}; } } } //---------------------------------------------------------------------------- // AdvSIMD scalar shift by immediate //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDScalarShift opc, bits<7> fixed_imm, RegisterClass regtype1, RegisterClass regtype2, Operand immtype, string asm, list pattern> : I<(outs regtype1:$Rd), (ins regtype2:$Rn, immtype:$imm), asm, "\t$Rd, $Rn, $imm", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<7> imm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-23} = 0b111110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDScalarShiftTied opc, bits<7> fixed_imm, RegisterClass regtype1, RegisterClass regtype2, Operand immtype, string asm, list pattern> : I<(outs regtype1:$dst), (ins regtype1:$Rd, regtype2:$Rn, immtype:$imm), asm, "\t$Rd, $Rn, $imm", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; bits<7> imm; let Inst{31-30} = 0b01; let Inst{29} = U; let Inst{28-23} = 0b111110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDScalarRShiftSD opc, string asm> { def s : BaseSIMDScalarShift { let Inst{20-16} = imm{4-0}; } def d : BaseSIMDScalarShift { let Inst{21-16} = imm{5-0}; } } multiclass SIMDScalarRShiftD opc, string asm, SDPatternOperator OpNode> { def d : BaseSIMDScalarShift { let Inst{21-16} = imm{5-0}; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))), (!cast(NAME # "d") FPR64:$Rn, vecshiftR64:$imm)>; } multiclass SIMDScalarRShiftDTied opc, string asm, SDPatternOperator OpNode = null_frag> { def d : BaseSIMDScalarShiftTied { let Inst{21-16} = imm{5-0}; } def : Pat<(v1i64 (OpNode (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), (i32 vecshiftR64:$imm))), (!cast(NAME # "d") FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>; } multiclass SIMDScalarLShiftD opc, string asm, SDPatternOperator OpNode> { def d : BaseSIMDScalarShift { let Inst{21-16} = imm{5-0}; } } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in multiclass SIMDScalarLShiftDTied opc, string asm> { def d : BaseSIMDScalarShiftTied { let Inst{21-16} = imm{5-0}; } } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in multiclass SIMDScalarRShiftBHS opc, string asm, SDPatternOperator OpNode = null_frag> { def b : BaseSIMDScalarShift { let Inst{18-16} = imm{2-0}; } def h : BaseSIMDScalarShift { let Inst{19-16} = imm{3-0}; } def s : BaseSIMDScalarShift { let Inst{20-16} = imm{4-0}; } } multiclass SIMDScalarLShiftBHSD opc, string asm, SDPatternOperator OpNode> { def b : BaseSIMDScalarShift { let Inst{18-16} = imm{2-0}; } def h : BaseSIMDScalarShift { let Inst{19-16} = imm{3-0}; } def s : BaseSIMDScalarShift { let Inst{20-16} = imm{4-0}; } def d : BaseSIMDScalarShift { let Inst{21-16} = imm{5-0}; } } multiclass SIMDScalarRShiftBHSD opc, string asm> { def b : BaseSIMDScalarShift { let Inst{18-16} = imm{2-0}; } def h : BaseSIMDScalarShift { let Inst{19-16} = imm{3-0}; } def s : BaseSIMDScalarShift { let Inst{20-16} = imm{4-0}; } def d : BaseSIMDScalarShift { let Inst{21-16} = imm{5-0}; } } //---------------------------------------------------------------------------- // AdvSIMD vector x indexed element //---------------------------------------------------------------------------- let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDVectorShift opc, bits<7> fixed_imm, RegisterOperand dst_reg, RegisterOperand src_reg, Operand immtype, string asm, string dst_kind, string src_kind, list pattern> : I<(outs dst_reg:$Rd), (ins src_reg:$Rn, immtype:$imm), asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" # "|" # dst_kind # "\t$Rd, $Rn, $imm}", "", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-23} = 0b011110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } let mayStore = 0, mayLoad = 0, hasSideEffects = 0 in class BaseSIMDVectorShiftTied opc, bits<7> fixed_imm, RegisterOperand vectype1, RegisterOperand vectype2, Operand immtype, string asm, string dst_kind, string src_kind, list pattern> : I<(outs vectype1:$dst), (ins vectype1:$Rd, vectype2:$Rn, immtype:$imm), asm, "{\t$Rd" # dst_kind # ", $Rn" # src_kind # ", $imm" # "|" # dst_kind # "\t$Rd, $Rn, $imm}", "$Rd = $dst", pattern>, Sched<[WriteV]> { bits<5> Rd; bits<5> Rn; let Inst{31} = 0; let Inst{30} = Q; let Inst{29} = U; let Inst{28-23} = 0b011110; let Inst{22-16} = fixed_imm; let Inst{15-11} = opc; let Inst{10} = 1; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } multiclass SIMDVectorRShiftSD opc, string asm, Intrinsic OpNode> { def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2f32 V64:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4f32 V128:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2f64 V128:$Rn), (i32 imm:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorRShiftSDToFP opc, string asm, Intrinsic OpNode> { def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2f32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4f32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 imm:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2f64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 imm:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorRShiftNarrowBHS opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V64, V128, vecshiftR16Narrow, asm, ".8b", ".8h", [(set (v8i8 V64:$Rd), (OpNode (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftR16Narrow, asm#"2", ".16b", ".8h", []> { bits<3> imm; let Inst{18-16} = imm; let hasSideEffects = 0; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V64, V128, vecshiftR32Narrow, asm, ".4h", ".4s", [(set (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftR32Narrow, asm#"2", ".8h", ".4s", []> { bits<4> imm; let Inst{19-16} = imm; let hasSideEffects = 0; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V128, vecshiftR64Narrow, asm, ".2s", ".2d", [(set (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR64Narrow, asm#"2", ".4s", ".2d", []> { bits<5> imm; let Inst{20-16} = imm; let hasSideEffects = 0; } // TableGen doesn't like patters w/ INSERT_SUBREG on the instructions // themselves, so put them here instead. // Patterns involving what's effectively an insert high and a normal // intrinsic, represented by CONCAT_VECTORS. def : Pat<(concat_vectors (v8i8 V64:$Rd),(OpNode (v8i16 V128:$Rn), vecshiftR16Narrow:$imm)), (!cast(NAME # "v16i8_shift") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR16Narrow:$imm)>; def : Pat<(concat_vectors (v4i16 V64:$Rd), (OpNode (v4i32 V128:$Rn), vecshiftR32Narrow:$imm)), (!cast(NAME # "v8i16_shift") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR32Narrow:$imm)>; def : Pat<(concat_vectors (v2i32 V64:$Rd), (OpNode (v2i64 V128:$Rn), vecshiftR64Narrow:$imm)), (!cast(NAME # "v4i32_shift") (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn, vecshiftR64Narrow:$imm)>; } multiclass SIMDVectorLShiftBHSD opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftL8, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftL8, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftL16, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftL16, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftL32, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftL32, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftL64, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 vecshiftL64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorRShiftBHSD opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftR8, asm, ".8b", ".8b", [(set (v8i8 V64:$Rd), (OpNode (v8i8 V64:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftR8, asm, ".16b", ".16b", [(set (v16i8 V128:$Rd), (OpNode (v16i8 V128:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftR16, asm, ".4h", ".4h", [(set (v4i16 V64:$Rd), (OpNode (v4i16 V64:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftR16, asm, ".8h", ".8h", [(set (v8i16 V128:$Rd), (OpNode (v8i16 V128:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2i32 V64:$Rd), (OpNode (v2i32 V64:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4i32 V128:$Rd), (OpNode (v4i32 V128:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShift<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2i64 V128:$Rd), (OpNode (v2i64 V128:$Rn), (i32 vecshiftR64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in multiclass SIMDVectorRShiftBHSDTied opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftR8, asm, ".8b", ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftR8, asm, ".16b", ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (i32 vecshiftR8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftR16, asm, ".4h", ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftR16, asm, ".8h", ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (i32 vecshiftR16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftR32, asm, ".2s", ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftR32, asm, ".4s", ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (i32 vecshiftR32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftR64, asm, ".2d", ".2d", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn), (i32 vecshiftR64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorLShiftBHSDTied opc, string asm, SDPatternOperator OpNode = null_frag> { def v8i8_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,0,1,?,?,?}, V64, V64, vecshiftL8, asm, ".8b", ".8b", [(set (v8i8 V64:$dst), (OpNode (v8i8 V64:$Rd), (v8i8 V64:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftL8, asm, ".16b", ".16b", [(set (v16i8 V128:$dst), (OpNode (v16i8 V128:$Rd), (v16i8 V128:$Rn), (i32 vecshiftL8:$imm)))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,0,1,?,?,?,?}, V64, V64, vecshiftL16, asm, ".4h", ".4h", [(set (v4i16 V64:$dst), (OpNode (v4i16 V64:$Rd), (v4i16 V64:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftL16, asm, ".8h", ".8h", [(set (v8i16 V128:$dst), (OpNode (v8i16 V128:$Rd), (v8i16 V128:$Rn), (i32 vecshiftL16:$imm)))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShiftTied<0, U, opc, {0,1,?,?,?,?,?}, V64, V64, vecshiftL32, asm, ".2s", ".2s", [(set (v2i32 V64:$dst), (OpNode (v2i32 V64:$Rd), (v2i32 V64:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShiftTied<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftL32, asm, ".4s", ".4s", [(set (v4i32 V128:$dst), (OpNode (v4i32 V128:$Rd), (v4i32 V128:$Rn), (i32 vecshiftL32:$imm)))]> { bits<5> imm; let Inst{20-16} = imm; } def v2i64_shift : BaseSIMDVectorShiftTied<1, U, opc, {1,?,?,?,?,?,?}, V128, V128, vecshiftL64, asm, ".2d", ".2d", [(set (v2i64 V128:$dst), (OpNode (v2i64 V128:$Rd), (v2i64 V128:$Rn), (i32 vecshiftL64:$imm)))]> { bits<6> imm; let Inst{21-16} = imm; } } multiclass SIMDVectorLShiftLongBHSD opc, string asm, SDPatternOperator OpNode> { def v8i8_shift : BaseSIMDVectorShift<0, U, opc, {0,0,0,1,?,?,?}, V128, V64, vecshiftL8, asm, ".8h", ".8b", [(set (v8i16 V128:$Rd), (OpNode (v8i8 V64:$Rn), vecshiftL8:$imm))]> { bits<3> imm; let Inst{18-16} = imm; } def v16i8_shift : BaseSIMDVectorShift<1, U, opc, {0,0,0,1,?,?,?}, V128, V128, vecshiftL8, asm#"2", ".8h", ".16b", [(set (v8i16 V128:$Rd), (OpNode (extract_high_v16i8 V128:$Rn), vecshiftL8:$imm))]> { bits<3> imm; let Inst{18-16} = imm; } def v4i16_shift : BaseSIMDVectorShift<0, U, opc, {0,0,1,?,?,?,?}, V128, V64, vecshiftL16, asm, ".4s", ".4h", [(set (v4i32 V128:$Rd), (OpNode (v4i16 V64:$Rn), vecshiftL16:$imm))]> { bits<4> imm; let Inst{19-16} = imm; } def v8i16_shift : BaseSIMDVectorShift<1, U, opc, {0,0,1,?,?,?,?}, V128, V128, vecshiftL16, asm#"2", ".4s", ".8h", [(set (v4i32 V128:$Rd), (OpNode (extract_high_v8i16 V128:$Rn), vecshiftL16:$imm))]> { bits<4> imm; let Inst{19-16} = imm; } def v2i32_shift : BaseSIMDVectorShift<0, U, opc, {0,1,?,?,?,?,?}, V128, V64, vecshiftL32, asm, ".2d", ".2s", [(set (v2i64 V128:$Rd), (OpNode (v2i32 V64:$Rn), vecshiftL32:$imm))]> { bits<5> imm; let Inst{20-16} = imm; } def v4i32_shift : BaseSIMDVectorShift<1, U, opc, {0,1,?,?,?,?,?}, V128, V128, vecshiftL32, asm#"2", ".2d", ".4s", [(set (v2i64 V128:$Rd), (OpNode (extract_high_v4i32 V128:$Rn), vecshiftL32:$imm))]> { bits<5> imm; let Inst{20-16} = imm; } } //--- // Vector load/store //--- // SIMD ldX/stX no-index memory references don't allow the optional // ", #0" constant and handle post-indexing explicitly, so we use // a more specialized parse method for them. Otherwise, it's the same as // the general am_noindex handling. def MemorySIMDNoIndexOperand : AsmOperandClass { let Name = "MemorySIMDNoIndex"; let ParserMethod = "tryParseNoIndexMemory"; } def am_simdnoindex : Operand, ComplexPattern { let PrintMethod = "printAMNoIndex"; let ParserMatchClass = MemorySIMDNoIndexOperand; let MIOperandInfo = (ops GPR64sp:$base); let DecoderMethod = "DecodeGPR64spRegisterClass"; } class BaseSIMDLdSt opcode, bits<2> size, string asm, dag oops, dag iops, list pattern> : I { bits<5> Vt; bits<5> vaddr; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-23} = 0b0011000; let Inst{22} = L; let Inst{21-16} = 0b000000; let Inst{15-12} = opcode; let Inst{11-10} = size; let Inst{9-5} = vaddr; let Inst{4-0} = Vt; } class BaseSIMDLdStPost opcode, bits<2> size, string asm, dag oops, dag iops> : I { bits<5> Vt; bits<5> vaddr; bits<5> Xm; let Inst{31} = 0; let Inst{30} = Q; let Inst{29-23} = 0b0011001; let Inst{22} = L; let Inst{21} = 0; let Inst{20-16} = Xm; let Inst{15-12} = opcode; let Inst{11-10} = size; let Inst{9-5} = vaddr; let Inst{4-0} = Vt; let DecoderMethod = "DecodeSIMDLdStPost"; } // The immediate form of AdvSIMD post-indexed addressing is encoded with // register post-index addressing from the zero register. multiclass SIMDLdStAliases { // E.g. "ld1 { v0.8b, v1.8b }, [x1], #16" // "ld1\t$Vt, $vaddr, #16" // may get mapped to // (LD1Twov8b_POST VecListTwo8b:$Vt, am_simdnoindex:$vaddr, XZR) def : InstAlias(NAME # Count # "v" # layout # "_POST") !cast("VecList" # Count # layout):$Vt, am_simdnoindex:$vaddr, XZR), 1>; // E.g. "ld1.8b { v0, v1 }, [x1], #16" // "ld1.8b\t$Vt, $vaddr, #16" // may get mapped to // (LD1Twov8b_POST VecListTwo64:$Vt, am_simdnoindex:$vaddr, XZR) def : InstAlias(NAME # Count # "v" # layout # "_POST") !cast("VecList" # Count # Size):$Vt, am_simdnoindex:$vaddr, XZR), 0>; // E.g. "ld1.8b { v0, v1 }, [x1]" // "ld1\t$Vt, $vaddr" // may get mapped to // (LD1Twov8b VecListTwo64:$Vt, am_simdnoindex:$vaddr) def : InstAlias(NAME # Count # "v" # layout) !cast("VecList" # Count # Size):$Vt, am_simdnoindex:$vaddr), 0>; // E.g. "ld1.8b { v0, v1 }, [x1], x2" // "ld1\t$Vt, $vaddr, $Xm" // may get mapped to // (LD1Twov8b_POST VecListTwo64:$Vt, am_simdnoindex:$vaddr, GPR64pi8:$Xm) def : InstAlias(NAME # Count # "v" # layout # "_POST") !cast("VecList" # Count # Size):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset):$Xm), 0>; } multiclass BaseSIMDLdN opcode> { let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { def v16b: BaseSIMDLdSt<1, 1, opcode, 0b00, asm, (outs !cast(veclist # "16b"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v8h : BaseSIMDLdSt<1, 1, opcode, 0b01, asm, (outs !cast(veclist # "8h"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v4s : BaseSIMDLdSt<1, 1, opcode, 0b10, asm, (outs !cast(veclist # "4s"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v2d : BaseSIMDLdSt<1, 1, opcode, 0b11, asm, (outs !cast(veclist # "2d"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v8b : BaseSIMDLdSt<0, 1, opcode, 0b00, asm, (outs !cast(veclist # "8b"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v4h : BaseSIMDLdSt<0, 1, opcode, 0b01, asm, (outs !cast(veclist # "4h"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v2s : BaseSIMDLdSt<0, 1, opcode, 0b10, asm, (outs !cast(veclist # "2s"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v16b_POST: BaseSIMDLdStPost<1, 1, opcode, 0b00, asm, (outs !cast(veclist # "16b"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v8h_POST : BaseSIMDLdStPost<1, 1, opcode, 0b01, asm, (outs !cast(veclist # "8h"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v4s_POST : BaseSIMDLdStPost<1, 1, opcode, 0b10, asm, (outs !cast(veclist # "4s"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v2d_POST : BaseSIMDLdStPost<1, 1, opcode, 0b11, asm, (outs !cast(veclist # "2d"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v8b_POST : BaseSIMDLdStPost<0, 1, opcode, 0b00, asm, (outs !cast(veclist # "8b"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; def v4h_POST : BaseSIMDLdStPost<0, 1, opcode, 0b01, asm, (outs !cast(veclist # "4h"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; def v2s_POST : BaseSIMDLdStPost<0, 1, opcode, 0b10, asm, (outs !cast(veclist # "2s"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; } // Only ld1/st1 has a v1d version. multiclass BaseSIMDStN opcode> { let hasSideEffects = 0, mayStore = 1, mayLoad = 0 in { def v16b : BaseSIMDLdSt<1, 0, opcode, 0b00, asm, (outs), (ins !cast(veclist # "16b"):$Vt, am_simdnoindex:$vaddr), []>; def v8h : BaseSIMDLdSt<1, 0, opcode, 0b01, asm, (outs), (ins !cast(veclist # "8h"):$Vt, am_simdnoindex:$vaddr), []>; def v4s : BaseSIMDLdSt<1, 0, opcode, 0b10, asm, (outs), (ins !cast(veclist # "4s"):$Vt, am_simdnoindex:$vaddr), []>; def v2d : BaseSIMDLdSt<1, 0, opcode, 0b11, asm, (outs), (ins !cast(veclist # "2d"):$Vt, am_simdnoindex:$vaddr), []>; def v8b : BaseSIMDLdSt<0, 0, opcode, 0b00, asm, (outs), (ins !cast(veclist # "8b"):$Vt, am_simdnoindex:$vaddr), []>; def v4h : BaseSIMDLdSt<0, 0, opcode, 0b01, asm, (outs), (ins !cast(veclist # "4h"):$Vt, am_simdnoindex:$vaddr), []>; def v2s : BaseSIMDLdSt<0, 0, opcode, 0b10, asm, (outs), (ins !cast(veclist # "2s"):$Vt, am_simdnoindex:$vaddr), []>; def v16b_POST : BaseSIMDLdStPost<1, 0, opcode, 0b00, asm, (outs), (ins !cast(veclist # "16b"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v8h_POST : BaseSIMDLdStPost<1, 0, opcode, 0b01, asm, (outs), (ins !cast(veclist # "8h"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v4s_POST : BaseSIMDLdStPost<1, 0, opcode, 0b10, asm, (outs), (ins !cast(veclist # "4s"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v2d_POST : BaseSIMDLdStPost<1, 0, opcode, 0b11, asm, (outs), (ins !cast(veclist # "2d"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset128):$Xm)>; def v8b_POST : BaseSIMDLdStPost<0, 0, opcode, 0b00, asm, (outs), (ins !cast(veclist # "8b"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; def v4h_POST : BaseSIMDLdStPost<0, 0, opcode, 0b01, asm, (outs), (ins !cast(veclist # "4h"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; def v2s_POST : BaseSIMDLdStPost<0, 0, opcode, 0b10, asm, (outs), (ins !cast(veclist # "2s"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; defm : SIMDLdStAliases; } multiclass BaseSIMDLd1 opcode> : BaseSIMDLdN { // LD1 instructions have extra "1d" variants. let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in { def v1d : BaseSIMDLdSt<0, 1, opcode, 0b11, asm, (outs !cast(veclist # "1d"):$Vt), (ins am_simdnoindex:$vaddr), []>; def v1d_POST : BaseSIMDLdStPost<0, 1, opcode, 0b11, asm, (outs !cast(veclist # "1d"):$Vt), (ins am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases; } multiclass BaseSIMDSt1 opcode> : BaseSIMDStN { // ST1 instructions have extra "1d" variants. let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in { def v1d : BaseSIMDLdSt<0, 0, opcode, 0b11, asm, (outs), (ins !cast(veclist # "1d"):$Vt, am_simdnoindex:$vaddr), []>; def v1d_POST : BaseSIMDLdStPost<0, 0, opcode, 0b11, asm, (outs), (ins !cast(veclist # "1d"):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset64):$Xm)>; } defm : SIMDLdStAliases; } multiclass SIMDLd1Multiple { defm One : BaseSIMDLd1<"One", asm, "VecListOne", 16, 8, 0b0111>; defm Two : BaseSIMDLd1<"Two", asm, "VecListTwo", 32, 16, 0b1010>; defm Three : BaseSIMDLd1<"Three", asm, "VecListThree", 48, 24, 0b0110>; defm Four : BaseSIMDLd1<"Four", asm, "VecListFour", 64, 32, 0b0010>; } multiclass SIMDSt1Multiple { defm One : BaseSIMDSt1<"One", asm, "VecListOne", 16, 8, 0b0111>; defm Two : BaseSIMDSt1<"Two", asm, "VecListTwo", 32, 16, 0b1010>; defm Three : BaseSIMDSt1<"Three", asm, "VecListThree", 48, 24, 0b0110>; defm Four : BaseSIMDSt1<"Four", asm, "VecListFour", 64, 32, 0b0010>; } multiclass SIMDLd2Multiple { defm Two : BaseSIMDLdN<"Two", asm, "VecListTwo", 32, 16, 0b1000>; } multiclass SIMDSt2Multiple { defm Two : BaseSIMDStN<"Two", asm, "VecListTwo", 32, 16, 0b1000>; } multiclass SIMDLd3Multiple { defm Three : BaseSIMDLdN<"Three", asm, "VecListThree", 48, 24, 0b0100>; } multiclass SIMDSt3Multiple { defm Three : BaseSIMDStN<"Three", asm, "VecListThree", 48, 24, 0b0100>; } multiclass SIMDLd4Multiple { defm Four : BaseSIMDLdN<"Four", asm, "VecListFour", 64, 32, 0b0000>; } multiclass SIMDSt4Multiple { defm Four : BaseSIMDStN<"Four", asm, "VecListFour", 64, 32, 0b0000>; } //--- // AdvSIMD Load/store single-element //--- class BaseSIMDLdStSingle opcode, string asm, string operands, dag oops, dag iops, list pattern> : I { bits<5> Vt; bits<5> vaddr; let Inst{31} = 0; let Inst{29-24} = 0b001101; let Inst{22} = L; let Inst{21} = R; let Inst{15-13} = opcode; let Inst{9-5} = vaddr; let Inst{4-0} = Vt; let DecoderMethod = "DecodeSIMDLdStSingle"; } class BaseSIMDLdStSingleTied opcode, string asm, string operands, dag oops, dag iops, list pattern> : I { bits<5> Vt; bits<5> vaddr; let Inst{31} = 0; let Inst{29-24} = 0b001101; let Inst{22} = L; let Inst{21} = R; let Inst{15-13} = opcode; let Inst{9-5} = vaddr; let Inst{4-0} = Vt; let DecoderMethod = "DecodeSIMDLdStSingleTied"; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class BaseSIMDLdR opcode, bit S, bits<2> size, string asm, Operand listtype> : BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, $vaddr", (outs listtype:$Vt), (ins am_simdnoindex:$vaddr), []> { let Inst{30} = Q; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = S; let Inst{11-10} = size; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in class BaseSIMDLdRPost opcode, bit S, bits<2> size, string asm, Operand listtype, Operand GPR64pi> : BaseSIMDLdStSingle<1, R, opcode, asm, "\t$Vt, $vaddr, $Xm", (outs listtype:$Vt), (ins am_simdnoindex:$vaddr, GPR64pi:$Xm), []> { bits<5> Xm; let Inst{30} = Q; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = S; let Inst{11-10} = size; } multiclass SIMDLdrAliases { // E.g. "ld1r { v0.8b }, [x1], #1" // "ld1r.8b\t$Vt, $vaddr, #1" // may get mapped to // (LD1Rv8b_POST VecListOne8b:$Vt, am_simdnoindex:$vaddr, XZR) def : InstAlias(NAME # "v" # layout # "_POST") !cast("VecList" # Count # layout):$Vt, am_simdnoindex:$vaddr, XZR), 1>; // E.g. "ld1r.8b { v0 }, [x1], #1" // "ld1r.8b\t$Vt, $vaddr, #1" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, am_simdnoindex:$vaddr, XZR) def : InstAlias(NAME # "v" # layout # "_POST") !cast("VecList" # Count # Size):$Vt, am_simdnoindex:$vaddr, XZR), 0>; // E.g. "ld1r.8b { v0 }, [x1]" // "ld1r.8b\t$Vt, $vaddr" // may get mapped to // (LD1Rv8b VecListOne64:$Vt, am_simdnoindex:$vaddr) def : InstAlias(NAME # "v" # layout) !cast("VecList" # Count # Size):$Vt, am_simdnoindex:$vaddr), 0>; // E.g. "ld1r.8b { v0 }, [x1], x2" // "ld1r.8b\t$Vt, $vaddr, $Xm" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, am_simdnoindex:$vaddr, GPR64pi1:$Xm) def : InstAlias(NAME # "v" # layout # "_POST") !cast("VecList" # Count # Size):$Vt, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset):$Xm), 0>; } multiclass SIMDLdR opcode, bit S, string asm, string Count, int Offset1, int Offset2, int Offset4, int Offset8> { def v8b : BaseSIMDLdR<0, R, opcode, S, 0b00, asm, !cast("VecList" # Count # "8b")>; def v16b: BaseSIMDLdR<1, R, opcode, S, 0b00, asm, !cast("VecList" # Count #"16b")>; def v4h : BaseSIMDLdR<0, R, opcode, S, 0b01, asm, !cast("VecList" # Count #"4h")>; def v8h : BaseSIMDLdR<1, R, opcode, S, 0b01, asm, !cast("VecList" # Count #"8h")>; def v2s : BaseSIMDLdR<0, R, opcode, S, 0b10, asm, !cast("VecList" # Count #"2s")>; def v4s : BaseSIMDLdR<1, R, opcode, S, 0b10, asm, !cast("VecList" # Count #"4s")>; def v1d : BaseSIMDLdR<0, R, opcode, S, 0b11, asm, !cast("VecList" # Count #"1d")>; def v2d : BaseSIMDLdR<1, R, opcode, S, 0b11, asm, !cast("VecList" # Count #"2d")>; def v8b_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b00, asm, !cast("VecList" # Count # "8b"), !cast("GPR64pi" # Offset1)>; def v16b_POST: BaseSIMDLdRPost<1, R, opcode, S, 0b00, asm, !cast("VecList" # Count # "16b"), !cast("GPR64pi" # Offset1)>; def v4h_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b01, asm, !cast("VecList" # Count # "4h"), !cast("GPR64pi" # Offset2)>; def v8h_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b01, asm, !cast("VecList" # Count # "8h"), !cast("GPR64pi" # Offset2)>; def v2s_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b10, asm, !cast("VecList" # Count # "2s"), !cast("GPR64pi" # Offset4)>; def v4s_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b10, asm, !cast("VecList" # Count # "4s"), !cast("GPR64pi" # Offset4)>; def v1d_POST : BaseSIMDLdRPost<0, R, opcode, S, 0b11, asm, !cast("VecList" # Count # "1d"), !cast("GPR64pi" # Offset8)>; def v2d_POST : BaseSIMDLdRPost<1, R, opcode, S, 0b11, asm, !cast("VecList" # Count # "2d"), !cast("GPR64pi" # Offset8)>; defm : SIMDLdrAliases; defm : SIMDLdrAliases; defm : SIMDLdrAliases; defm : SIMDLdrAliases; defm : SIMDLdrAliases; defm : SIMDLdrAliases; defm : SIMDLdrAliases; defm : SIMDLdrAliases; } class SIMDLdStSingleB opcode, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingle { // idx encoded in Q:S:size fields. bits<4> idx; let Inst{30} = idx{3}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleBTied opcode, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingleTied { // idx encoded in Q:S:size fields. bits<4> idx; let Inst{30} = idx{3}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleBPost opcode, string asm, dag oops, dag iops> : BaseSIMDLdStSingle { // idx encoded in Q:S:size fields. bits<4> idx; bits<5> Xm; let Inst{30} = idx{3}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleBTiedPost opcode, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied { // idx encoded in Q:S:size fields. bits<4> idx; bits<5> Xm; let Inst{30} = idx{3}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{2}; let Inst{11-10} = idx{1-0}; } class SIMDLdStSingleH opcode, bit size, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingle { // idx encoded in Q:S:size<1> fields. bits<3> idx; let Inst{30} = idx{2}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleHTied opcode, bit size, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingleTied { // idx encoded in Q:S:size<1> fields. bits<3> idx; let Inst{30} = idx{2}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleHPost opcode, bit size, string asm, dag oops, dag iops> : BaseSIMDLdStSingle { // idx encoded in Q:S:size<1> fields. bits<3> idx; bits<5> Xm; let Inst{30} = idx{2}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleHTiedPost opcode, bit size, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied { // idx encoded in Q:S:size<1> fields. bits<3> idx; bits<5> Xm; let Inst{30} = idx{2}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{1}; let Inst{11} = idx{0}; let Inst{10} = size; } class SIMDLdStSingleS opcode, bits<2> size, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingle { // idx encoded in Q:S fields. bits<2> idx; let Inst{30} = idx{1}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleSTied opcode, bits<2> size, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingleTied { // idx encoded in Q:S fields. bits<2> idx; let Inst{30} = idx{1}; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleSPost opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingle { // idx encoded in Q:S fields. bits<2> idx; bits<5> Xm; let Inst{30} = idx{1}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleSTiedPost opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied { // idx encoded in Q:S fields. bits<2> idx; bits<5> Xm; let Inst{30} = idx{1}; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = idx{0}; let Inst{11-10} = size; } class SIMDLdStSingleD opcode, bits<2> size, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingle { // idx encoded in Q field. bits<1> idx; let Inst{30} = idx; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = 0; let Inst{11-10} = size; } class SIMDLdStSingleDTied opcode, bits<2> size, string asm, dag oops, dag iops, list pattern> : BaseSIMDLdStSingleTied { // idx encoded in Q field. bits<1> idx; let Inst{30} = idx; let Inst{23} = 0; let Inst{20-16} = 0b00000; let Inst{12} = 0; let Inst{11-10} = size; } class SIMDLdStSingleDPost opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingle { // idx encoded in Q field. bits<1> idx; bits<5> Xm; let Inst{30} = idx; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = 0; let Inst{11-10} = size; } class SIMDLdStSingleDTiedPost opcode, bits<2> size, string asm, dag oops, dag iops> : BaseSIMDLdStSingleTied { // idx encoded in Q field. bits<1> idx; bits<5> Xm; let Inst{30} = idx; let Inst{23} = 1; let Inst{20-16} = Xm; let Inst{12} = 0; let Inst{11-10} = size; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleBTied opcode, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i8 : SIMDLdStSingleBTied<1, R, opcode, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexB:$idx, am_simdnoindex:$vaddr), []>; def i8_POST : SIMDLdStSingleBTiedPost<1, R, opcode, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexB:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleHTied opcode, bit size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i16 : SIMDLdStSingleHTied<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexH:$idx, am_simdnoindex:$vaddr), []>; def i16_POST : SIMDLdStSingleHTiedPost<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexH:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleSTied opcode, bits<2> size,string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i32 : SIMDLdStSingleSTied<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexS:$idx, am_simdnoindex:$vaddr), []>; def i32_POST : SIMDLdStSingleSTiedPost<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexS:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 1, mayStore = 0, hasSideEffects = 0 in multiclass SIMDLdSingleDTied opcode, bits<2> size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i64 : SIMDLdStSingleDTied<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexD:$idx, am_simdnoindex:$vaddr), []>; def i64_POST : SIMDLdStSingleDTiedPost<1, R, opcode, size, asm, (outs listtype:$dst), (ins listtype:$Vt, VectorIndexD:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleB opcode, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i8 : SIMDLdStSingleB<0, R, opcode, asm, (outs), (ins listtype:$Vt, VectorIndexB:$idx, am_simdnoindex:$vaddr), []>; def i8_POST : SIMDLdStSingleBPost<0, R, opcode, asm, (outs), (ins listtype:$Vt, VectorIndexB:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleH opcode, bit size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i16 : SIMDLdStSingleH<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexH:$idx, am_simdnoindex:$vaddr), []>; def i16_POST : SIMDLdStSingleHPost<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexH:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleS opcode, bits<2> size,string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i32 : SIMDLdStSingleS<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexS:$idx, am_simdnoindex:$vaddr), []>; def i32_POST : SIMDLdStSingleSPost<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexS:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } let mayLoad = 0, mayStore = 1, hasSideEffects = 0 in multiclass SIMDStSingleD opcode, bits<2> size, string asm, RegisterOperand listtype, RegisterOperand GPR64pi> { def i64 : SIMDLdStSingleD<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexD:$idx, am_simdnoindex:$vaddr), []>; def i64_POST : SIMDLdStSingleDPost<0, R, opcode, size, asm, (outs), (ins listtype:$Vt, VectorIndexD:$idx, am_simdnoindex:$vaddr, GPR64pi:$Xm)>; } multiclass SIMDLdStSingleAliases { // E.g. "ld1 { v0.8b }[0], [x1], #1" // "ld1\t$Vt, $vaddr, #1" // may get mapped to // (LD1Rv8b_POST VecListOne8b:$Vt, am_simdnoindex:$vaddr, XZR) def : InstAlias(NAME # Type # "_POST") !cast("VecList" # Count # layout):$Vt, idxtype:$idx, am_simdnoindex:$vaddr, XZR), 1>; // E.g. "ld1.8b { v0 }[0], [x1], #1" // "ld1.8b\t$Vt, $vaddr, #1" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, am_simdnoindex:$vaddr, XZR) def : InstAlias(NAME # Type # "_POST") !cast("VecList" # Count # "128"):$Vt, idxtype:$idx, am_simdnoindex:$vaddr, XZR), 0>; // E.g. "ld1.8b { v0 }[0], [x1]" // "ld1.8b\t$Vt, $vaddr" // may get mapped to // (LD1Rv8b VecListOne64:$Vt, am_simdnoindex:$vaddr) def : InstAlias(NAME # Type) !cast("VecList" # Count # "128"):$Vt, idxtype:$idx, am_simdnoindex:$vaddr), 0>; // E.g. "ld1.8b { v0 }[0], [x1], x2" // "ld1.8b\t$Vt, $vaddr, $Xm" // may get mapped to // (LD1Rv8b_POST VecListOne64:$Vt, am_simdnoindex:$vaddr, GPR64pi1:$Xm) def : InstAlias(NAME # Type # "_POST") !cast("VecList" # Count # "128"):$Vt, idxtype:$idx, am_simdnoindex:$vaddr, !cast("GPR64pi" # Offset):$Xm), 0>; } multiclass SIMDLdSt1SingleAliases { defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; } multiclass SIMDLdSt2SingleAliases { defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; } multiclass SIMDLdSt3SingleAliases { defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; } multiclass SIMDLdSt4SingleAliases { defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; defm : SIMDLdStSingleAliases; } //---------------------------------------------------------------------------- // Crypto extensions //---------------------------------------------------------------------------- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class AESBase opc, string asm, dag outs, dag ins, string cstr, list pat> : I, Sched<[WriteV]>{ bits<5> Rd; bits<5> Rn; let Inst{31-16} = 0b0100111000101000; let Inst{15-12} = opc; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class AESInst opc, string asm, Intrinsic OpNode> : AESBase; class AESTiedInst opc, string asm, Intrinsic OpNode> : AESBase; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class SHA3OpTiedInst opc, string asm, string dst_lhs_kind, dag oops, dag iops, list pat> : I, Sched<[WriteV]>{ bits<5> Rd; bits<5> Rn; bits<5> Rm; let Inst{31-21} = 0b01011110000; let Inst{20-16} = Rm; let Inst{15} = 0; let Inst{14-12} = opc; let Inst{11-10} = 0b00; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SHATiedInstQSV opc, string asm, Intrinsic OpNode> : SHA3OpTiedInst; class SHATiedInstVVV opc, string asm, Intrinsic OpNode> : SHA3OpTiedInst; class SHATiedInstQQV opc, string asm, Intrinsic OpNode> : SHA3OpTiedInst; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in class SHA2OpInst opc, string asm, string kind, string cstr, dag oops, dag iops, list pat> : I, Sched<[WriteV]>{ bits<5> Rd; bits<5> Rn; let Inst{31-16} = 0b0101111000101000; let Inst{15-12} = opc; let Inst{11-10} = 0b10; let Inst{9-5} = Rn; let Inst{4-0} = Rd; } class SHATiedInstVV opc, string asm, Intrinsic OpNode> : SHA2OpInst; class SHAInstSS opc, string asm, Intrinsic OpNode> : SHA2OpInst; // Allow the size specifier tokens to be upper case, not just lower. def : TokenAlias<".8B", ".8b">; def : TokenAlias<".4H", ".4h">; def : TokenAlias<".2S", ".2s">; def : TokenAlias<".1D", ".1d">; def : TokenAlias<".16B", ".16b">; def : TokenAlias<".8H", ".8h">; def : TokenAlias<".4S", ".4s">; def : TokenAlias<".2D", ".2d">; def : TokenAlias<".1Q", ".1q">; def : TokenAlias<".B", ".b">; def : TokenAlias<".H", ".h">; def : TokenAlias<".S", ".s">; def : TokenAlias<".D", ".d">; def : TokenAlias<".Q", ".q">;