//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Cell SPU Instructions: //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // TODO Items (not urgent today, but would be nice, low priority) // // ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by // concatenating the byte argument b as "bbbb". Could recognize this bit pattern // in 16-bit and 32-bit constants and reduce instruction count. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pseudo instructions: //===----------------------------------------------------------------------===// let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt), "${:comment} ADJCALLSTACKDOWN", [(callseq_start imm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt), "${:comment} ADJCALLSTACKUP", [(callseq_end imm:$amt)]>; } //===----------------------------------------------------------------------===// // DWARF debugging Pseudo Instructions //===----------------------------------------------------------------------===// def DWARF_LOC : Pseudo<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file), "${:comment} .loc $file, $line, $col", [(dwarf_loc (i32 imm:$line), (i32 imm:$col), (i32 imm:$file))]>; //===----------------------------------------------------------------------===// // Loads: // NB: The ordering is actually important, since the instruction selection // will try each of the instructions in sequence, i.e., the D-form first with // the 10-bit displacement, then the A-form with the 16 bit displacement, and // finally the X-form with the register-register. //===----------------------------------------------------------------------===// let isSimpleLoad = 1 in { class LoadDFormVec : RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src), "lqd\t$rT, $src", LoadStore, [(set (vectype VECREG:$rT), (load dform_addr:$src))]> { } class LoadDForm : RI10Form<0b00101100, (outs rclass:$rT), (ins memri10:$src), "lqd\t$rT, $src", LoadStore, [(set rclass:$rT, (load dform_addr:$src))]> { } multiclass LoadDForms { def v16i8: LoadDFormVec; def v8i16: LoadDFormVec; def v4i32: LoadDFormVec; def v2i64: LoadDFormVec; def v4f32: LoadDFormVec; def v2f64: LoadDFormVec; def r128: LoadDForm; def r64: LoadDForm; def r32: LoadDForm; def f32: LoadDForm; def f64: LoadDForm; def r16: LoadDForm; def r8: LoadDForm; } class LoadAFormVec : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), "lqa\t$rT, $src", LoadStore, [(set (vectype VECREG:$rT), (load aform_addr:$src))]> { } class LoadAForm : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src), "lqa\t$rT, $src", LoadStore, [(set rclass:$rT, (load aform_addr:$src))]> { } multiclass LoadAForms { def v16i8: LoadAFormVec; def v8i16: LoadAFormVec; def v4i32: LoadAFormVec; def v2i64: LoadAFormVec; def v4f32: LoadAFormVec; def v2f64: LoadAFormVec; def r128: LoadAForm; def r64: LoadAForm; def r32: LoadAForm; def f32: LoadAForm; def f64: LoadAForm; def r16: LoadAForm; def r8: LoadAForm; } class LoadXFormVec : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), "lqx\t$rT, $src", LoadStore, [(set (vectype VECREG:$rT), (load xform_addr:$src))]> { } class LoadXForm : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src), "lqx\t$rT, $src", LoadStore, [(set rclass:$rT, (load xform_addr:$src))]> { } multiclass LoadXForms { def v16i8: LoadXFormVec; def v8i16: LoadXFormVec; def v4i32: LoadXFormVec; def v2i64: LoadXFormVec; def v4f32: LoadXFormVec; def v2f64: LoadXFormVec; def r128: LoadXForm; def r64: LoadXForm; def r32: LoadXForm; def f32: LoadXForm; def f64: LoadXForm; def r16: LoadXForm; def r8: LoadXForm; } defm LQA : LoadAForms; defm LQD : LoadDForms; defm LQX : LoadXForms; /* Load quadword, PC relative: Not much use at this point in time. Might be of use later for relocatable code. It's effectively the same as LQA, but uses PC-relative addressing. def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp), "lqr\t$rT, $disp", LoadStore, [(set VECREG:$rT, (load iaddr:$disp))]>; */ } //===----------------------------------------------------------------------===// // Stores: //===----------------------------------------------------------------------===// class StoreDFormVec : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src), "stqd\t$rT, $src", LoadStore, [(store (vectype VECREG:$rT), dform_addr:$src)]> { } class StoreDForm : RI10Form<0b00100100, (outs), (ins rclass:$rT, memri10:$src), "stqd\t$rT, $src", LoadStore, [(store rclass:$rT, dform_addr:$src)]> { } multiclass StoreDForms { def v16i8: StoreDFormVec; def v8i16: StoreDFormVec; def v4i32: StoreDFormVec; def v2i64: StoreDFormVec; def v4f32: StoreDFormVec; def v2f64: StoreDFormVec; def r128: StoreDForm; def r64: StoreDForm; def r32: StoreDForm; def f32: StoreDForm; def f64: StoreDForm; def r16: StoreDForm; def r8: StoreDForm; } class StoreAFormVec : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src), "stqa\t$rT, $src", LoadStore, [(store (vectype VECREG:$rT), aform_addr:$src)]> { } class StoreAForm : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src), "stqa\t$rT, $src", LoadStore, [(store rclass:$rT, aform_addr:$src)]> { } multiclass StoreAForms { def v16i8: StoreAFormVec; def v8i16: StoreAFormVec; def v4i32: StoreAFormVec; def v2i64: StoreAFormVec; def v4f32: StoreAFormVec; def v2f64: StoreAFormVec; def r128: StoreAForm; def r64: StoreAForm; def r32: StoreAForm; def f32: StoreAForm; def f64: StoreAForm; def r16: StoreAForm; def r8: StoreAForm; } class StoreXFormVec : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), "stqx\t$rT, $src", LoadStore, [(store (vectype VECREG:$rT), xform_addr:$src)]> { } class StoreXForm : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src), "stqx\t$rT, $src", LoadStore, [(store rclass:$rT, xform_addr:$src)]> { } multiclass StoreXForms { def v16i8: StoreXFormVec; def v8i16: StoreXFormVec; def v4i32: StoreXFormVec; def v2i64: StoreXFormVec; def v4f32: StoreXFormVec; def v2f64: StoreXFormVec; def r128: StoreXForm; def r64: StoreXForm; def r32: StoreXForm; def f32: StoreXForm; def f64: StoreXForm; def r16: StoreXForm; def r8: StoreXForm; } defm STQD : StoreDForms; defm STQA : StoreAForms; defm STQX : StoreXForms; /* Store quadword, PC relative: Not much use at this point in time. Might be useful for relocatable code. def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp), "stqr\t$rT, $disp", LoadStore, [(store VECREG:$rT, iaddr:$disp)]>; */ //===----------------------------------------------------------------------===// // Generate Controls for Insertion: //===----------------------------------------------------------------------===// def CBD : RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src), "cbd\t$rT, $src", ShuffleOp, [(set (v16i8 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; def CBX : RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src), "cbx\t$rT, $src", ShuffleOp, [(set (v16i8 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; def CHD : RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src), "chd\t$rT, $src", ShuffleOp, [(set (v8i16 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; def CHX : RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src), "chx\t$rT, $src", ShuffleOp, [(set (v8i16 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; def CWD : RI7Form<0b01101111100, (outs VECREG:$rT), (ins memri7:$src), "cwd\t$rT, $src", ShuffleOp, [(set (v4i32 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; def CWX : RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), "cwx\t$rT, $src", ShuffleOp, [(set (v4i32 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; def CDD : RI7Form<0b11101111100, (outs VECREG:$rT), (ins memri7:$src), "cdd\t$rT, $src", ShuffleOp, [(set (v2i64 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>; def CDX : RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), "cdx\t$rT, $src", ShuffleOp, [(set (v2i64 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>; //===----------------------------------------------------------------------===// // Constant formation: //===----------------------------------------------------------------------===// def ILHv8i16: RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val), "ilh\t$rT, $val", ImmLoad, [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>; def ILHr16: RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val), "ilh\t$rT, $val", ImmLoad, [(set R16C:$rT, immSExt16:$val)]>; // Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with // the right constant") def ILHr8: RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val), "ilh\t$rT, $val", ImmLoad, [(set R8C:$rT, immSExt8:$val)]>; // IL does sign extension! def ILr64: RI16Form<0b100000010, (outs R64C:$rT), (ins s16imm_i64:$val), "il\t$rT, $val", ImmLoad, [(set R64C:$rT, immSExt16:$val)]>; def ILv2i64: RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm_i64:$val), "il\t$rT, $val", ImmLoad, [(set VECREG:$rT, (v2i64 v2i64SExt16Imm:$val))]>; def ILv4i32: RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm:$val), "il\t$rT, $val", ImmLoad, [(set VECREG:$rT, (v4i32 v4i32SExt16Imm:$val))]>; def ILr32: RI16Form<0b100000010, (outs R32C:$rT), (ins s16imm_i32:$val), "il\t$rT, $val", ImmLoad, [(set R32C:$rT, immSExt16:$val)]>; def ILf32: RI16Form<0b100000010, (outs R32FP:$rT), (ins s16imm_f32:$val), "il\t$rT, $val", ImmLoad, [(set R32FP:$rT, fpimmSExt16:$val)]>; def ILf64: RI16Form<0b100000010, (outs R64FP:$rT), (ins s16imm_f64:$val), "il\t$rT, $val", ImmLoad, [(set R64FP:$rT, fpimmSExt16:$val)]>; def ILHUv4i32: RI16Form<0b010000010, (outs VECREG:$rT), (ins u16imm:$val), "ilhu\t$rT, $val", ImmLoad, [(set VECREG:$rT, (v4i32 immILHUvec:$val))]>; def ILHUr32: RI16Form<0b010000010, (outs R32C:$rT), (ins u16imm:$val), "ilhu\t$rT, $val", ImmLoad, [(set R32C:$rT, hi16:$val)]>; // ILHUf32: Used to custom lower float constant loads def ILHUf32: RI16Form<0b010000010, (outs R32FP:$rT), (ins f16imm:$val), "ilhu\t$rT, $val", ImmLoad, [(set R32FP:$rT, hi16_f32:$val)]>; // ILHUhi: Used for loading high portion of an address. Note the symbolHi // printer used for the operand. def ILHUhi : RI16Form<0b010000010, (outs R32C:$rT), (ins symbolHi:$val), "ilhu\t$rT, $val", ImmLoad, [(set R32C:$rT, hi16:$val)]>; // Immediate load address (can also be used to load 18-bit unsigned constants, // see the zext 16->32 pattern) def ILAr64: RI18Form<0b1000010, (outs R64C:$rT), (ins u18imm_i64:$val), "ila\t$rT, $val", LoadNOP, [(set R64C:$rT, imm18:$val)]>; // TODO: ILAv2i64 def ILAv2i64: RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val), "ila\t$rT, $val", LoadNOP, [(set (v2i64 VECREG:$rT), v2i64Uns18Imm:$val)]>; def ILAv4i32: RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val), "ila\t$rT, $val", LoadNOP, [(set (v4i32 VECREG:$rT), v4i32Uns18Imm:$val)]>; def ILAr32: RI18Form<0b1000010, (outs R32C:$rT), (ins u18imm:$val), "ila\t$rT, $val", LoadNOP, [(set R32C:$rT, imm18:$val)]>; def ILAf32: RI18Form<0b1000010, (outs R32FP:$rT), (ins f18imm:$val), "ila\t$rT, $val", LoadNOP, [(set R32FP:$rT, fpimm18:$val)]>; def ILAf64: RI18Form<0b1000010, (outs R64FP:$rT), (ins f18imm_f64:$val), "ila\t$rT, $val", LoadNOP, [(set R64FP:$rT, fpimm18:$val)]>; def ILAlo: RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLo:$val), "ila\t$rT, $val", ImmLoad, [(set R32C:$rT, imm18:$val)]>; def ILAlsa: RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLSA:$val), "ila\t$rT, $val", ImmLoad, [/* no pattern */]>; // Immediate OR, Halfword Lower: The "other" part of loading large constants // into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...> // Note that these are really two operand instructions, but they're encoded // as three operands with the first two arguments tied-to each other. def IOHLvec: RI16Form<0b100000110, (outs VECREG:$rT), (ins VECREG:$rS, u16imm:$val), "iohl\t$rT, $val", ImmLoad, [/* insert intrinsic here */]>, RegConstraint<"$rS = $rT">, NoEncode<"$rS">; def IOHLr32: RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, i32imm:$val), "iohl\t$rT, $val", ImmLoad, [/* insert intrinsic here */]>, RegConstraint<"$rS = $rT">, NoEncode<"$rS">; def IOHLf32: RI16Form<0b100000110, (outs R32FP:$rT), (ins R32FP:$rS, f32imm:$val), "iohl\t$rT, $val", ImmLoad, [/* insert intrinsic here */]>, RegConstraint<"$rS = $rT">, NoEncode<"$rS">; def IOHLlo: RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, symbolLo:$val), "iohl\t$rT, $val", ImmLoad, [/* no pattern */]>, RegConstraint<"$rS = $rT">, NoEncode<"$rS">; // Form select mask for bytes using immediate, used in conjunction with the // SELB instruction: class FSMBIVec : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), "fsmbi\t$rT, $val", SelectOp, [(set (vectype VECREG:$rT), (SPUfsmbi immU16:$val))]> { } multiclass FSMBIs { def v16i8: FSMBIVec; def v8i16: FSMBIVec; def v4i32: FSMBIVec; def v2i64: FSMBIVec; } defm FSMBI : FSMBIs; //===----------------------------------------------------------------------===// // Integer and Logical Operations: //===----------------------------------------------------------------------===// def AHv8i16: RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "ah\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>; def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), (AHv8i16 VECREG:$rA, VECREG:$rB)>; // [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def AHr16: RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "ah\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>; def AHIvec: RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "ahi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def AHIr16 : RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "ahi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (add R16C:$rA, v8i16SExt10Imm:$val))]>; def Avec : RRForm<0b00000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "a\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def : Pat<(add (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)), (Avec VECREG:$rA, VECREG:$rB)>; def Ar32 : RRForm<0b00000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "a\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (add R32C:$rA, R32C:$rB))]>; def Ar8: RRForm<0b00000011000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "a\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (add R8C:$rA, R8C:$rB))]>; def AIvec: RI10Form<0b00111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "ai\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; def AIr32: RI10Form<0b00111000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "ai\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (add R32C:$rA, i32ImmSExt10:$val))]>; def SFHvec: RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "sfh\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def SFHr16: RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "sfh\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>; def SFHIvec: RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "sfhi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val, (v8i16 VECREG:$rA)))]>; def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "sfhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>; def SFvec : RRForm<0b00000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "sf\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "sf\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>; def SFIvec: RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "sfi\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val, (v4i32 VECREG:$rA)))]>; def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "sfi\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>; // ADDX: only available in vector form, doesn't match a pattern. def ADDXvec: RRForm<0b00000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), "addx\t$rT, $rA, $rB", IntegerOp, []>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; // CG: only available in vector form, doesn't match a pattern. def CGvec: RRForm<0b01000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), "cg\t$rT, $rA, $rB", IntegerOp, []>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; // SFX: only available in vector form, doesn't match a pattern def SFXvec: RRForm<0b10000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), "sfx\t$rT, $rA, $rB", IntegerOp, []>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; // BG: only available in vector form, doesn't match a pattern. def BGvec: RRForm<0b01000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), "bg\t$rT, $rA, $rB", IntegerOp, []>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; // BGX: only available in vector form, doesn't match a pattern. def BGXvec: RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), "bgx\t$rT, $rA, $rB", IntegerOp, []>, RegConstraint<"$rCarry = $rT">, NoEncode<"$rCarry">; // Halfword multiply variants: // N.B: These can be used to build up larger quantities (16x16 -> 32) def MPYv8i16: RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpy\t$rT, $rA, $rB", IntegerMulDiv, [(set (v8i16 VECREG:$rT), (SPUmpy_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def MPYr16: RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "mpy\t$rT, $rA, $rB", IntegerMulDiv, [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>; def MPYUv4i32: RRForm<0b00110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpyu\t$rT, $rA, $rB", IntegerMulDiv, [(set (v4i32 VECREG:$rT), (SPUmpyu_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def MPYUr16: RRForm<0b00110011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB), "mpyu\t$rT, $rA, $rB", IntegerMulDiv, [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>; def MPYUr32: RRForm<0b00110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "mpyu\t$rT, $rA, $rB", IntegerMulDiv, [(set R32C:$rT, (SPUmpyu_i32 R32C:$rA, R32C:$rB))]>; // mpyi: multiply 16 x s10imm -> 32 result (custom lowering for 32 bit result, // this only produces the lower 16 bits) def MPYIvec: RI10Form<0b00101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "mpyi\t$rT, $rA, $val", IntegerMulDiv, [(set (v8i16 VECREG:$rT), (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def MPYIr16: RI10Form<0b00101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "mpyi\t$rT, $rA, $val", IntegerMulDiv, [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>; // mpyui: same issues as other multiplies, plus, this doesn't match a // pattern... but may be used during target DAG selection or lowering def MPYUIvec: RI10Form<0b10101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "mpyui\t$rT, $rA, $val", IntegerMulDiv, []>; def MPYUIr16: RI10Form<0b10101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "mpyui\t$rT, $rA, $val", IntegerMulDiv, []>; // mpya: 16 x 16 + 16 -> 32 bit result def MPYAvec: RRRForm<0b0011, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, [(set (v4i32 VECREG:$rT), (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))), (v4i32 VECREG:$rC)))]>; def MPYAr32: RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), R32C:$rC))]>; def : Pat<(add (mul (sext R16C:$rA), (sext R16C:$rB)), R32C:$rC), (MPYAr32 R16C:$rA, R16C:$rB, R32C:$rC)>; def MPYAr32_sextinreg: RRRForm<0b0011, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16), (sext_inreg R32C:$rB, i16)), R32C:$rC))]>; //def MPYAr32: // RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), // "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, // [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), // R32C:$rC))]>; // mpyh: multiply high, used to synthesize 32-bit multiplies def MPYHv4i32: RRForm<0b10100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpyh\t$rT, $rA, $rB", IntegerMulDiv, [(set (v4i32 VECREG:$rT), (SPUmpyh_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def MPYHr32: RRForm<0b10100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "mpyh\t$rT, $rA, $rB", IntegerMulDiv, [(set R32C:$rT, (SPUmpyh_i32 R32C:$rA, R32C:$rB))]>; // mpys: multiply high and shift right (returns the top half of // a 16-bit multiply, sign extended to 32 bits.) def MPYSvec: RRForm<0b11100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpys\t$rT, $rA, $rB", IntegerMulDiv, []>; def MPYSr16: RRForm<0b11100011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB), "mpys\t$rT, $rA, $rB", IntegerMulDiv, []>; // mpyhh: multiply high-high (returns the 32-bit result from multiplying // the top 16 bits of the $rA, $rB) def MPYHHv8i16: RRForm<0b01100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, [(set (v8i16 VECREG:$rT), (SPUmpyhh_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def MPYHHr32: RRForm<0b01100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, []>; // mpyhha: Multiply high-high, add to $rT: def MPYHHAvec: RRForm<0b01100010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, []>; def MPYHHAr32: RRForm<0b01100010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, []>; // mpyhhu: Multiply high-high, unsigned def MPYHHUvec: RRForm<0b01110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, []>; def MPYHHUr32: RRForm<0b01110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, []>; // mpyhhau: Multiply high-high, unsigned def MPYHHAUvec: RRForm<0b01110010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, []>; def MPYHHAUr32: RRForm<0b01110010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, []>; // clz: Count leading zeroes def CLZv4i32: RRForm_1<0b10100101010, (outs VECREG:$rT), (ins VECREG:$rA), "clz\t$rT, $rA", IntegerOp, [/* intrinsic */]>; def CLZr32: RRForm_1<0b10100101010, (outs R32C:$rT), (ins R32C:$rA), "clz\t$rT, $rA", IntegerOp, [(set R32C:$rT, (ctlz R32C:$rA))]>; // cntb: Count ones in bytes (aka "population count") // NOTE: This instruction is really a vector instruction, but the custom // lowering code uses it in unorthodox ways to support CTPOP for other // data types! def CNTBv16i8: RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), "cntb\t$rT, $rA", IntegerOp, [(set (v16i8 VECREG:$rT), (SPUcntb_v16i8 (v16i8 VECREG:$rA)))]>; def CNTBv8i16 : RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), "cntb\t$rT, $rA", IntegerOp, [(set (v8i16 VECREG:$rT), (SPUcntb_v8i16 (v8i16 VECREG:$rA)))]>; def CNTBv4i32 : RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), "cntb\t$rT, $rA", IntegerOp, [(set (v4i32 VECREG:$rT), (SPUcntb_v4i32 (v4i32 VECREG:$rA)))]>; // fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits def FSMB: RRForm_1<0b01101101100, (outs VECREG:$rT), (ins R16C:$rA), "fsmb\t$rT, $rA", SelectOp, []>; // fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is // only 8-bits wide (even though it's input as 16-bits here) def FSMH: RRForm_1<0b10101101100, (outs VECREG:$rT), (ins R16C:$rA), "fsmh\t$rT, $rA", SelectOp, []>; // fsm: Form select mask for words. Like the other fsm* instructions, // only the lower 4 bits of $rA are significant. def FSM: RRForm_1<0b00101101100, (outs VECREG:$rT), (ins R16C:$rA), "fsm\t$rT, $rA", SelectOp, []>; // gbb: Gather all low order bits from each byte in $rA into a single 16-bit // quantity stored into $rT def GBB: RRForm_1<0b01001101100, (outs R16C:$rT), (ins VECREG:$rA), "gbb\t$rT, $rA", GatherOp, []>; // gbh: Gather all low order bits from each halfword in $rA into a single // 8-bit quantity stored in $rT def GBH: RRForm_1<0b10001101100, (outs R16C:$rT), (ins VECREG:$rA), "gbh\t$rT, $rA", GatherOp, []>; // gb: Gather all low order bits from each word in $rA into a single // 4-bit quantity stored in $rT def GB: RRForm_1<0b00001101100, (outs R16C:$rT), (ins VECREG:$rA), "gb\t$rT, $rA", GatherOp, []>; // avgb: average bytes def AVGB: RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "avgb\t$rT, $rA, $rB", ByteOp, []>; // absdb: absolute difference of bytes def ABSDB: RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "absdb\t$rT, $rA, $rB", ByteOp, []>; // sumb: sum bytes into halfwords def SUMB: RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "sumb\t$rT, $rA, $rB", ByteOp, []>; // Sign extension operations: def XSBHvec: RRForm_1<0b01101101010, (outs VECREG:$rDst), (ins VECREG:$rSrc), "xsbh\t$rDst, $rSrc", IntegerOp, [(set (v8i16 VECREG:$rDst), (sext (v16i8 VECREG:$rSrc)))]>; // Ordinary form for XSBH def XSBHr16: RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R16C:$rSrc), "xsbh\t$rDst, $rSrc", IntegerOp, [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>; def XSBHr8: RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R8C:$rSrc), "xsbh\t$rDst, $rSrc", IntegerOp, [(set R16C:$rDst, (sext R8C:$rSrc))]>; // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32 // pattern below). Intentionally doesn't match a pattern because we want the // sext 8->32 pattern to do the work for us, namely because we need the extra // XSHWr32. def XSBHr32: RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc), "xsbh\t$rDst, $rSrc", IntegerOp, [(set R32C:$rDst, (sext_inreg R32C:$rSrc, i8))]>; // Sign extend halfwords to words: def XSHWvec: RRForm_1<0b01101101010, (outs VECREG:$rDest), (ins VECREG:$rSrc), "xshw\t$rDest, $rSrc", IntegerOp, [(set (v4i32 VECREG:$rDest), (sext (v8i16 VECREG:$rSrc)))]>; def XSHWr32: RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc), "xshw\t$rDst, $rSrc", IntegerOp, [(set R32C:$rDst, (sext_inreg R32C:$rSrc, i16))]>; def XSHWr16: RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R16C:$rSrc), "xshw\t$rDst, $rSrc", IntegerOp, [(set R32C:$rDst, (sext R16C:$rSrc))]>; def XSWDvec: RRForm_1<0b01100101010, (outs VECREG:$rDst), (ins VECREG:$rSrc), "xswd\t$rDst, $rSrc", IntegerOp, [(set (v2i64 VECREG:$rDst), (sext (v4i32 VECREG:$rSrc)))]>; def XSWDr64: RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R64C:$rSrc), "xswd\t$rDst, $rSrc", IntegerOp, [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>; def XSWDr32: RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R32C:$rSrc), "xswd\t$rDst, $rSrc", IntegerOp, [(set R64C:$rDst, (SPUsext32_to_64 R32C:$rSrc))]>; def : Pat<(sext R32C:$inp), (XSWDr32 R32C:$inp)>; // AND operations def ANDv16i8: RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>; def ANDv8i16: RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def ANDv4i32: RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def ANDr32: RRForm<0b10000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (and R32C:$rA, R32C:$rB))]>; //===--------------------------------------------- // Special instructions to perform the fabs instruction def ANDfabs32: RRForm<0b10000011000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), "and\t$rT, $rA, $rB", IntegerOp, [/* Intentionally does not match a pattern */]>; def ANDfabs64: RRForm<0b10000011000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB), "and\t$rT, $rA, $rB", IntegerOp, [/* Intentionally does not match a pattern */]>; // Could use ANDv4i32, but won't for clarity def ANDfabsvec: RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "and\t$rT, $rA, $rB", IntegerOp, [/* Intentionally does not match a pattern */]>; //===--------------------------------------------- def ANDr16: RRForm<0b10000011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (and R16C:$rA, R16C:$rB))]>; def ANDr8: RRForm<0b10000011000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (and R8C:$rA, R8C:$rB))]>; // Hacked form of AND to zero-extend 16-bit quantities to 32-bit // quantities -- see 16->32 zext pattern. // // This pattern is somewhat artificial, since it might match some // compiler generated pattern but it is unlikely to do so. def AND2To4: RRForm<0b10000011000, (outs R32C:$rT), (ins R16C:$rA, R32C:$rB), "and\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>; // N.B.: vnot_conv is one of those special target selection pattern fragments, // in which we expect there to be a bit_convert on the constant. Bear in mind // that llvm translates "not " to "xor , -1" (or in this case, a // constant -1 vector.) def ANDCv16i8: RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "andc\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))))]>; def ANDCv8i16: RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "andc\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))))]>; def ANDCv4i32: RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "andc\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))))]>; def ANDCr32: RRForm<0b10000011010, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "andc\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (and R32C:$rA, (not R32C:$rB)))]>; def ANDCr16: RRForm<0b10000011010, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "andc\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (and R16C:$rA, (not R16C:$rB)))]>; def ANDCr8: RRForm<0b10000011010, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "andc\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (and R8C:$rA, (not R8C:$rB)))]>; def ANDBIv16i8: RI10Form<0b01101000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), "andbi\t$rT, $rA, $val", IntegerOp, [(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>; def ANDBIr8: RI10Form<0b01101000, (outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), "andbi\t$rT, $rA, $val", IntegerOp, [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>; def ANDHIv8i16: RI10Form<0b10101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "andhi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def ANDHIr16: RI10Form<0b10101000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "andhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>; def ANDHI1To2: RI10Form<0b10101000, (outs R16C:$rT), (ins R8C:$rA, s10imm:$val), "andhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (and (zext R8C:$rA), i16ImmSExt10:$val))]>; def ANDIv4i32: RI10Form<0b00101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "andi\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; def ANDIr32: RI10Form<0b10101000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "andi\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>; // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32 // pattern below. def ANDI1To4: RI10Form<0b10101000, (outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), "andi\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (and (zext R8C:$rA), i32ImmSExt10:$val))]>; // Hacked form of ANDI to zero-extend i16 quantities to i32. See the // zext 16->32 pattern below. // // Note that this pattern is somewhat artificial, since it might match // something the compiler generates but is unlikely to occur in practice. def ANDI2To4: RI10Form<0b10101000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), "andi\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (and (zext R16C:$rA), i32ImmSExt10:$val))]>; // Bitwise OR group: // Bitwise "or" (N.B.: These are also register-register copy instructions...) def ORv16i8: RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>; def ORv8i16: RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def ORv4i32: RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def ORv4f32: RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set (v4f32 VECREG:$rT), (v4f32 (bitconvert (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))))]>; def ORv2f64: RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set (v2f64 VECREG:$rT), (v2f64 (bitconvert (or (v2i64 VECREG:$rA), (v2i64 VECREG:$rB)))))]>; def ORgprc: RRForm<0b10000010000, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set GPRC:$rT, (or GPRC:$rA, GPRC:$rB))]>; def ORr64: RRForm<0b10000010000, (outs R64C:$rT), (ins R64C:$rA, R64C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set R64C:$rT, (or R64C:$rA, R64C:$rB))]>; def ORr32: RRForm<0b10000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (or R32C:$rA, R32C:$rB))]>; def ORr16: RRForm<0b10000010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (or R16C:$rA, R16C:$rB))]>; def ORr8: RRForm<0b10000010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (or R8C:$rA, R8C:$rB))]>; // OR instruction forms that are used to copy f32 and f64 registers. // They do not match patterns. def ORf32: RRForm<0b10000010000, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def ORf64: RRForm<0b10000010000, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; // ORv*_*: Used in scalar->vector promotions: def ORv16i8_i8: RRForm<0b10000010000, (outs VECREG:$rT), (ins R8C:$rA, R8C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(v16i8 (SPUpromote_scalar R8C:$rA)), (ORv16i8_i8 R8C:$rA, R8C:$rA)>; def ORv8i16_i16: RRForm<0b10000010000, (outs VECREG:$rT), (ins R16C:$rA, R16C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(v8i16 (SPUpromote_scalar R16C:$rA)), (ORv8i16_i16 R16C:$rA, R16C:$rA)>; def ORv4i32_i32: RRForm<0b10000010000, (outs VECREG:$rT), (ins R32C:$rA, R32C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(v4i32 (SPUpromote_scalar R32C:$rA)), (ORv4i32_i32 R32C:$rA, R32C:$rA)>; def ORv2i64_i64: RRForm<0b10000010000, (outs VECREG:$rT), (ins R64C:$rA, R64C:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(v2i64 (SPUpromote_scalar R64C:$rA)), (ORv2i64_i64 R64C:$rA, R64C:$rA)>; def ORv4f32_f32: RRForm<0b10000010000, (outs VECREG:$rT), (ins R32FP:$rA, R32FP:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(v4f32 (SPUpromote_scalar R32FP:$rA)), (ORv4f32_f32 R32FP:$rA, R32FP:$rA)>; def ORv2f64_f64: RRForm<0b10000010000, (outs VECREG:$rT), (ins R64FP:$rA, R64FP:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(v2f64 (SPUpromote_scalar R64FP:$rA)), (ORv2f64_f64 R64FP:$rA, R64FP:$rA)>; // ORi*_v*: Used to extract vector element 0 (the preferred slot) def ORi8_v16i8: RRForm<0b10000010000, (outs R8C:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(SPUextract_elt0 (v16i8 VECREG:$rA)), (ORi8_v16i8 VECREG:$rA, VECREG:$rA)>; def : Pat<(SPUextract_elt0_chained (v16i8 VECREG:$rA)), (ORi8_v16i8 VECREG:$rA, VECREG:$rA)>; def ORi16_v8i16: RRForm<0b10000010000, (outs R16C:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(SPUextract_elt0 (v8i16 VECREG:$rA)), (ORi16_v8i16 VECREG:$rA, VECREG:$rA)>; def : Pat<(SPUextract_elt0_chained (v8i16 VECREG:$rA)), (ORi16_v8i16 VECREG:$rA, VECREG:$rA)>; def ORi32_v4i32: RRForm<0b10000010000, (outs R32C:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(SPUextract_elt0 (v4i32 VECREG:$rA)), (ORi32_v4i32 VECREG:$rA, VECREG:$rA)>; def : Pat<(SPUextract_elt0_chained (v4i32 VECREG:$rA)), (ORi32_v4i32 VECREG:$rA, VECREG:$rA)>; def ORi64_v2i64: RRForm<0b10000010000, (outs R64C:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(SPUextract_elt0 (v2i64 VECREG:$rA)), (ORi64_v2i64 VECREG:$rA, VECREG:$rA)>; def : Pat<(SPUextract_elt0_chained (v2i64 VECREG:$rA)), (ORi64_v2i64 VECREG:$rA, VECREG:$rA)>; def ORf32_v4f32: RRForm<0b10000010000, (outs R32FP:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(SPUextract_elt0 (v4f32 VECREG:$rA)), (ORf32_v4f32 VECREG:$rA, VECREG:$rA)>; def : Pat<(SPUextract_elt0_chained (v4f32 VECREG:$rA)), (ORf32_v4f32 VECREG:$rA, VECREG:$rA)>; def ORf64_v2f64: RRForm<0b10000010000, (outs R64FP:$rT), (ins VECREG:$rA, VECREG:$rB), "or\t$rT, $rA, $rB", IntegerOp, [/* no pattern */]>; def : Pat<(SPUextract_elt0 (v2f64 VECREG:$rA)), (ORf64_v2f64 VECREG:$rA, VECREG:$rA)>; def : Pat<(SPUextract_elt0_chained (v2f64 VECREG:$rA)), (ORf64_v2f64 VECREG:$rA, VECREG:$rA)>; // ORC: Bitwise "or" with complement (match before ORvec, ORr32) def ORCv16i8: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "orc\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))))]>; def ORCv8i16: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "orc\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))))]>; def ORCv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "orc\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))))]>; def ORCr32: RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "orc\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (or R32C:$rA, (not R32C:$rB)))]>; def ORCr16: RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "orc\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (or R16C:$rA, (not R16C:$rB)))]>; def ORCr8: RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "orc\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (or R8C:$rA, (not R8C:$rB)))]>; // OR byte immediate def ORBIv16i8: RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), "orbi\t$rT, $rA, $val", IntegerOp, [(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>; def ORBIr8: RI10Form<0b01100000, (outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), "orbi\t$rT, $rA, $val", IntegerOp, [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>; // OR halfword immediate def ORHIv8i16: RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), "orhi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), v8i16Uns10Imm:$val))]>; def ORHIr16: RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, u10imm:$val), "orhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>; // Hacked form of ORHI used to promote 8-bit registers to 16-bit def ORHI1To2: RI10Form<0b10100000, (outs R16C:$rT), (ins R8C:$rA, s10imm:$val), "orhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (or (anyext R8C:$rA), i16ImmSExt10:$val))]>; // Bitwise "or" with immediate def ORIv4i32: RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), "ori\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), v4i32Uns10Imm:$val))]>; def ORIr32: RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val), "ori\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>; def ORIr64: RI10Form_1<0b00100000, (outs R64C:$rT), (ins R64C:$rA, s10imm_i32:$val), "ori\t$rT, $rA, $val", IntegerOp, [/* no pattern */]>; // ORI2To4: hacked version of the ori instruction to extend 16-bit quantities // to 32-bit quantities. used exclusively to match "anyext" conversions (vide // infra "anyext 16->32" pattern.) def ORI2To4: RI10Form<0b00100000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), "ori\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (or (anyext R16C:$rA), i32ImmSExt10:$val))]>; // ORI1To4: Hacked version of the ORI instruction to extend 16-bit quantities // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide // infra "anyext 16->32" pattern.) def ORI1To4: RI10Form<0b00100000, (outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), "ori\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (or (anyext R8C:$rA), i32ImmSExt10:$val))]>; // ORX: "or" across the vector: or's $rA's word slots leaving the result in // $rT[0], slots 1-3 are zeroed. // // FIXME: Needs to match an intrinsic pattern. def ORXv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "orx\t$rT, $rA, $rB", IntegerOp, []>; // XOR: def XORv16i8: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>; def XORv8i16: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>; def XORv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def XORr32: RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (xor R32C:$rA, R32C:$rB))]>; //==---------------------------------------------------------- // Special forms for floating point instructions. // Bitwise ORs and ANDs don't make sense for normal floating // point numbers. These operations (fneg and fabs), however, // require bitwise logical ops to manipulate the sign bit. def XORfneg32: RRForm<0b10010010000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [/* Intentionally does not match a pattern, see fneg32 */]>; // KLUDGY! Better way to do this without a VECREG? bitconvert? // VECREG is assumed to contain two identical 64-bit masks, so // it doesn't matter which word we select for the xor def XORfneg64: RRForm<0b10010010000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [/* Intentionally does not match a pattern, see fneg64 */]>; // Could use XORv4i32, but will use this for clarity def XORfnegvec: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [/* Intentionally does not match a pattern, see fneg{32,64} */]>; //==---------------------------------------------------------- def XORr16: RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (xor R16C:$rA, R16C:$rB))]>; def XORr8: RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "xor\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (xor R8C:$rA, R8C:$rB))]>; def XORBIv16i8: RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), "xorbi\t$rT, $rA, $val", IntegerOp, [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>; def XORBIr8: RI10Form<0b01100000, (outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), "xorbi\t$rT, $rA, $val", IntegerOp, [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>; def XORHIv8i16: RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "xorhi\t$rT, $rA, $val", IntegerOp, [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; def XORHIr16: RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "xorhi\t$rT, $rA, $val", IntegerOp, [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>; def XORIv4i32: RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "xori\t$rT, $rA, $val", IntegerOp, [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; def XORIr32: RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "xori\t$rT, $rA, $val", IntegerOp, [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>; // NAND: def NANDv16i8: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "nand\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (vnot (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))))]>; def NANDv8i16: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "nand\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (vnot (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))))]>; def NANDv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "nand\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (vnot (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))))]>; def NANDr32: RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "nand\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (not (and R32C:$rA, R32C:$rB)))]>; def NANDr16: RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "nand\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (not (and R16C:$rA, R16C:$rB)))]>; def NANDr8: RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "nand\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (not (and R8C:$rA, R8C:$rB)))]>; // NOR: def NORv16i8: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "nor\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (vnot (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))))]>; def NORv8i16: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "nor\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (vnot (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))))]>; def NORv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "nor\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (vnot (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))))]>; def NORr32: RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "nor\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (not (or R32C:$rA, R32C:$rB)))]>; def NORr16: RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "nor\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (not (or R16C:$rA, R16C:$rB)))]>; def NORr8: RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "nor\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (not (or R8C:$rA, R8C:$rB)))]>; // EQV: Equivalence (1 for each same bit, otherwise 0) def EQVv16i8: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "eqv\t$rT, $rA, $rB", IntegerOp, [(set (v16i8 VECREG:$rT), (or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)), (and (vnot (v16i8 VECREG:$rA)), (vnot (v16i8 VECREG:$rB)))))]>; def : Pat<(xor (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))), (EQVv16i8 VECREG:$rA, VECREG:$rB)>; def : Pat<(xor (vnot (v16i8 VECREG:$rA)), (v16i8 VECREG:$rB)), (EQVv16i8 VECREG:$rA, VECREG:$rB)>; def EQVv8i16: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "eqv\t$rT, $rA, $rB", IntegerOp, [(set (v8i16 VECREG:$rT), (or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), (and (vnot (v8i16 VECREG:$rA)), (vnot (v8i16 VECREG:$rB)))))]>; def : Pat<(xor (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))), (EQVv8i16 VECREG:$rA, VECREG:$rB)>; def : Pat<(xor (vnot (v8i16 VECREG:$rA)), (v8i16 VECREG:$rB)), (EQVv8i16 VECREG:$rA, VECREG:$rB)>; def EQVv4i32: RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "eqv\t$rT, $rA, $rB", IntegerOp, [(set (v4i32 VECREG:$rT), (or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)), (and (vnot (v4i32 VECREG:$rA)), (vnot (v4i32 VECREG:$rB)))))]>; def : Pat<(xor (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))), (EQVv4i32 VECREG:$rA, VECREG:$rB)>; def : Pat<(xor (vnot (v4i32 VECREG:$rA)), (v4i32 VECREG:$rB)), (EQVv4i32 VECREG:$rA, VECREG:$rB)>; def EQVr32: RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "eqv\t$rT, $rA, $rB", IntegerOp, [(set R32C:$rT, (or (and R32C:$rA, R32C:$rB), (and (not R32C:$rA), (not R32C:$rB))))]>; def : Pat<(xor R32C:$rA, (not R32C:$rB)), (EQVr32 R32C:$rA, R32C:$rB)>; def : Pat<(xor (not R32C:$rA), R32C:$rB), (EQVr32 R32C:$rA, R32C:$rB)>; def EQVr16: RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "eqv\t$rT, $rA, $rB", IntegerOp, [(set R16C:$rT, (or (and R16C:$rA, R16C:$rB), (and (not R16C:$rA), (not R16C:$rB))))]>; def : Pat<(xor R16C:$rA, (not R16C:$rB)), (EQVr16 R16C:$rA, R16C:$rB)>; def : Pat<(xor (not R16C:$rA), R16C:$rB), (EQVr16 R16C:$rA, R16C:$rB)>; def EQVr8: RRForm<0b10010010000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "eqv\t$rT, $rA, $rB", IntegerOp, [(set R8C:$rT, (or (and R8C:$rA, R8C:$rB), (and (not R8C:$rA), (not R8C:$rB))))]>; def : Pat<(xor R8C:$rA, (not R8C:$rB)), (EQVr8 R8C:$rA, R8C:$rB)>; def : Pat<(xor (not R8C:$rA), R8C:$rB), (EQVr8 R8C:$rA, R8C:$rB)>; // gcc optimizes (p & q) | (~p & ~q) -> ~(p | q) | (p & q), so match that // pattern also: def : Pat<(or (vnot (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))), (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))), (EQVv16i8 VECREG:$rA, VECREG:$rB)>; def : Pat<(or (vnot (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))), (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))), (EQVv8i16 VECREG:$rA, VECREG:$rB)>; def : Pat<(or (vnot (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))), (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))), (EQVv4i32 VECREG:$rA, VECREG:$rB)>; def : Pat<(or (not (or R32C:$rA, R32C:$rB)), (and R32C:$rA, R32C:$rB)), (EQVr32 R32C:$rA, R32C:$rB)>; def : Pat<(or (not (or R16C:$rA, R16C:$rB)), (and R16C:$rA, R16C:$rB)), (EQVr16 R16C:$rA, R16C:$rB)>; def : Pat<(or (not (or R8C:$rA, R8C:$rB)), (and R8C:$rA, R8C:$rB)), (EQVr8 R8C:$rA, R8C:$rB)>; // Select bits: def SELBv16i8: RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "selb\t$rT, $rA, $rB, $rC", IntegerOp, [(set (v16i8 VECREG:$rT), (SPUselb_v16i8 (v16i8 VECREG:$rA), (v16i8 VECREG:$rB), (v16i8 VECREG:$rC)))]>; def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), (and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)), (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)), (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))), (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), (and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)), (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))), (SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def SELBv8i16: RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "selb\t$rT, $rA, $rB, $rC", IntegerOp, [(set (v8i16 VECREG:$rT), (SPUselb_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB), (v8i16 VECREG:$rC)))]>; def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), (and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)), (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)), (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))), (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), (and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)), (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))), (SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def SELBv4i32: RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "selb\t$rT, $rA, $rB, $rC", IntegerOp, [(set (v4i32 VECREG:$rT), (SPUselb_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB), (v4i32 VECREG:$rC)))]>; def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), (and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)), (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)), (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))), (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), (and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)), (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))), (SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def SELBr32: RRRForm<0b1000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), "selb\t$rT, $rA, $rB, $rC", IntegerOp, []>; // And the various patterns that can be matched... (all 8 of them :-) def : Pat<(or (and R32C:$rA, R32C:$rC), (and R32C:$rB, (not R32C:$rC))), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and R32C:$rC, R32C:$rA), (and R32C:$rB, (not R32C:$rC))), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and R32C:$rA, R32C:$rC), (and (not R32C:$rC), R32C:$rB)), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and R32C:$rC, R32C:$rA), (and (not R32C:$rC), R32C:$rB)), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and R32C:$rA, (not R32C:$rC)), (and R32C:$rB, R32C:$rC)), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and R32C:$rA, (not R32C:$rC)), (and R32C:$rC, R32C:$rB)), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and (not R32C:$rC), R32C:$rA), (and R32C:$rB, R32C:$rC)), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def : Pat<(or (and (not R32C:$rC), R32C:$rA), (and R32C:$rC, R32C:$rB)), (SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>; def SELBr16: RRRForm<0b1000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB, R16C:$rC), "selb\t$rT, $rA, $rB, $rC", IntegerOp, []>; def : Pat<(or (and R16C:$rA, R16C:$rC), (and R16C:$rB, (not R16C:$rC))), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and R16C:$rC, R16C:$rA), (and R16C:$rB, (not R16C:$rC))), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and R16C:$rA, R16C:$rC), (and (not R16C:$rC), R16C:$rB)), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and R16C:$rC, R16C:$rA), (and (not R16C:$rC), R16C:$rB)), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and R16C:$rA, (not R16C:$rC)), (and R16C:$rB, R16C:$rC)), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and R16C:$rA, (not R16C:$rC)), (and R16C:$rC, R16C:$rB)), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and (not R16C:$rC), R16C:$rA), (and R16C:$rB, R16C:$rC)), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def : Pat<(or (and (not R16C:$rC), R16C:$rA), (and R16C:$rC, R16C:$rB)), (SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>; def SELBr8: RRRForm<0b1000, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB, R8C:$rC), "selb\t$rT, $rA, $rB, $rC", IntegerOp, []>; def : Pat<(or (and R8C:$rA, R8C:$rC), (and R8C:$rB, (not R8C:$rC))), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and R8C:$rC, R8C:$rA), (and R8C:$rB, (not R8C:$rC))), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and R8C:$rA, R8C:$rC), (and (not R8C:$rC), R8C:$rB)), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and R8C:$rC, R8C:$rA), (and (not R8C:$rC), R8C:$rB)), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and R8C:$rA, (not R8C:$rC)), (and R8C:$rB, R8C:$rC)), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and R8C:$rA, (not R8C:$rC)), (and R8C:$rC, R8C:$rB)), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and (not R8C:$rC), R8C:$rA), (and R8C:$rB, R8C:$rC)), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; def : Pat<(or (and (not R8C:$rC), R8C:$rA), (and R8C:$rC, R8C:$rB)), (SELBr8 R8C:$rA, R8C:$rB, R8C:$rC)>; //===----------------------------------------------------------------------===// // Vector shuffle... //===----------------------------------------------------------------------===// def SHUFB: RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "shufb\t$rT, $rA, $rB, $rC", IntegerOp, [/* no pattern */]>; // SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB. // See the SPUshuffle SDNode operand above, which sets up the DAG pattern // matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with // the SPUISD::SHUFB opcode. def : Pat<(SPUshuffle (v16i8 VECREG:$rA), (v16i8 VECREG:$rB), VECREG:$rC), (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(SPUshuffle (v8i16 VECREG:$rA), (v8i16 VECREG:$rB), VECREG:$rC), (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(SPUshuffle (v4i32 VECREG:$rA), (v4i32 VECREG:$rB), VECREG:$rC), (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(SPUshuffle (v4f32 VECREG:$rA), (v4f32 VECREG:$rB), VECREG:$rC), (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(SPUshuffle (v2i64 VECREG:$rA), (v2i64 VECREG:$rB), VECREG:$rC), (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; def : Pat<(SPUshuffle (v2f64 VECREG:$rA), (v2f64 VECREG:$rB), VECREG:$rC), (SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>; //===----------------------------------------------------------------------===// // Shift and rotate group: //===----------------------------------------------------------------------===// def SHLHv8i16: RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), "shlh\t$rT, $rA, $rB", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_shl_v8i16 (v8i16 VECREG:$rA), R16C:$rB))]>; // $rB gets promoted to 32-bit register type when confronted with // this llvm assembly code: // // define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) { // %A = shl i16 %arg1, %arg2 // ret i16 %A // } // // However, we will generate this code when lowering 8-bit shifts and rotates. def SHLHr16: RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "shlh\t$rT, $rA, $rB", RotateShift, [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>; def SHLHr16_r32: RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), "shlh\t$rT, $rA, $rB", RotateShift, [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>; def SHLHIv8i16: RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i8:$val), "shlhi\t$rT, $rA, $val", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i8 uimm7:$val)))]>; def : Pat<(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)), (SHLHIv8i16 VECREG:$rA, imm:$val)>; def : Pat<(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)), (SHLHIv8i16 VECREG:$rA, imm:$val)>; def SHLHIr16: RI7Form<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), "shlhi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (shl R16C:$rA, (i32 uimm7:$val)))]>; def : Pat<(shl R16C:$rA, (i8 uimm7:$val)), (SHLHIr16 R16C:$rA, uimm7:$val)>; def : Pat<(shl R16C:$rA, (i16 uimm7:$val)), (SHLHIr16 R16C:$rA, uimm7:$val)>; def SHLv4i32: RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB), "shl\t$rT, $rA, $rB", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_shl_v4i32 (v4i32 VECREG:$rA), R16C:$rB))]>; def SHLr32: RRForm<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "shl\t$rT, $rA, $rB", RotateShift, [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>; def SHLIv4i32: RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i8:$val), "shli\t$rT, $rA, $val", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i8 uimm7:$val)))]>; def: Pat<(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)), (SHLIv4i32 VECREG:$rA, uimm7:$val)>; def: Pat<(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)), (SHLIv4i32 VECREG:$rA, uimm7:$val)>; def SHLIr32: RI7Form<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), "shli\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>; def : Pat<(shl R32C:$rA, (i16 uimm7:$val)), (SHLIr32 R32C:$rA, uimm7:$val)>; def : Pat<(shl R32C:$rA, (i8 uimm7:$val)), (SHLIr32 R32C:$rA, uimm7:$val)>; // SHLQBI vec form: Note that this will shift the entire vector (the 128-bit // register) to the left. Vector form is here to ensure type correctness. def SHLQBIvec: RRForm<0b11011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "shlqbi\t$rT, $rA, $rB", RotateShift, [/* intrinsic */]>; // See note above on SHLQBI. def SHLQBIIvec: RI7Form<0b11011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), "shlqbii\t$rT, $rA, $val", RotateShift, [/* intrinsic */]>; // SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes, // not by bits. def SHLQBYvec: RI7Form<0b11111011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "shlqbyi\t$rT, $rA, $rB", RotateShift, [/* intrinsic */]>; def SHLQBYIvec: RI7Form<0b11111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), "shlqbyi\t$rT, $rA, $val", RotateShift, [/* intrinsic */]>; // ROTH v8i16 form: def ROTHv8i16: RRForm<0b00111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "roth\t$rT, $rA, $rB", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_rotl_v8i16 VECREG:$rA, VECREG:$rB))]>; def ROTHr16: RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "roth\t$rT, $rA, $rB", RotateShift, [(set R16C:$rT, (rotl R16C:$rA, R16C:$rB))]>; def ROTHr16_r32: RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), "roth\t$rT, $rA, $rB", RotateShift, [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>; // The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or // 32-bit register def ROTHr16_r8: RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R8C:$rB), "roth\t$rT, $rA, $rB", RotateShift, [(set R16C:$rT, (rotl R16C:$rA, (i32 (zext R8C:$rB))))]>; def : Pat<(rotl R16C:$rA, (i32 (sext R8C:$rB))), (ROTHr16_r8 R16C:$rA, R8C:$rB)>; def : Pat<(rotl R16C:$rA, (i32 (zext R8C:$rB))), (ROTHr16_r8 R16C:$rA, R8C:$rB)>; def : Pat<(rotl R16C:$rA, (i32 (anyext R8C:$rB))), (ROTHr16_r8 R16C:$rA, R8C:$rB)>; def ROTHIv8i16: RI7Form<0b00111110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i8:$val), "rothi\t$rT, $rA, $val", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_rotl_v8i16 VECREG:$rA, (i8 uimm7:$val)))]>; def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)), (ROTHIv8i16 VECREG:$rA, imm:$val)>; def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i32 uimm7:$val)), (ROTHIv8i16 VECREG:$rA, imm:$val)>; def ROTHIr16: RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm:$val), "rothi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>; def ROTHIr16_i32: RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), "rothi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>; def ROTHIr16_i8: RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i8:$val), "rothi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (rotl R16C:$rA, (i8 uimm7:$val)))]>; def ROTv4i32: RRForm<0b00011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rot\t$rT, $rA, $rB", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), R32C:$rB))]>; def ROTr32: RRForm<0b00011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "rot\t$rT, $rA, $rB", RotateShift, [(set R32C:$rT, (rotl R32C:$rA, R32C:$rB))]>; // The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or // 32-bit register def ROTr32_r16_anyext: RRForm<0b00011010000, (outs R32C:$rT), (ins R32C:$rA, R16C:$rB), "rot\t$rT, $rA, $rB", RotateShift, [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>; def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))), (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))), (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; def ROTr32_r8_anyext: RRForm<0b00011010000, (outs R32C:$rT), (ins R32C:$rA, R8C:$rB), "rot\t$rT, $rA, $rB", RotateShift, [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>; def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))), (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))), (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; def ROTIv4i32: RI7Form<0b00011110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), "roti\t$rT, $rA, $val", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>; def : Pat<(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)), (ROTIv4i32 VECREG:$rA, imm:$val)>; def : Pat<(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i8 uimm7:$val)), (ROTIv4i32 VECREG:$rA, imm:$val)>; def ROTIr32: RI7Form<0b00011110000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), "roti\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (rotl R32C:$rA, (i32 uimm7:$val)))]>; def ROTIr32_i16: RI7Form<0b00111110000, (outs R32C:$rT), (ins R32C:$rA, u7imm:$val), "roti\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (rotl R32C:$rA, (i16 uimm7:$val)))]>; def ROTIr32_i8: RI7Form<0b00111110000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i8:$val), "roti\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (rotl R32C:$rA, (i8 uimm7:$val)))]>; // ROTQBY* vector forms: This rotates the entire vector, but vector registers // are used here for type checking (instances where ROTQBI is used actually // use vector registers) def ROTQBYvec: RRForm<0b00111011100, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotqby\t$rT, $rA, $rB", RotateShift, [(set (v16i8 VECREG:$rT), (SPUrotbytes_left (v16i8 VECREG:$rA), R32C:$rB))]>; def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), R32C:$rB), (ROTQBYvec VECREG:$rA, R32C:$rB)>; // See ROTQBY note above. def ROTQBYIvec: RI7Form<0b00111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), "rotqbyi\t$rT, $rA, $val", RotateShift, [(set (v16i8 VECREG:$rT), (SPUrotbytes_left (v16i8 VECREG:$rA), (i16 uimm7:$val)))]>; def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), (i16 uimm7:$val)), (ROTQBYIvec VECREG:$rA, uimm7:$val)>; // See ROTQBY note above. def ROTQBYBIvec: RI7Form<0b00110011100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), "rotqbybi\t$rT, $rA, $val", RotateShift, [/* intrinsic */]>; // See ROTQBY note above. // // Assume that the user of this instruction knows to shift the rotate count // into bit 29 def ROTQBIvec: RRForm<0b00011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "rotqbi\t$rT, $rA, $rB", RotateShift, [/* insert intrinsic here */]>; // See ROTQBY note above. def ROTQBIIvec: RI7Form<0b00011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), "rotqbii\t$rT, $rA, $val", RotateShift, [/* insert intrinsic here */]>; // ROTHM v8i16 form: // NOTE(1): No vector rotate is generated by the C/C++ frontend (today), // so this only matches a synthetically generated/lowered code // fragment. // NOTE(2): $rB must be negated before the right rotate! def ROTHMv8i16: RRForm<0b10111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rothm\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R32C:$rB), (ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R16C:$rB), (ROTHMv8i16 VECREG:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R8C:$rB), (ROTHMv8i16 VECREG:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; // ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left // Note: This instruction doesn't match a pattern because rB must be negated // for the instruction to work. Thus, the pattern below the instruction! def ROTHMr16: RRForm<0b10111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), "rothm\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated! */]>; def : Pat<(srl R16C:$rA, R32C:$rB), (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(srl R16C:$rA, R16C:$rB), (ROTHMr16 R16C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(srl R16C:$rA, R8C:$rB), (ROTHMr16 R16C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; // ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is // that the immediate can be complemented, so that the user doesn't have to // worry about it. def ROTHMIv8i16: RI7Form<0b10111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), "rothmi\t$rT, $rA, $val", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i32 imm:$val)))]>; def: Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i16 imm:$val)), (ROTHMIv8i16 VECREG:$rA, imm:$val)>; def: Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i8 imm:$val)), (ROTHMIv8i16 VECREG:$rA, imm:$val)>; def ROTHMIr16: RI7Form<0b10111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val), "rothmi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (srl R16C:$rA, (i32 uimm7:$val)))]>; def: Pat<(srl R16C:$rA, (i16 uimm7:$val)), (ROTHMIr16 R16C:$rA, uimm7:$val)>; def: Pat<(srl R16C:$rA, (i8 uimm7:$val)), (ROTHMIr16 R16C:$rA, uimm7:$val)>; // ROTM v4i32 form: See the ROTHM v8i16 comments. def ROTMv4i32: RRForm<0b10011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotm\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R32C:$rB), (ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R16C:$rB), (ROTMv4i32 VECREG:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, /* R8C */ R16C:$rB), (ROTMv4i32 VECREG:$rA, (SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>; def ROTMr32: RRForm<0b10011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "rotm\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(srl R32C:$rA, R32C:$rB), (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(srl R32C:$rA, R16C:$rB), (ROTMr32 R32C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(srl R32C:$rA, R8C:$rB), (ROTMr32 R32C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; // ROTMI v4i32 form: See the comment for ROTHM v8i16. def ROTMIv4i32: RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), "rotmi\t$rT, $rA, $val", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_srl_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>; def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, (i16 uimm7:$val)), (ROTMIv4i32 VECREG:$rA, uimm7:$val)>; def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, (i8 uimm7:$val)), (ROTMIv4i32 VECREG:$rA, uimm7:$val)>; // ROTMI r32 form: know how to complement the immediate value. def ROTMIr32: RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), "rotmi\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>; def : Pat<(srl R32C:$rA, (i16 imm:$val)), (ROTMIr32 R32C:$rA, uimm7:$val)>; def : Pat<(srl R32C:$rA, (i8 imm:$val)), (ROTMIr32 R32C:$rA, uimm7:$val)>; // ROTQMBYvec: This is a vector form merely so that when used in an // instruction pattern, type checking will succeed. This instruction assumes // that the user knew to complement $rB. def ROTQMBYvec: RRForm<0b10111011100, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotqmby\t$rT, $rA, $rB", RotateShift, [(set (v16i8 VECREG:$rT), (SPUrotbytes_right_zfill (v16i8 VECREG:$rA), R32C:$rB))]>; def ROTQMBYIvec: RI7Form<0b10111111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), "rotqmbyi\t$rT, $rA, $val", RotateShift, [(set (v16i8 VECREG:$rT), (SPUrotbytes_right_zfill (v16i8 VECREG:$rA), (i32 uimm7:$val)))]>; def : Pat<(SPUrotbytes_right_zfill VECREG:$rA, (i16 uimm7:$val)), (ROTQMBYIvec VECREG:$rA, uimm7:$val)>; def ROTQMBYBIvec: RRForm<0b10110011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "rotqmbybi\t$rT, $rA, $rB", RotateShift, [/* intrinsic */]>; def ROTQMBIvec: RRForm<0b10011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "rotqmbi\t$rT, $rA, $rB", RotateShift, [/* intrinsic */]>; def ROTQMBIIvec: RI7Form<0b10011111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), "rotqmbii\t$rT, $rA, $val", RotateShift, [/* intrinsic */]>; def ROTMAHv8i16: RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotmah\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R32C:$rB), (ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R16C:$rB), (ROTMAHv8i16 VECREG:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R8C:$rB), (ROTMAHv8i16 VECREG:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAHr16: RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), "rotmah\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(sra R16C:$rA, R32C:$rB), (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(sra R16C:$rA, R16C:$rB), (ROTMAHr16 R16C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(sra R16C:$rA, R8C:$rB), (ROTMAHr16 R16C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAHIv8i16: RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), "rotmahi\t$rT, $rA, $val", RotateShift, [(set (v8i16 VECREG:$rT), (SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>; def : Pat<(SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)), (ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>; def : Pat<(SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i8 uimm7:$val)), (ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>; def ROTMAHIr16: RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val), "rotmahi\t$rT, $rA, $val", RotateShift, [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>; def : Pat<(sra R16C:$rA, (i32 imm:$val)), (ROTMAHIr16 R16C:$rA, uimm7:$val)>; def : Pat<(sra R16C:$rA, (i8 imm:$val)), (ROTMAHIr16 R16C:$rA, uimm7:$val)>; def ROTMAv4i32: RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), "rotma\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R32C:$rB), (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>; def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R16C:$rB), (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R8C:$rB), (ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAr32: RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "rotma\t$rT, $rA, $rB", RotateShift, [/* see patterns below - $rB must be negated */]>; def : Pat<(sra R32C:$rA, R32C:$rB), (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; def : Pat<(sra R32C:$rA, R16C:$rB), (ROTMAr32 R32C:$rA, (SFIr32 (XSHWr16 R16C:$rB), 0))>; def : Pat<(sra R32C:$rA, R8C:$rB), (ROTMAr32 R32C:$rA, (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; def ROTMAIv4i32: RRForm<0b01011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), "rotmai\t$rT, $rA, $val", RotateShift, [(set (v4i32 VECREG:$rT), (SPUvec_sra_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>; def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, (i16 uimm7:$val)), (ROTMAIv4i32 VECREG:$rA, uimm7:$val)>; def ROTMAIr32: RRForm<0b01011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), "rotmai\t$rT, $rA, $val", RotateShift, [(set R32C:$rT, (sra R32C:$rA, (i32 uimm7:$val)))]>; def : Pat<(sra R32C:$rA, (i16 uimm7:$val)), (ROTMAIr32 R32C:$rA, uimm7:$val)>; def : Pat<(sra R32C:$rA, (i8 uimm7:$val)), (ROTMAIr32 R32C:$rA, uimm7:$val)>; //===----------------------------------------------------------------------===// // Branch and conditionals: //===----------------------------------------------------------------------===// let isTerminator = 1, isBarrier = 1 in { // Halt If Equal (r32 preferred slot only, no vector form) def HEQr32: RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB), "heq\t$rA, $rB", BranchResolv, [/* no pattern to match */]>; def HEQIr32 : RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val), "heqi\t$rA, $val", BranchResolv, [/* no pattern to match */]>; // HGT/HGTI: These instructions use signed arithmetic for the comparison, // contrasting with HLGT/HLGTI, which use unsigned comparison: def HGTr32: RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB), "hgt\t$rA, $rB", BranchResolv, [/* no pattern to match */]>; def HGTIr32: RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val), "hgti\t$rA, $val", BranchResolv, [/* no pattern to match */]>; def HLGTr32: RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB), "hlgt\t$rA, $rB", BranchResolv, [/* no pattern to match */]>; def HLGTIr32: RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val), "hlgti\t$rA, $val", BranchResolv, [/* no pattern to match */]>; } // Comparison operators: def CEQBr8: RRForm<0b00001011110, (outs R8C:$rT), (ins R8C:$rA, R8C:$rB), "ceqb\t$rT, $rA, $rB", ByteOp, [/* no pattern to match */]>; def CEQBv16i8: RRForm<0b00001011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "ceqb\t$rT, $rA, $rB", ByteOp, [/* no pattern to match: intrinsic */]>; def CEQBIr8: RI10Form<0b01111110, (outs R8C:$rT), (ins R8C:$rA, s7imm_i8:$val), "ceqbi\t$rT, $rA, $val", ByteOp, [/* no pattern to match: intrinsic */]>; def CEQBIv16i8: RI10Form<0b01111110, (outs VECREG:$rT), (ins VECREG:$rA, s7imm_i8:$val), "ceqbi\t$rT, $rA, $val", ByteOp, [/* no pattern to match: intrinsic */]>; def CEQHr16: RRForm<0b00010011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), "ceqh\t$rT, $rA, $rB", ByteOp, [/* no pattern to match */]>; def CEQHv8i16: RRForm<0b00010011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "ceqh\t$rT, $rA, $rB", ByteOp, [/* no pattern to match: intrinsic */]>; def CEQHIr16: RI10Form<0b10111110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), "ceqhi\t$rT, $rA, $val", ByteOp, [/* no pattern to match: intrinsic */]>; def CEQHIv8i16: RI10Form<0b10111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "ceqhi\t$rT, $rA, $val", ByteOp, [/* no pattern to match: intrinsic */]>; def CEQr32: RRForm<0b00000011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), "ceq\t$rT, $rA, $rB", ByteOp, [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>; def CEQv4i32: RRForm<0b00000011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "ceq\t$rT, $rA, $rB", ByteOp, [(set (v4i32 VECREG:$rT), (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; def CEQIr32: RI10Form<0b00111110, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), "ceqi\t$rT, $rA, $val", ByteOp, [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>; def CEQIv4i32: RI10Form<0b00111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), "ceqi\t$rT, $rA, $val", ByteOp, [/* no pattern to match: intrinsic */]>; let isCall = 1, // All calls clobber the non-callee-saved registers: Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,R11,R12,R13,R14,R15,R16,R17,R18,R19, R20,R21,R22,R23,R24,R25,R26,R27,R28,R29, R30,R31,R32,R33,R34,R35,R36,R37,R38,R39, R40,R41,R42,R43,R44,R45,R46,R47,R48,R49, R50,R51,R52,R53,R54,R55,R56,R57,R58,R59, R60,R61,R62,R63,R64,R65,R66,R67,R68,R69, R70,R71,R72,R73,R74,R75,R76,R77,R78,R79], // All of these instructions use $lr (aka $0) Uses = [R0] in { // Branch relative and set link: Used if we actually know that the target // is within [-32768, 32767] bytes of the target def BRSL: BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops), "brsl\t$$lr, $func", [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>; // Branch absolute and set link: Used if we actually know that the target // is an absolute address def BRASL: BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops), "brasl\t$$lr, $func", [(SPUcall (SPUaform tglobaladdr:$func, 0))]>; // Branch indirect and set link if external data. These instructions are not // actually generated, matched by an intrinsic: def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>; def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>; def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>; def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>; // Branch indirect and set link. This is the "X-form" address version of a // function call def BISL: BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>; } // Unconditional branches: let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in { def BR : UncondBranch<0b001001100, (outs), (ins brtarget:$dest), "br\t$dest", [(br bb:$dest)]>; // Unconditional, absolute address branch def BRA: UncondBranch<0b001100000, (outs), (ins brtarget:$dest), "bra\t$dest", [/* no pattern */]>; // Indirect branch def BI: BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>; // Various branches: def BRNZ: RI16Form<0b010000100, (outs), (ins R32C:$rCond, brtarget:$dest), "brnz\t$rCond,$dest", BranchResolv, [(brcond R32C:$rCond, bb:$dest)]>; def BRZ: RI16Form<0b000000100, (outs), (ins R32C:$rT, brtarget:$dest), "brz\t$rT,$dest", BranchResolv, [/* no pattern */]>; def BRHNZ: RI16Form<0b011000100, (outs), (ins R16C:$rCond, brtarget:$dest), "brhnz\t$rCond,$dest", BranchResolv, [(brcond R16C:$rCond, bb:$dest)]>; def BRHZ: RI16Form<0b001000100, (outs), (ins R16C:$rT, brtarget:$dest), "brhz\t$rT,$dest", BranchResolv, [/* no pattern */]>; /* def BINZ: BICondForm<0b10010100100, "binz\t$rA, $func", [(SPUbinz R32C:$rA, R32C:$func)]>; def BIZ: BICondForm<0b00010100100, "biz\t$rA, $func", [(SPUbiz R32C:$rA, R32C:$func)]>; */ } //===----------------------------------------------------------------------===// // setcc and brcond patterns: //===----------------------------------------------------------------------===// def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest), (BRHZ R16C:$rA, bb:$dest)>; def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), (BRZ R32C:$rA, bb:$dest)>; def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest), (BRHNZ R16C:$rA, bb:$dest)>; def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest), (BRNZ R32C:$rA, bb:$dest)>; def : Pat<(brcond (i16 (setne R16C:$rA, i16ImmSExt10:$val)), bb:$dest), (BRHNZ (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; def : Pat<(brcond (i32 (setne R32C:$rA, i32ImmSExt10:$val)), bb:$dest), (BRNZ (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; def : Pat<(brcond (i16 (setne R16C:$rA, R16C:$rB)), bb:$dest), (BRHNZ (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>; def : Pat<(brcond (i32 (setne R32C:$rA, R32C:$rB)), bb:$dest), (BRNZ (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>; let isTerminator = 1, isBarrier = 1 in { let isReturn = 1 in { def RET: RETForm<"bi\t$$lr", [(retflag)]>; } } //===----------------------------------------------------------------------===// // Single precision floating point instructions //===----------------------------------------------------------------------===// def FAv4f32: RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "fa\t$rT, $rA, $rB", SPrecFP, [(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; def FAf32 : RRForm<0b00100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "fa\t$rT, $rA, $rB", SPrecFP, [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>; def FSv4f32: RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "fs\t$rT, $rA, $rB", SPrecFP, [(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; def FSf32 : RRForm<0b10100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "fs\t$rT, $rA, $rB", SPrecFP, [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>; // Floating point reciprocal estimate def FREv4f32 : RRForm_1<0b00011101100, (outs VECREG:$rT), (ins VECREG:$rA), "frest\t$rT, $rA", SPrecFP, [(set (v4f32 VECREG:$rT), (SPUreciprocalEst (v4f32 VECREG:$rA)))]>; def FREf32 : RRForm_1<0b00011101100, (outs R32FP:$rT), (ins R32FP:$rA), "frest\t$rT, $rA", SPrecFP, [(set R32FP:$rT, (SPUreciprocalEst R32FP:$rA))]>; // Floating point interpolate (used in conjunction with reciprocal estimate) def FIv4f32 : RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "fi\t$rT, $rA, $rB", SPrecFP, [(set (v4f32 VECREG:$rT), (SPUinterpolate (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; def FIf32 : RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "fi\t$rT, $rA, $rB", SPrecFP, [(set R32FP:$rT, (SPUinterpolate R32FP:$rA, R32FP:$rB))]>; // Floating Compare Equal def FCEQf32 : RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fceq\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setoeq R32FP:$rA, R32FP:$rB))]>; def FCMEQf32 : RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fcmeq\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; def FCGTf32 : RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fcgt\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setogt R32FP:$rA, R32FP:$rB))]>; def FCMGTf32 : RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), "fcmgt\t$rT, $rA, $rB", SPrecFP, [(set R32C:$rT, (setogt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; // FP Status and Control Register Write // Why isn't rT a don't care in the ISA? // Should we create a special RRForm_3 for this guy and zero out the rT? def FSCRWf32 : RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA), "fscrwr\t$rA", SPrecFP, [/* This instruction requires an intrinsic. Note: rT is unused. */]>; // FP Status and Control Register Read def FSCRRf32 : RRForm_2<0b01011101110, (outs R32FP:$rT), (ins), "fscrrd\t$rT", SPrecFP, [/* This instruction requires an intrinsic */]>; // llvm instruction space // How do these map onto cell instructions? // fdiv rA rB // frest rC rB # c = 1/b (both lines) // fi rC rB rC // fm rD rA rC # d = a * 1/b // fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world // fma rB rB rC rD # b = b * c + d // = -(d *b -a) * c + d // = a * c - c ( a *b *c - a) // fcopysign (???) // Library calls: // These llvm instructions will actually map to library calls. // All that's needed, then, is to check that the appropriate library is // imported and do a brsl to the proper function name. // frem # fmod(x, y): x - (x/y) * y // (Note: fmod(double, double), fmodf(float,float) // fsqrt? // fsin? // fcos? // Unimplemented SPU instruction space // floating reciprocal absolute square root estimate (frsqest) // The following are probably just intrinsics // status and control register write // status and control register read //-------------------------------------- // Floating point multiply instructions //-------------------------------------- def FMv4f32: RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "fm\t$rT, $rA, $rB", SPrecFP, [(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>; def FMf32 : RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), "fm\t$rT, $rA, $rB", SPrecFP, [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; // Floating point multiply and add // e.g. d = c + (a * b) def FMAv4f32: RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "fma\t$rT, $rA, $rB, $rC", SPrecFP, [(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rC), (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; def FMAf32: RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), "fma\t$rT, $rA, $rB, $rC", SPrecFP, [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; // FP multiply and subtract // Subtracts value in rC from product // res = a * b - c def FMSv4f32 : RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "fms\t$rT, $rA, $rB, $rC", SPrecFP, [(set (v4f32 VECREG:$rT), (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)), (v4f32 VECREG:$rC)))]>; def FMSf32 : RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), "fms\t$rT, $rA, $rB, $rC", SPrecFP, [(set R32FP:$rT, (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>; // Floating Negative Mulitply and Subtract // Subtracts product from value in rC // res = fneg(fms a b c) // = - (a * b - c) // = c - a * b // NOTE: subtraction order // fsub a b = a - b // fs a b = b - a? def FNMSf32 : RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), "fnms\t$rT, $rA, $rB, $rC", SPrecFP, [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; def FNMSv4f32 : RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "fnms\t$rT, $rA, $rB, $rC", SPrecFP, [(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rC), (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; //-------------------------------------- // Floating Point Conversions // Signed conversions: def CSiFv4f32: CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA), "csflt\t$rT, $rA, 0", SPrecFP, [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>; // Convert signed integer to floating point def CSiFf32 : CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA), "csflt\t$rT, $rA, 0", SPrecFP, [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>; // Convert unsigned into to float def CUiFv4f32 : CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), "cuflt\t$rT, $rA, 0", SPrecFP, [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>; def CUiFf32 : CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA), "cuflt\t$rT, $rA, 0", SPrecFP, [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>; // Convert float to unsigned int // Assume that scale = 0 def CFUiv4f32 : CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), "cfltu\t$rT, $rA, 0", SPrecFP, [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>; def CFUif32 : CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), "cfltu\t$rT, $rA, 0", SPrecFP, [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>; // Convert float to signed int // Assume that scale = 0 def CFSiv4f32 : CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), "cflts\t$rT, $rA, 0", SPrecFP, [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>; def CFSif32 : CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), "cflts\t$rT, $rA, 0", SPrecFP, [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>; //===----------------------------------------------------------------------==// // Single<->Double precision conversions //===----------------------------------------------------------------------==// // NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a // v4f32, output is v2f64--which goes in the name?) // Floating point extend single to double // NOTE: Not sure if passing in v4f32 to FESDvec is correct since it // operates on two double-word slots (i.e. 1st and 3rd fp numbers // are ignored). def FESDvec : RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA), "fesd\t$rT, $rA", SPrecFP, [(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>; def FESDf32 : RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA), "fesd\t$rT, $rA", SPrecFP, [(set R64FP:$rT, (fextend R32FP:$rA))]>; // Floating point round double to single //def FRDSvec : // RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA), // "frds\t$rT, $rA,", SPrecFP, // [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>; def FRDSf64 : RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA), "frds\t$rT, $rA", SPrecFP, [(set R32FP:$rT, (fround R64FP:$rA))]>; //ToDo include anyextend? //===----------------------------------------------------------------------==// // Double precision floating point instructions //===----------------------------------------------------------------------==// def FAf64 : RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "dfa\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>; def FAv2f64 : RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "dfa\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; def FSf64 : RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "dfs\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>; def FSv2f64 : RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "dfs\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; def FMf64 : RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), "dfm\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>; def FMv2f64: RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), "dfm\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; def FMAf64: RRForm<0b00111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfma\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FMAv2f64: RRForm<0b00111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfma\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rC), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FMSf64 : RRForm<0b10111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfms\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FMSv2f64 : RRForm<0b10111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfms\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), (v2f64 VECREG:$rC)))]>; // FNMS: - (a * b - c) // - (a * b) + c => c - (a * b) def FNMSf64 : RRForm<0b01111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfnms\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fsub R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def : Pat<(fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC)), (FNMSf64 R64FP:$rA, R64FP:$rB, R64FP:$rC)>; def FNMSv2f64 : RRForm<0b01111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfnms\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fsub (v2f64 VECREG:$rC), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def : Pat<(fneg (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), (v2f64 VECREG:$rC))), (FNMSv2f64 VECREG:$rA, VECREG:$rB, VECREG:$rC)>; // - (a * b + c) // - (a * b) - c def FNMAf64 : RRForm<0b11111010110, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), "dfnma\t$rT, $rA, $rB", DPrecFP, [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; def FNMAv2f64 : RRForm<0b11111010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), "dfnma\t$rT, $rA, $rB", DPrecFP, [(set (v2f64 VECREG:$rT), (fneg (fadd (v2f64 VECREG:$rC), (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))))]>, RegConstraint<"$rC = $rT">, NoEncode<"$rC">; //===----------------------------------------------------------------------==// // Floating point negation and absolute value //===----------------------------------------------------------------------==// def : Pat<(fneg (v4f32 VECREG:$rA)), (XORfnegvec (v4f32 VECREG:$rA), (v4f32 (ILHUv4i32 0x8000)))>; def : Pat<(fneg R32FP:$rA), (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>; def : Pat<(fneg (v2f64 VECREG:$rA)), (XORfnegvec (v2f64 VECREG:$rA), (v2f64 (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80)))>; def : Pat<(fneg R64FP:$rA), (XORfneg64 R64FP:$rA, (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80))>; // Floating point absolute value def : Pat<(fabs R32FP:$rA), (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>; def : Pat<(fabs (v4f32 VECREG:$rA)), (ANDfabsvec (v4f32 VECREG:$rA), (v4f32 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>; def : Pat<(fabs R64FP:$rA), (ANDfabs64 R64FP:$rA, (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f))>; def : Pat<(fabs (v2f64 VECREG:$rA)), (ANDfabsvec (v2f64 VECREG:$rA), (v2f64 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>; //===----------------------------------------------------------------------===// // Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong // in the odd pipeline) //===----------------------------------------------------------------------===// def ENOP : I<(outs), (ins), "enop", ExecNOP> { let Pattern = []; let Inst{0-10} = 0b10000000010; let Inst{11-17} = 0; let Inst{18-24} = 0; let Inst{25-31} = 0; } def LNOP : I<(outs), (ins), "lnop", LoadNOP> { let Pattern = []; let Inst{0-10} = 0b10000000000; let Inst{11-17} = 0; let Inst{18-24} = 0; let Inst{25-31} = 0; } //===----------------------------------------------------------------------===// // Bit conversions (type conversions between vector/packed types) // NOTE: Promotions are handled using the XS* instructions. Truncation // is not handled. //===----------------------------------------------------------------------===// def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>; def : Pat<(f32 (bitconvert (i32 R32C:$src))), (f32 R32FP:$src)>; def : Pat<(f64 (bitconvert (i64 R64C:$src))), (f64 R64FP:$src)>; //===----------------------------------------------------------------------===// // Instruction patterns: //===----------------------------------------------------------------------===// // General 32-bit constants: def : Pat<(i32 imm:$imm), (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>; // Single precision float constants: def : Pat<(f32 fpimm:$imm), (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>; // General constant 32-bit vectors def : Pat<(v4i32 v4i32Imm:$imm), (IOHLvec (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))), (LO16_vec v4i32Imm:$imm))>; // 8-bit constants def : Pat<(i8 imm:$imm), (ILHr8 imm:$imm)>; //===----------------------------------------------------------------------===// // Call instruction patterns: //===----------------------------------------------------------------------===// // Return void def : Pat<(ret), (RET)>; //===----------------------------------------------------------------------===// // Zero/Any/Sign extensions //===----------------------------------------------------------------------===// // zext 1->32: Zero extend i1 to i32 def : Pat<(SPUextract_i1_zext R32C:$rSrc), (ANDIr32 R32C:$rSrc, 0x1)>; // sext 8->32: Sign extend bytes to words def : Pat<(sext_inreg R32C:$rSrc, i8), (XSHWr32 (XSBHr32 R32C:$rSrc))>; def : Pat<(i32 (sext R8C:$rSrc)), (XSHWr16 (XSBHr8 R8C:$rSrc))>; def : Pat<(SPUextract_i8_sext VECREG:$rSrc), (XSHWr32 (XSBHr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), (v4i32 VECREG:$rSrc))))>; // zext 8->16: Zero extend bytes to halfwords def : Pat<(i16 (zext R8C:$rSrc)), (ANDHI1To2 R8C:$rSrc, 0xff)>; // zext 8->32 from preferred slot in load/store def : Pat<(SPUextract_i8_zext VECREG:$rSrc), (ANDIr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), (v4i32 VECREG:$rSrc)), 0xff)>; // zext 8->32: Zero extend bytes to words def : Pat<(i32 (zext R8C:$rSrc)), (ANDI1To4 R8C:$rSrc, 0xff)>; // anyext 8->16: Extend 8->16 bits, irrespective of sign def : Pat<(i16 (anyext R8C:$rSrc)), (ORHI1To2 R8C:$rSrc, 0)>; // anyext 8->32: Extend 8->32 bits, irrespective of sign def : Pat<(i32 (anyext R8C:$rSrc)), (ORI1To4 R8C:$rSrc, 0)>; // zext 16->32: Zero extend halfwords to words (note that we have to juggle the // 0xffff constant since it will not fit into an immediate.) def : Pat<(i32 (zext R16C:$rSrc)), (AND2To4 R16C:$rSrc, (ILAr32 0xffff))>; def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))), (ANDI2To4 R16C:$rSrc, 0xf)>; def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))), (ANDI2To4 R16C:$rSrc, 0xff)>; def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))), (ANDI2To4 R16C:$rSrc, 0xfff)>; // anyext 16->32: Extend 16->32 bits, irrespective of sign def : Pat<(i32 (anyext R16C:$rSrc)), (ORI2To4 R16C:$rSrc, 0)>; //===----------------------------------------------------------------------===// // Address generation: SPU, like PPC, has to split addresses into high and // low parts in order to load them into a register. //===----------------------------------------------------------------------===// def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>; def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>; def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>; def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>; def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)), (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)), (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)), (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)), (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)), (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)), (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)), (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)), (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; // Instrinsics: include "CellSDKIntrinsics.td"