//===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provide the function DemoteRegToStack(). This function takes a // virtual register computed by an Instruction& X and replaces it with a slot in // the stack frame, allocated via alloca. It returns the pointer to the // AllocaInst inserted. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/DemoteRegToStack.h" #include "llvm/Function.h" #include "llvm/iMemory.h" #include "llvm/iPHINode.h" #include "llvm/iTerminators.h" #include "llvm/Type.h" #include "Support/hash_set" namespace llvm { typedef hash_set PhiSet; typedef hash_set::iterator PhiSetIterator; // Helper function to push a phi *and* all its operands to the worklist! // Do not push an instruction if it is already in the result set of Phis to go. inline void PushOperandsOnWorkList(std::vector& workList, PhiSet& phisToGo, PHINode* phiN) { for (User::op_iterator OI = phiN->op_begin(), OE = phiN->op_end(); OI != OE; ++OI) { Instruction* opI = cast(OI); if (!isa(opI) || !phisToGo.count(cast(opI))) workList.push_back(opI); } } static void FindPhis(Instruction& X, PhiSet& phisToGo) { std::vector workList; workList.push_back(&X); // Handle the case that X itself is a Phi! if (PHINode* phiX = dyn_cast(&X)) { phisToGo.insert(phiX); PushOperandsOnWorkList(workList, phisToGo, phiX); } // Now use a worklist to find all phis reachable from X, and // (recursively) all phis reachable from operands of such phis. while (!workList.empty()) { Instruction *I = workList.back(); workList.pop_back(); for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) if (PHINode* phiN = dyn_cast(*UI)) if (phisToGo.find(phiN) == phisToGo.end()) { // Seeing this phi for the first time: it must go! phisToGo.insert(phiN); workList.push_back(phiN); PushOperandsOnWorkList(workList, phisToGo, phiN); } } } // Insert loads before all uses of I, except uses in Phis // since all such Phis *must* be deleted. static void LoadBeforeUses(Instruction* def, AllocaInst* XSlot) { for (unsigned nPhis = 0; def->use_size() - nPhis > 0; ) { Instruction* useI = cast(def->use_back()); if (!isa(useI)) { LoadInst* loadI = new LoadInst(XSlot, std::string("Load")+XSlot->getName(), useI); useI->replaceUsesOfWith(def, loadI); } else ++nPhis; } } static void AddLoadsAndStores(AllocaInst* XSlot, Instruction& X, PhiSet& phisToGo) { for (PhiSetIterator PI=phisToGo.begin(), PE=phisToGo.end(); PI != PE; ++PI) { PHINode* pn = *PI; // First, insert loads before all uses except uses in Phis. // Do this first because new stores will appear as uses also! LoadBeforeUses(pn, XSlot); // For every incoming operand of the Phi, insert a store either // just after the instruction defining the value or just before the // predecessor of the Phi if the value is a formal, not an instruction. // for (unsigned i=0, N=pn->getNumIncomingValues(); i < N; ++i) { Value* phiOp = pn->getIncomingValue(i); if (phiOp != &X && (!isa(phiOp) || !phisToGo.count(cast(phiOp)))) { // This operand is not a phi that will be deleted: need to store. assert(!isa(phiOp)); Instruction* storeBefore; if (Instruction* I = dyn_cast(phiOp)) { // phiOp is an instruction, store its result right after it. assert(I->getNext() && "Non-terminator without successor?"); storeBefore = I->getNext(); } else { // If not, it must be a formal: store it at the end of the // predecessor block of the Phi (*not* at function entry!). storeBefore = pn->getIncomingBlock(i)->getTerminator(); } // Create instr. to store the value of phiOp before `insertBefore' StoreInst* storeI = new StoreInst(phiOp, XSlot, storeBefore); } } } } //---------------------------------------------------------------------------- // function DemoteRegToStack() // // This function takes a virtual register computed by an // Instruction& X and replaces it with a slot in the stack frame, // allocated via alloca. It has to: // (1) Identify all Phi operations that have X as an operand and // transitively other Phis that use such Phis; // (2) Store all values merged with X via Phi operations to the stack slot; // (3) Load the value from the stack slot just before any use of X or any // of the Phis that were eliminated; and // (4) Delete all the Phis, which should all now be dead. // // Returns the pointer to the alloca inserted to create a stack slot for X. // AllocaInst* DemoteRegToStack(Instruction& X) { if (X.getType() == Type::VoidTy) return 0; // nothing to do! // Find all Phis involving X or recursively using such Phis or Phis // involving operands of such Phis (essentially all Phis in the "web" of X) PhiSet phisToGo; FindPhis(X, phisToGo); // Create a stack slot to hold X Function* parentFunc = X.getParent()->getParent(); AllocaInst *XSlot = new AllocaInst(X.getType(), 0, X.getName(), parentFunc->getEntryBlock().begin()); // Insert loads before all uses of X and (*only then*) insert store after X assert(X.getNext() && "Non-terminator (since non-void) with no successor?"); LoadBeforeUses(&X, XSlot); StoreInst* storeI = new StoreInst(&X, XSlot, X.getNext()); // Do the same for all the phis that will be deleted AddLoadsAndStores(XSlot, X, phisToGo); // Delete the phis and return the alloca instruction for (PhiSetIterator PI = phisToGo.begin(), E = phisToGo.end(); PI != E; ++PI) (*PI)->getParent()->getInstList().erase(*PI); return XSlot; } } // End llvm namespace