//===- llvm/Analysis/InductionVariable.h - Induction variable ----*- C++ -*--=// // // This interface is used to identify and classify induction variables that // exist in the program. Induction variables must contain a PHI node that // exists in a loop header. Because of this, they are identified an managed by // this PHI node. // // Induction variables are classified into a type. Knowing that an induction // variable is of a specific type can constrain the values of the start and // step. For example, a SimpleLinear induction variable must have a start and // step values that are constants. // // Induction variables can be created with or without loop information. If no // loop information is available, induction variables cannot be recognized to be // more than SimpleLinear variables. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/InductionVariable.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/Expressions.h" #include "llvm/BasicBlock.h" #include "llvm/iPHINode.h" #include "llvm/iOperators.h" #include "llvm/iTerminators.h" #include "llvm/Type.h" #include "llvm/Constants.h" #include "llvm/Support/CFG.h" #include "llvm/Assembly/Writer.h" #include "Support/Statistic.h" static bool isLoopInvariant(const Value *V, const Loop *L) { if (isa(V) || isa(V) || isa(V)) return true; const Instruction *I = cast(V); const BasicBlock *BB = I->getParent(); return !L->contains(BB); } enum InductionVariable::iType InductionVariable::Classify(const Value *Start, const Value *Step, const Loop *L) { // Check for cannonical and simple linear expressions now... if (const ConstantInt *CStart = dyn_cast(Start)) if (const ConstantInt *CStep = dyn_cast(Step)) { if (CStart->equalsInt(0) && CStep->equalsInt(1)) return Cannonical; else return SimpleLinear; } // Without loop information, we cannot do any better, so bail now... if (L == 0) return Unknown; if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L)) return Linear; return Unknown; } // Create an induction variable for the specified value. If it is a PHI, and // if it's recognizable, classify it and fill in instance variables. // InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) { InductionType = Unknown; // Assume the worst Phi = P; // If the PHI node has more than two predecessors, we don't know how to // handle it. // if (Phi->getNumIncomingValues() != 2) return; // FIXME: Handle FP induction variables. if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy) return; // If we have loop information, make sure that this PHI node is in the header // of a loop... // const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; if (L && L->getHeader() != Phi->getParent()) return; Value *V1 = Phi->getIncomingValue(0); Value *V2 = Phi->getIncomingValue(1); if (L == 0) { // No loop information? Base everything on expression analysis ExprType E1 = ClassifyExpression(V1); ExprType E2 = ClassifyExpression(V2); if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression std::swap(E1, E2); // E1 must be a constant incoming value, and E2 must be a linear expression // with respect to the PHI node. // if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear || E2.Var != Phi) return; // Okay, we have found an induction variable. Save the start and step values const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0)); Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0)); } else { // Okay, at this point, we know that we have loop information... // Make sure that V1 is the incoming value, and V2 is from the backedge of // the loop. if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now. std::swap(V1, V2); Start = V1; // We know that Start has to be loop invariant... Step = 0; if (V2 == Phi) { // referencing the PHI directly? Must have zero step Step = Constant::getNullValue(Phi->getType()); } else if (BinaryOperator *I = dyn_cast(V2)) { // TODO: This could be much better... if (I->getOpcode() == Instruction::Add) { if (I->getOperand(0) == Phi) Step = I->getOperand(1); else if (I->getOperand(1) == Phi) Step = I->getOperand(0); } } if (Step == 0) { // Unrecognized step value... ExprType StepE = ClassifyExpression(V2); if (StepE.ExprTy != ExprType::Linear || StepE.Var != Phi) return; const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0)); } else { // We were able to get a step value, simplify with expr analysis ExprType StepE = ClassifyExpression(Step); if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) { // No offset from variable? Grab the variable Step = StepE.Var; } else if (StepE.ExprTy == ExprType::Constant) { if (StepE.Offset) Step = (Value*)StepE.Offset; else Step = Constant::getNullValue(Step->getType()); const Type *ETy = Phi->getType(); if (isa(ETy)) ETy = Type::ULongTy; Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0)); } } } // Classify the induction variable type now... InductionType = InductionVariable::Classify(Start, Step, L); } Value* InductionVariable::getExecutionCount(LoopInfo *LoopInfo) { DEBUG(std::cerr << "entering getExecutionCount\n"); // Don't recompute if already available if (End) { DEBUG(std::cerr << "returning cached End value.\n"); return End; } const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; if (!L) { DEBUG(std::cerr << "null loop. oops\n"); return NULL; } // >1 backedge => cannot predict number of iterations if (Phi->getNumIncomingValues() != 2) { DEBUG(std::cerr << ">2 incoming values. oops\n"); return NULL; } // Find final node: predecesor of the loop header that's also an exit BasicBlock *terminator; BasicBlock *header = L->getHeader(); for (pred_iterator PI = pred_begin(header), PE = pred_end(header); PI != PE; ++PI) { if (L->isLoopExit(*PI)) { terminator = *PI; break; } } // Break in the loop => cannot predict number of iterations // break: any block which is an exit node whose successor is not in loop, // and this block is not marked as the terminator // const std::vector &blocks = L->getBlocks(); for (std::vector::const_iterator i = blocks.begin(), e = blocks.end(); i != e; ++i) { if (L->isLoopExit(*i) && (*i != terminator)) { for (succ_iterator SI = succ_begin(*i), SE = succ_end(*i); SI != SE; ++SI) { if (! L->contains(*SI)) { DEBUG(std::cerr << "break found in loop"); return NULL; } } } } BranchInst *B = dyn_cast(terminator->getTerminator()); if (!B) { // this really should not happen DEBUG(std::cerr << "no terminator instruction!"); return NULL; } SetCondInst *SCI = dyn_cast(&*B->getCondition()); if (SCI && InductionType == Cannonical) { DEBUG(std::cerr << "sci:" << *SCI); Value *condVal0 = SCI->getOperand(0); Value *condVal1 = SCI->getOperand(1); Value *indVar = 0; // the induction variable is the one coming from the backedge if (L->contains(Phi->getIncomingBlock(0))) { indVar = Phi->getIncomingValue(0); } else { indVar = Phi->getIncomingValue(1); } // check to see if indVar is one of the parameters in SCI // and if the other is loop-invariant, it is the UB if (indVar == condVal0) { if (isLoopInvariant(condVal1, L)) { End = condVal1; } else { DEBUG(std::cerr << "not loop invariant 1\n"); } } else if (indVar == condVal1) { if (isLoopInvariant(condVal0, L)) { End = condVal0; } else { DEBUG(std::cerr << "not loop invariant 0\n"); } } if (End) { switch (SCI->getOpcode()) { case Instruction::SetLT: case Instruction::SetNE: break; // already done case Instruction::SetLE: { // if compared to a constant int N, then predict N+1 iterations if (ConstantSInt *ubSigned = dyn_cast(End)) { End = ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1); DEBUG(std::cerr << "signed int constant\n"); } else if (ConstantUInt *ubUnsigned = dyn_cast(End)) { End = ConstantUInt::get(ubUnsigned->getType(), ubUnsigned->getValue()+1); DEBUG(std::cerr << "unsigned int constant\n"); } else { DEBUG(std::cerr << "symbolic bound\n"); //End = NULL; // new expression N+1 End = BinaryOperator::create(Instruction::Add, End, ConstantUInt::get(ubUnsigned->getType(), 1)); } break; } default: End = NULL; // cannot predict } } return End; } else { DEBUG(std::cerr << "SCI null or non-cannonical ind var\n"); } return NULL; } void InductionVariable::print(std::ostream &o) const { switch (InductionType) { case InductionVariable::Cannonical: o << "Cannonical "; break; case InductionVariable::SimpleLinear: o << "SimpleLinear "; break; case InductionVariable::Linear: o << "Linear "; break; case InductionVariable::Unknown: o << "Unrecognized "; break; } o << "Induction Variable: "; if (Phi) { WriteAsOperand(o, Phi); o << ":\n" << Phi; } else { o << "\n"; } if (InductionType == InductionVariable::Unknown) return; o << " Start = "; WriteAsOperand(o, Start); o << " Step = " ; WriteAsOperand(o, Step); if (End) { o << " End = " ; WriteAsOperand(o, End); } o << "\n"; }