//===-- Constants.cpp - Implement Constant nodes -----------------*- C++ -*--=// // // This file implements the Constant* classes... // //===----------------------------------------------------------------------===// #define __STDC_LIMIT_MACROS // Get defs for INT64_MAX and friends... #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/SymbolTable.h" #include "llvm/Module.h" #include "llvm/SlotCalculator.h" #include "Support/StringExtras.h" #include using std::map; using std::pair; using std::make_pair; using std::vector; ConstantBool *ConstantBool::True = new ConstantBool(true); ConstantBool *ConstantBool::False = new ConstantBool(false); //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// // Specialize setName to take care of symbol table majik void Constant::setName(const std::string &Name, SymbolTable *ST) { assert(ST && "Type::setName - Must provide symbol table argument!"); if (Name.size()) ST->insert(Name, this); } void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependant on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa(V)) std::cerr << "While deleting: " << *this << "\n\nUse still stuck around after Def is destroyed: " << *V << "\n\n"; #endif assert(isa(V) && "References remain to Constant being destroyed"); Constant *CPV = cast(V); CPV->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } // Static constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::get(false); case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, 0); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); case Type::FloatTyID: case Type::DoubleTyID: return ConstantFP::get(Ty, 0); case Type::PointerTyID: return ConstantPointerNull::get(cast(Ty)); default: return 0; } } // Static constructor to create the maximum constant of an integral type... ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::True; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: { // Calculate 011111111111111... unsigned TypeBits = Ty->getPrimitiveSize()*8; int64_t Val = INT64_MAX; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantSInt::get(Ty, Val); } case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return getAllOnesValue(Ty); default: return 0; } } // Static constructor to create the minimum constant for an integral type... ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::False; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: { // Calculate 1111111111000000000000 unsigned TypeBits = Ty->getPrimitiveSize()*8; int64_t Val = -1; // All ones Val <<= TypeBits-1; // Shift over to the right spot return ConstantSInt::get(Ty, Val); } case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: return ConstantUInt::get(Ty, 0); default: return 0; } } // Static constructor to create an integral constant with all bits set ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: return ConstantBool::True; case Type::SByteTyID: case Type::ShortTyID: case Type::IntTyID: case Type::LongTyID: return ConstantSInt::get(Ty, -1); case Type::UByteTyID: case Type::UShortTyID: case Type::UIntTyID: case Type::ULongTyID: { // Calculate ~0 of the right type... unsigned TypeBits = Ty->getPrimitiveSize()*8; uint64_t Val = ~0ULL; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return ConstantUInt::get(Ty, Val); } default: return 0; } } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Normal Constructors ConstantBool::ConstantBool(bool V) : ConstantIntegral(Type::BoolTy) { Val = V; } ConstantInt::ConstantInt(const Type *Ty, uint64_t V) : ConstantIntegral(Ty) { Val.Unsigned = V; } ConstantSInt::ConstantSInt(const Type *Ty, int64_t V) : ConstantInt(Ty, V) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V) : ConstantInt(Ty, V) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); } ConstantFP::ConstantFP(const Type *Ty, double V) : Constant(Ty) { assert(isValueValidForType(Ty, V) && "Value too large for type!"); Val = V; } ConstantArray::ConstantArray(const ArrayType *T, const std::vector &V) : Constant(T) { for (unsigned i = 0; i < V.size(); i++) { assert(V[i]->getType() == T->getElementType()); Operands.push_back(Use(V[i], this)); } } ConstantStruct::ConstantStruct(const StructType *T, const std::vector &V) : Constant(T) { const StructType::ElementTypes &ETypes = T->getElementTypes(); assert(V.size() == ETypes.size() && "Invalid initializer vector for constant structure"); for (unsigned i = 0; i < V.size(); i++) { assert(V[i]->getType() == ETypes[i]); Operands.push_back(Use(V[i], this)); } } ConstantPointerRef::ConstantPointerRef(GlobalValue *GV) : ConstantPointer(GV->getType()) { Operands.push_back(Use(GV, this)); } ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C, const Type *Ty) : Constant(Ty), iType(Opcode) { Operands.push_back(Use(C, this)); } ConstantExpr::ConstantExpr(unsigned Opcode, Constant *C1, Constant *C2) : Constant(C1->getType()), iType(Opcode) { Operands.push_back(Use(C1, this)); Operands.push_back(Use(C2, this)); } ConstantExpr::ConstantExpr(Constant *C, const std::vector &IdxList, const Type *DestTy) : Constant(DestTy), iType(Instruction::GetElementPtr) { Operands.reserve(1+IdxList.size()); Operands.push_back(Use(C, this)); for (unsigned i = 0, E = IdxList.size(); i != E; ++i) Operands.push_back(Use(IdxList[i], this)); } //===----------------------------------------------------------------------===// // classof implementations bool ConstantIntegral::classof(const Constant *CPV) { return (CPV->getType()->isIntegral() || CPV->getType() == Type::BoolTy) && !isa(CPV); } bool ConstantInt::classof(const Constant *CPV) { return CPV->getType()->isIntegral() && !isa(CPV); } bool ConstantSInt::classof(const Constant *CPV) { return CPV->getType()->isSigned() && !isa(CPV); } bool ConstantUInt::classof(const Constant *CPV) { return CPV->getType()->isUnsigned() && !isa(CPV); } bool ConstantFP::classof(const Constant *CPV) { const Type *Ty = CPV->getType(); return ((Ty == Type::FloatTy || Ty == Type::DoubleTy) && !isa(CPV)); } bool ConstantArray::classof(const Constant *CPV) { return isa(CPV->getType()) && !isa(CPV); } bool ConstantStruct::classof(const Constant *CPV) { return isa(CPV->getType()) && !isa(CPV); } bool ConstantPointer::classof(const Constant *CPV) { return (isa(CPV->getType()) && !isa(CPV)); } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Signed types... case Type::SByteTyID: return (Val <= INT8_MAX && Val >= INT8_MIN); case Type::ShortTyID: return (Val <= INT16_MAX && Val >= INT16_MIN); case Type::IntTyID: return (Val <= INT32_MAX && Val >= INT32_MIN); case Type::LongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as integers!!! // Unsigned types... case Type::UByteTyID: return (Val <= UINT8_MAX); case Type::UShortTyID: return (Val <= UINT16_MAX); case Type::UIntTyID: return (Val <= UINT32_MAX); case Type::ULongTyID: return true; // This is the largest type... } assert(0 && "WTF?"); return false; } bool ConstantFP::isValueValidForType(const Type *Ty, double Val) { switch (Ty->getPrimitiveID()) { default: return false; // These can't be represented as floating point! // TODO: Figure out how to test if a double can be cast to a float! case Type::FloatTyID: /* return (Val <= UINT8_MAX); */ case Type::DoubleTyID: return true; // This is the largest type... } }; //===----------------------------------------------------------------------===// // Factory Function Implementation template struct ValueMap { typedef pair ConstHashKey; map Map; inline ConstantClass *get(const Type *Ty, ValType V) { typename map::iterator I = Map.find(ConstHashKey(Ty, V)); return (I != Map.end()) ? I->second : 0; } inline void add(const Type *Ty, ValType V, ConstantClass *CP) { Map.insert(make_pair(ConstHashKey(Ty, V), CP)); } inline void remove(ConstantClass *CP) { for (typename map::iterator I = Map.begin(), E = Map.end(); I != E;++I) if (I->second == CP) { Map.erase(I); return; } } }; //---- ConstantUInt::get() and ConstantSInt::get() implementations... // static ValueMap IntConstants; ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) { ConstantSInt *Result = (ConstantSInt*)IntConstants.get(Ty, (uint64_t)V); if (!Result) // If no preexisting value, create one now... IntConstants.add(Ty, V, Result = new ConstantSInt(Ty, V)); return Result; } ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) { ConstantUInt *Result = (ConstantUInt*)IntConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... IntConstants.add(Ty, V, Result = new ConstantUInt(Ty, V)); return Result; } ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) { assert(V <= 127 && "Can only be used with very small positive constants!"); if (Ty->isSigned()) return ConstantSInt::get(Ty, V); return ConstantUInt::get(Ty, V); } //---- ConstantFP::get() implementation... // static ValueMap FPConstants; ConstantFP *ConstantFP::get(const Type *Ty, double V) { ConstantFP *Result = FPConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... FPConstants.add(Ty, V, Result = new ConstantFP(Ty, V)); return Result; } //---- ConstantArray::get() implementation... // static ValueMap, ConstantArray> ArrayConstants; ConstantArray *ConstantArray::get(const ArrayType *Ty, const std::vector &V) { ConstantArray *Result = ArrayConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... ArrayConstants.add(Ty, V, Result = new ConstantArray(Ty, V)); return Result; } // ConstantArray::get(const string&) - Return an array that is initialized to // contain the specified string. A null terminator is added to the specified // string so that it may be used in a natural way... // ConstantArray *ConstantArray::get(const std::string &Str) { std::vector ElementVals; for (unsigned i = 0; i < Str.length(); ++i) ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i])); // Add a null terminator to the string... ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0)); ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1); return ConstantArray::get(ATy, ElementVals); } // destroyConstant - Remove the constant from the constant table... // void ConstantArray::destroyConstant() { ArrayConstants.remove(this); destroyConstantImpl(); } //---- ConstantStruct::get() implementation... // static ValueMap, ConstantStruct> StructConstants; ConstantStruct *ConstantStruct::get(const StructType *Ty, const std::vector &V) { ConstantStruct *Result = StructConstants.get(Ty, V); if (!Result) // If no preexisting value, create one now... StructConstants.add(Ty, V, Result = new ConstantStruct(Ty, V)); return Result; } // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { StructConstants.remove(this); destroyConstantImpl(); } //---- ConstantPointerNull::get() implementation... // static ValueMap NullPtrConstants; ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) { ConstantPointerNull *Result = NullPtrConstants.get(Ty, 0); if (!Result) // If no preexisting value, create one now... NullPtrConstants.add(Ty, 0, Result = new ConstantPointerNull(Ty)); return Result; } //---- ConstantPointerRef::get() implementation... // ConstantPointerRef *ConstantPointerRef::get(GlobalValue *GV) { assert(GV->getParent() && "Global Value must be attached to a module!"); // The Module handles the pointer reference sharing... return GV->getParent()->getConstantPointerRef(GV); } //---- ConstantExpr::get() implementations... // typedef pair > ExprMapKeyType; static ValueMap ExprConstants; ConstantExpr *ConstantExpr::getCast(Constant *C, const Type *Ty) { // Look up the constant in the table first to ensure uniqueness vector argVec(1, C); const ExprMapKeyType &Key = make_pair(Instruction::Cast, argVec); ConstantExpr *Result = ExprConstants.get(Ty, Key); if (Result) return Result; // Its not in the table so create a new one and put it in the table. Result = new ConstantExpr(Instruction::Cast, C, Ty); ExprConstants.add(Ty, Key, Result); return Result; } ConstantExpr *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) { // Look up the constant in the table first to ensure uniqueness vector argVec(1, C1); argVec.push_back(C2); const ExprMapKeyType &Key = make_pair(Opcode, argVec); ConstantExpr *Result = ExprConstants.get(C1->getType(), Key); if (Result) return Result; // Its not in the table so create a new one and put it in the table. // Check the operands for consistency first assert((Opcode >= Instruction::FirstBinaryOp && Opcode < Instruction::NumBinaryOps) && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); Result = new ConstantExpr(Opcode, C1, C2); ExprConstants.add(C1->getType(), Key, Result); return Result; } ConstantExpr *ConstantExpr::getGetElementPtr(Constant *C, const std::vector &IdxList) { const Type *Ty = C->getType(); // Look up the constant in the table first to ensure uniqueness vector argVec(1, C); argVec.insert(argVec.end(), IdxList.begin(), IdxList.end()); const ExprMapKeyType &Key = make_pair(Instruction::GetElementPtr, argVec); ConstantExpr *Result = ExprConstants.get(Ty, Key); if (Result) return Result; // Its not in the table so create a new one and put it in the table. // Check the operands for consistency first // assert(isa(Ty) && "Non-pointer type for constant GelElementPtr expression"); // Check that the indices list is valid... std::vector ValIdxList(IdxList.begin(), IdxList.end()); const Type *DestTy = GetElementPtrInst::getIndexedType(Ty, ValIdxList, true); assert(DestTy && "Invalid index list for constant GelElementPtr expression"); Result = new ConstantExpr(C, IdxList, PointerType::get(DestTy)); ExprConstants.add(Ty, Key, Result); return Result; } // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { ExprConstants.remove(this); destroyConstantImpl(); } const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } //---- ConstantPointerRef::mutateReferences() implementation... // unsigned ConstantPointerRef::mutateReferences(Value *OldV, Value *NewV) { assert(getValue() == OldV && "Cannot mutate old value if I'm not using it!"); GlobalValue *NewGV = cast(NewV); getValue()->getParent()->mutateConstantPointerRef(getValue(), NewGV); Operands[0] = NewGV; return 1; } //---- ConstantPointerExpr::mutateReferences() implementation... // unsigned ConstantExpr::mutateReferences(Value* OldV, Value *NewV) { unsigned NumReplaced = 0; Constant *NewC = cast(NewV); for (unsigned i = 0, N = getNumOperands(); i != N; ++i) if (Operands[i] == OldV) { ++NumReplaced; Operands[i] = NewC; } return NumReplaced; }