//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the ARM-specific support for the FastISel class. Some // of the target-specific code is generated by tablegen in the file // ARMGenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMBaseInstrInfo.h" #include "ARMRegisterInfo.h" #include "ARMTargetMachine.h" #include "ARMSubtarget.h" #include "llvm/CallingConv.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; static cl::opt EnableARMFastISel("arm-fast-isel", cl::desc("Turn on experimental ARM fast-isel support"), cl::init(false), cl::Hidden); namespace { class ARMFastISel : public FastISel { /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can /// make the right decision when generating code for different targets. const ARMSubtarget *Subtarget; const TargetMachine &TM; const TargetInstrInfo &TII; const TargetLowering &TLI; const ARMFunctionInfo *AFI; // Convenience variable to avoid checking all the time. bool isThumb; public: explicit ARMFastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo), TM(funcInfo.MF->getTarget()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()) { Subtarget = &TM.getSubtarget(); AFI = funcInfo.MF->getInfo(); isThumb = AFI->isThumbFunction(); } // Code from FastISel.cpp. virtual unsigned FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass *RC); virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill); virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill); virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm); virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm); virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm); virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm); virtual unsigned FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx); // Backend specific FastISel code. virtual bool TargetSelectInstruction(const Instruction *I); virtual unsigned TargetMaterializeConstant(const Constant *C); #include "ARMGenFastISel.inc" // Instruction selection routines. virtual bool ARMSelectLoad(const Instruction *I); virtual bool ARMSelectStore(const Instruction *I); virtual bool ARMSelectBranch(const Instruction *I); // Utility routines. private: bool isTypeLegal(const Type *Ty, EVT &VT); bool isLoadTypeLegal(const Type *Ty, EVT &VT); bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset); bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Reg, int Offset); bool ARMLoadAlloca(const Instruction *I); bool ARMStoreAlloca(const Instruction *I, unsigned SrcReg); bool ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset); bool ARMMaterializeConstant(const ConstantInt *Val, unsigned &Reg); bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); }; } // end anonymous namespace // #include "ARMGenCallingConv.inc" // DefinesOptionalPredicate - This is different from DefinesPredicate in that // we don't care about implicit defs here, just places we'll need to add a // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { const TargetInstrDesc &TID = MI->getDesc(); if (!TID.hasOptionalDef()) return false; // Look to see if our OptionalDef is defining CPSR or CCR. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isDef()) continue; if (MO.getReg() == ARM::CPSR) *CPSR = true; } return true; } // If the machine is predicable go ahead and add the predicate operands, if // it needs default CC operands add those. const MachineInstrBuilder & ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { MachineInstr *MI = &*MIB; // Do we use a predicate? if (TII.isPredicable(MI)) AddDefaultPred(MIB); // Do we optionally set a predicate? Preds is size > 0 iff the predicate // defines CPSR. All other OptionalDefines in ARM are the CCR register. bool CPSR = false; if (DefinesOptionalPredicate(MI, &CPSR)) { if (CPSR) AddDefaultT1CC(MIB); else AddDefaultCC(MIB); } return MIB; } unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, const TargetRegisterClass* RC) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); return ResultReg; } unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addImm(Imm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, const ConstantFP *FPImm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addFPImm(FPImm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, const TargetRegisterClass *RC, unsigned Op0, bool Op0IsKill, unsigned Op1, bool Op1IsKill, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill) .addImm(Imm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, const TargetRegisterClass *RC, uint64_t Imm) { unsigned ResultReg = createResultReg(RC); const TargetInstrDesc &II = TII.get(MachineInstOpcode); if (II.getNumDefs() >= 1) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) .addImm(Imm)); else { AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) .addImm(Imm)); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(II.ImplicitDefs[0])); } return ResultReg; } unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill, uint32_t Idx) { unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); assert(TargetRegisterInfo::isVirtualRegister(Op0) && "Cannot yet extract from physregs"); AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg) .addReg(Op0, getKillRegState(Op0IsKill), Idx)); return ResultReg; } unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { EVT VT = TLI.getValueType(C->getType(), true); // Only handle simple types. if (!VT.isSimple()) return 0; // TODO: This should be safe for fp because they're just bits from the // Constant. // TODO: Theoretically we could materialize fp constants with instructions // from VFP3. // MachineConstantPool wants an explicit alignment. unsigned Align = TD.getPrefTypeAlignment(C->getType()); if (Align == 0) { // TODO: Figure out if this is correct. Align = TD.getTypeAllocSize(C->getType()); } unsigned Idx = MCP.getConstantPoolIndex(C, Align); unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); // Different addressing modes between ARM/Thumb2 for constant pool loads. if (isThumb) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::t2LDRpci)) .addReg(DestReg).addConstantPoolIndex(Idx)); else AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp)) .addReg(DestReg).addConstantPoolIndex(Idx) .addReg(0).addImm(0)); return DestReg; } bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) { VT = TLI.getValueType(Ty, true); // Only handle simple types. if (VT == MVT::Other || !VT.isSimple()) return false; // Handle all legal types, i.e. a register that will directly hold this // value. return TLI.isTypeLegal(VT); } bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) { if (isTypeLegal(Ty, VT)) return true; // If this is a type than can be sign or zero-extended to a basic operation // go ahead and accept it now. if (VT == MVT::i8 || VT == MVT::i16) return true; return false; } // Computes the Reg+Offset to get to an object. bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset) { // Some boilerplate from the X86 FastISel. const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast(Obj)) { // Don't walk into other basic blocks; it's possible we haven't // visited them yet, so the instructions may not yet be assigned // virtual registers. if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB) return false; Opcode = I->getOpcode(); U = I; } else if (const ConstantExpr *C = dyn_cast(Obj)) { Opcode = C->getOpcode(); U = C; } if (const PointerType *Ty = dyn_cast(Obj->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; switch (Opcode) { default: //errs() << "Failing Opcode is: " << *Op1 << "\n"; break; case Instruction::Alloca: { assert(false && "Alloca should have been handled earlier!"); return false; } } if (const GlobalValue *GV = dyn_cast(Obj)) { //errs() << "Failing GV is: " << GV << "\n"; (void)GV; return false; } // Try to get this in a register if nothing else has worked. Reg = getRegForValue(Obj); if (Reg == 0) return false; // Since the offset may be too large for the load instruction // get the reg+offset into a register. // TODO: Verify the additions work, otherwise we'll need to add the // offset instead of 0 to the instructions and do all sorts of operand // munging. // TODO: Optimize this somewhat. if (Offset != 0) { ARMCC::CondCodes Pred = ARMCC::AL; unsigned PredReg = 0; if (!isThumb) emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL, Reg, Reg, Offset, Pred, PredReg, static_cast(TII)); else { assert(AFI->isThumb2Function()); emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL, Reg, Reg, Offset, Pred, PredReg, static_cast(TII)); } } return true; } bool ARMFastISel::ARMLoadAlloca(const Instruction *I) { Value *Op0 = I->getOperand(0); // Verify it's an alloca. if (const AllocaInst *AI = dyn_cast(Op0)) { DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); unsigned ResultReg = createResultReg(RC); TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt, ResultReg, SI->second, RC, TM.getRegisterInfo()); UpdateValueMap(I, ResultReg); return true; } } return false; } bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset) { assert(VT.isSimple() && "Non-simple types are invalid here!"); unsigned Opc; switch (VT.getSimpleVT().SimpleTy) { default: assert(false && "Trying to emit for an unhandled type!"); return false; case MVT::i16: Opc = isThumb ? ARM::tLDRH : ARM::LDRH; VT = MVT::i32; break; case MVT::i8: Opc = isThumb ? ARM::tLDRB : ARM::LDRB; VT = MVT::i32; break; case MVT::i32: Opc = isThumb ? ARM::tLDR : ARM::LDR; break; } ResultReg = createResultReg(TLI.getRegClassFor(VT)); // TODO: Fix the Addressing modes so that these can share some code. // Since this is a Thumb1 load this will work in Thumb1 or 2 mode. if (isThumb) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(Reg).addImm(Offset).addReg(0)); else AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(Reg).addReg(0).addImm(Offset)); return true; } bool ARMFastISel::ARMStoreAlloca(const Instruction *I, unsigned SrcReg) { Value *Op1 = I->getOperand(1); // Verify it's an alloca. if (const AllocaInst *AI = dyn_cast(Op1)) { DenseMap::iterator SI = FuncInfo.StaticAllocaMap.find(AI); if (SI != FuncInfo.StaticAllocaMap.end()) { TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); assert(SrcReg != 0 && "Nothing to store!"); TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt, SrcReg, true /*isKill*/, SI->second, RC, TM.getRegisterInfo()); return true; } } return false; } bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, unsigned DstReg, int Offset) { unsigned StrOpc; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: StrOpc = isThumb ? ARM::tSTRB : ARM::STRB; break; case MVT::i16: StrOpc = isThumb ? ARM::tSTRH : ARM::STRH; break; case MVT::i32: StrOpc = isThumb ? ARM::tSTR : ARM::STR; break; case MVT::f32: if (!Subtarget->hasVFP2()) return false; StrOpc = ARM::VSTRS; break; case MVT::f64: if (!Subtarget->hasVFP2()) return false; StrOpc = ARM::VSTRD; break; } if (isThumb) AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(StrOpc), SrcReg) .addReg(DstReg).addImm(Offset).addReg(0)); else AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(StrOpc), SrcReg) .addReg(DstReg).addReg(0).addImm(Offset)); return true; } bool ARMFastISel::ARMSelectStore(const Instruction *I) { Value *Op0 = I->getOperand(0); unsigned SrcReg = 0; // Yay type legalization EVT VT; if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) return false; // Get the value to be stored into a register. SrcReg = getRegForValue(Op0); if (SrcReg == 0) return false; // If we're an alloca we know we have a frame index and can emit the store // quickly. if (ARMStoreAlloca(I, SrcReg)) return true; // Our register and offset with innocuous defaults. unsigned Reg = 0; int Offset = 0; // See if we can handle this as Reg + Offset if (!ARMComputeRegOffset(I->getOperand(1), Reg, Offset)) return false; if (!ARMEmitStore(VT, SrcReg, Reg, Offset /* 0 */)) return false; return false; } bool ARMFastISel::ARMSelectLoad(const Instruction *I) { // If we're an alloca we know we have a frame index and can emit the load // directly in short order. if (ARMLoadAlloca(I)) return true; // Verify we have a legal type before going any further. EVT VT; if (!isLoadTypeLegal(I->getType(), VT)) return false; // Our register and offset with innocuous defaults. unsigned Reg = 0; int Offset = 0; // See if we can handle this as Reg + Offset if (!ARMComputeRegOffset(I->getOperand(0), Reg, Offset)) return false; unsigned ResultReg; if (!ARMEmitLoad(VT, ResultReg, Reg, Offset /* 0 */)) return false; UpdateValueMap(I, ResultReg); return true; } bool ARMFastISel::ARMSelectBranch(const Instruction *I) { const BranchInst *BI = cast(I); MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // Simple branch support. unsigned CondReg = getRegForValue(BI->getCondition()); if (CondReg == 0) return false; unsigned CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr; unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc; AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) .addReg(CondReg).addReg(CondReg)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) .addMBB(TBB).addImm(ARMCC::NE).addReg(ARM::CPSR); FastEmitBranch(FBB, DL); FuncInfo.MBB->addSuccessor(TBB); return true; } // TODO: SoftFP support. bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { // No Thumb-1 for now. if (isThumb && !AFI->isThumb2Function()) return false; switch (I->getOpcode()) { case Instruction::Load: return ARMSelectLoad(I); case Instruction::Store: return ARMSelectStore(I); case Instruction::Br: return ARMSelectBranch(I); default: break; } return false; } namespace llvm { llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) { if (EnableARMFastISel) return new ARMFastISel(funcInfo); return 0; } }