//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Owen Anderson and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if(c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Support/CFG.h" #include #include using namespace llvm; namespace { static Statistic<> NumLCSSA("lcssa", "Number of live out of a loop variables"); class LCSSA : public FunctionPass { public: LoopInfo *LI; // Loop information DominatorTree *DT; // Dominator Tree for the current Loop... DominanceFrontier *DF; // Current Dominance Frontier std::vector *LoopBlocks; virtual bool runOnFunction(Function &F); bool visitSubloop(Loop* L); void processInstruction(Instruction* Instr, const std::vector& exitBlocks); /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. /// virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addRequired(); } private: SetVector getLoopValuesUsedOutsideLoop(Loop *L); Instruction *getValueDominatingBlock(BasicBlock *BB, std::map& PotDoms); bool inLoopBlocks(BasicBlock* B) { return std::binary_search( LoopBlocks->begin(), LoopBlocks->end(), B); } }; RegisterOpt X("lcssa", "Loop-Closed SSA Form Pass"); } FunctionPass *llvm::createLCSSAPass() { return new LCSSA(); } bool LCSSA::runOnFunction(Function &F) { bool changed = false; LI = &getAnalysis(); DF = &getAnalysis(); DT = &getAnalysis(); LoopBlocks = new std::vector; for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) { changed |= visitSubloop(*I); } return changed; } bool LCSSA::visitSubloop(Loop* L) { for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) visitSubloop(*I); // Speed up queries by creating a sorted list of blocks LoopBlocks->clear(); LoopBlocks->insert(LoopBlocks->end(), L->block_begin(), L->block_end()); std::sort(LoopBlocks->begin(), LoopBlocks->end()); SetVector AffectedValues = getLoopValuesUsedOutsideLoop(L); // If no values are affected, we can save a lot of work, since we know that // nothing will be changed. if (AffectedValues.empty()) return false; std::vector exitBlocks; L->getExitBlocks(exitBlocks); // Iterate over all affected values for this loop and insert Phi nodes // for them in the appropriate exit blocks for (SetVector::iterator I = AffectedValues.begin(), E = AffectedValues.end(); I != E; ++I) { processInstruction(*I, exitBlocks); } return true; // FIXME: Should be more intelligent in our return value. } /// processInstruction - void LCSSA::processInstruction(Instruction* Instr, const std::vector& exitBlocks) { ++NumLCSSA; // We are applying the transformation std::map Phis; // Add the base instruction to the Phis list. This makes tracking down // the dominating values easier when we're filling in Phi nodes. This will // be removed later, before we perform use replacement. Phis[Instr->getParent()] = Instr; // Phi nodes that need to be IDF-processed std::vector workList; for (std::vector::const_iterator BBI = exitBlocks.begin(), BBE = exitBlocks.end(); BBI != BBE; ++BBI) if (DT->getNode(Instr->getParent())->dominates(DT->getNode(*BBI))) { PHINode *phi = new PHINode(Instr->getType(), "lcssa", (*BBI)->begin()); workList.push_back(phi); Phis[*BBI] = phi; } // Phi nodes that need to have their incoming values filled. std::vector needIncomingValues; // Calculate the IDF of these LCSSA Phi nodes, inserting new Phi's where // necessary. Keep track of these new Phi's in the "Phis" map. while (!workList.empty()) { PHINode *CurPHI = workList.back(); workList.pop_back(); // Even though we've removed this Phi from the work list, we still need // to fill in its incoming values. needIncomingValues.push_back(CurPHI); // Get the current Phi's DF, and insert Phi nodes. Add these new // nodes to our worklist. DominanceFrontier::const_iterator it = DF->find(CurPHI->getParent()); if (it != DF->end()) { const DominanceFrontier::DomSetType &S = it->second; for (DominanceFrontier::DomSetType::const_iterator P = S.begin(), PE = S.end(); P != PE; ++P) { Instruction *&Phi = Phis[*P]; if (Phi == 0) { // Still doesn't have operands... Phi = new PHINode(Instr->getType(), "lcssa", (*P)->begin()); workList.push_back(cast(Phi)); } } } } // Fill in all Phis we've inserted that need their incoming values filled in. for (std::vector::iterator IVI = needIncomingValues.begin(), IVE = needIncomingValues.end(); IVI != IVE; ++IVI) { for (pred_iterator PI = pred_begin((*IVI)->getParent()), E = pred_end((*IVI)->getParent()); PI != E; ++PI) (*IVI)->addIncoming(getValueDominatingBlock(*PI, Phis), *PI); } // Find all uses of the affected value, and replace them with the // appropriate Phi. std::vector Uses; for (Instruction::use_iterator UI = Instr->use_begin(), UE = Instr->use_end(); UI != UE; ++UI) { Instruction* use = cast(*UI); // Don't need to update uses within the loop body, and we don't want to // overwrite the Phi nodes that we inserted into the exit blocks either. if (!inLoopBlocks(use->getParent()) && !(std::binary_search(exitBlocks.begin(), exitBlocks.end(), use->getParent()) && isa(use))) Uses.push_back(use); } // Deliberately remove the initial instruction from Phis set. It would mess // up use-replacement. Phis.erase(Instr->getParent()); for (std::vector::iterator II = Uses.begin(), IE = Uses.end(); II != IE; ++II) { if (PHINode* phi = dyn_cast(*II)) { for (unsigned int i = 0; i < phi->getNumIncomingValues(); ++i) { if (phi->getIncomingValue(i) == Instr) { Instruction* dominator = getValueDominatingBlock(phi->getIncomingBlock(i), Phis); phi->setIncomingValue(i, dominator); } } } else { Value *NewVal = getValueDominatingBlock((*II)->getParent(), Phis); (*II)->replaceUsesOfWith(Instr, NewVal); } } } /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that /// are used by instructions outside of it. SetVector LCSSA::getLoopValuesUsedOutsideLoop(Loop *L) { // FIXME: For large loops, we may be able to avoid a lot of use-scanning // by using dominance information. In particular, if a block does not // dominate any of the loop exits, then none of the values defined in the // block could be used outside the loop. SetVector AffectedValues; for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); BB != E; ++BB) { for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { BasicBlock *UserBB = cast(*UI)->getParent(); if (!std::binary_search(LoopBlocks->begin(), LoopBlocks->end(), UserBB)) { AffectedValues.insert(I); break; } } } return AffectedValues; } Instruction *LCSSA::getValueDominatingBlock(BasicBlock *BB, std::map& PotDoms) { DominatorTree::Node* bbNode = DT->getNode(BB); while (bbNode != 0) { std::map::iterator I = PotDoms.find(bbNode->getBlock()); if (I != PotDoms.end()) { return (*I).second; } bbNode = bbNode->getIDom(); } assert(0 && "No dominating value found."); return 0; }