//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_TYPE_H #define LLVM_TYPE_H #include "llvm/AbstractTypeUser.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataTypes.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator" #include #include namespace llvm { class ArrayType; class DerivedType; class FunctionType; class OpaqueType; class PointerType; class StructType; class PackedType; class TypeMapBase; /// This file contains the declaration of the Type class. For more "Type" type /// stuff, look in DerivedTypes.h. /// /// The instances of the Type class are immutable: once they are created, /// they are never changed. Also note that only one instance of a particular /// type is ever created. Thus seeing if two types are equal is a matter of /// doing a trivial pointer comparison. To enforce that no two equal instances /// are created, Type instances can only be created via static factory methods /// in class Type and in derived classes. /// /// Once allocated, Types are never free'd, unless they are an abstract type /// that is resolved to a more concrete type. /// /// Types themself don't have a name, and can be named either by: /// - using SymbolTable instance, typically from some Module, /// - using convenience methods in the Module class (which uses module's /// SymbolTable too). /// /// Opaque types are simple derived types with no state. There may be many /// different Opaque type objects floating around, but two are only considered /// identical if they are pointer equals of each other. This allows us to have /// two opaque types that end up resolving to different concrete types later. /// /// Opaque types are also kinda weird and scary and different because they have /// to keep a list of uses of the type. When, through linking, parsing, or /// bytecode reading, they become resolved, they need to find and update all /// users of the unknown type, causing them to reference a new, more concrete /// type. Opaque types are deleted when their use list dwindles to zero users. /// /// @brief Root of type hierarchy class Type : public AbstractTypeUser { public: ///===-------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this /// value, you can cast to a "DerivedType" subclass (see DerivedTypes.h) /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! /// enum TypeID { // PrimitiveTypes .. make sure LastPrimitiveTyID stays up to date VoidTyID = 0 , BoolTyID, // 0, 1: Basics... UByteTyID , SByteTyID, // 2, 3: 8 bit types... UShortTyID , ShortTyID, // 4, 5: 16 bit types... UIntTyID , IntTyID, // 6, 7: 32 bit types... ULongTyID , LongTyID, // 8, 9: 64 bit types... FloatTyID , DoubleTyID, // 10,11: Floating point types... LabelTyID , // 12 : Labels... // Derived types... see DerivedTypes.h file... // Make sure FirstDerivedTyID stays up to date!!! FunctionTyID , StructTyID, // Functions... Structs... ArrayTyID , PointerTyID, // Array... pointer... OpaqueTyID, // Opaque type instances... PackedTyID, // SIMD 'packed' format... //... NumTypeIDs, // Must remain as last defined ID LastPrimitiveTyID = LabelTyID, FirstDerivedTyID = FunctionTyID }; private: TypeID ID : 8; // The current base type of this type. bool Abstract : 1; // True if type contains an OpaqueType /// RefCount - This counts the number of PATypeHolders that are pointing to /// this type. When this number falls to zero, if the type is abstract and /// has no AbstractTypeUsers, the type is deleted. This is only sensical for /// derived types. /// mutable unsigned RefCount; const Type *getForwardedTypeInternal() const; protected: Type(const char *Name, TypeID id); Type(TypeID id) : ID(id), Abstract(false), RefCount(0), ForwardType(0) {} virtual ~Type() { assert(AbstractTypeUsers.empty()); } /// Types can become nonabstract later, if they are refined. /// inline void setAbstract(bool Val) { Abstract = Val; } unsigned getRefCount() const { return RefCount; } /// ForwardType - This field is used to implement the union find scheme for /// abstract types. When types are refined to other types, this field is set /// to the more refined type. Only abstract types can be forwarded. mutable const Type *ForwardType; /// ContainedTys - The list of types contained by this one. For example, this /// includes the arguments of a function type, the elements of the structure, /// the pointee of a pointer, etc. Note that keeping this vector in the Type /// class wastes some space for types that do not contain anything (such as /// primitive types). However, keeping it here allows the subtype_* members /// to be implemented MUCH more efficiently, and dynamically very few types do /// not contain any elements (most are derived). std::vector ContainedTys; /// AbstractTypeUsers - Implement a list of the users that need to be notified /// if I am a type, and I get resolved into a more concrete type. /// mutable std::vector AbstractTypeUsers; public: void print(std::ostream &O) const; /// @brief Debugging support: print to stderr void dump() const; //===--------------------------------------------------------------------===// // Property accessors for dealing with types... Some of these virtual methods // are defined in private classes defined in Type.cpp for primitive types. // /// getTypeID - Return the type id for the type. This will return one /// of the TypeID enum elements defined above. /// inline TypeID getTypeID() const { return ID; } /// getDescription - Return the string representation of the type... const std::string &getDescription() const; /// isSigned - Return whether an integral numeric type is signed. This is /// true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for /// Float and Double. /// bool isSigned() const { return ID == SByteTyID || ID == ShortTyID || ID == IntTyID || ID == LongTyID; } /// isUnsigned - Return whether a numeric type is unsigned. This is not quite /// the complement of isSigned... nonnumeric types return false as they do /// with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and /// ULongTy /// bool isUnsigned() const { return ID == UByteTyID || ID == UShortTyID || ID == UIntTyID || ID == ULongTyID; } /// isInteger - Equivalent to isSigned() || isUnsigned() /// bool isInteger() const { return ID >= UByteTyID && ID <= LongTyID; } /// isIntegral - Returns true if this is an integral type, which is either /// BoolTy or one of the Integer types. /// bool isIntegral() const { return isInteger() || this == BoolTy; } /// isFloatingPoint - Return true if this is one of the two floating point /// types bool isFloatingPoint() const { return ID == FloatTyID || ID == DoubleTyID; } /// isAbstract - True if the type is either an Opaque type, or is a derived /// type that includes an opaque type somewhere in it. /// inline bool isAbstract() const { return Abstract; } /// isLosslesslyConvertibleTo - Return true if this type can be converted to /// 'Ty' without any reinterpretation of bits. For example, uint to int. /// bool isLosslesslyConvertibleTo(const Type *Ty) const; /// Here are some useful little methods to query what type derived types are /// Note that all other types can just compare to see if this == Type::xxxTy; /// inline bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } inline bool isDerivedType() const { return ID >= FirstDerivedTyID; } /// isFirstClassType - Return true if the value is holdable in a register. /// inline bool isFirstClassType() const { return (ID != VoidTyID && ID <= LastPrimitiveTyID) || ID == PointerTyID || ID == PackedTyID; } /// isSized - Return true if it makes sense to take the size of this type. To /// get the actual size for a particular target, it is reasonable to use the /// TargetData subsystem to do this. /// bool isSized() const { // If it's a primitive, it is always sized. if (ID >= BoolTyID && ID <= DoubleTyID || ID == PointerTyID) return true; // If it is not something that can have a size (e.g. a function or label), // it doesn't have a size. if (ID != StructTyID && ID != ArrayTyID && ID != PackedTyID) return false; // If it is something that can have a size and it's concrete, it definitely // has a size, otherwise we have to try harder to decide. return !isAbstract() || isSizedDerivedType(); } /// getPrimitiveSize - Return the basic size of this type if it is a primitive /// type. These are fixed by LLVM and are not target dependent. This will /// return zero if the type does not have a size or is not a primitive type. /// unsigned getPrimitiveSize() const; unsigned getPrimitiveSizeInBits() const; /// getUnsignedVersion - If this is an integer type, return the unsigned /// variant of this type. For example int -> uint. const Type *getUnsignedVersion() const; /// getSignedVersion - If this is an integer type, return the signed variant /// of this type. For example uint -> int. const Type *getSignedVersion() const; /// getIntegralTypeMask - Return a bitmask with ones set for all of the bits /// that can be set by an unsigned version of this type. This is 0xFF for /// sbyte/ubyte, 0xFFFF for shorts, etc. uint64_t getIntegralTypeMask() const { assert(isIntegral() && "This only works for integral types!"); return ~uint64_t(0UL) >> (64-getPrimitiveSizeInBits()); } /// getForwaredType - Return the type that this type has been resolved to if /// it has been resolved to anything. This is used to implement the /// union-find algorithm for type resolution, and shouldn't be used by general /// purpose clients. const Type *getForwardedType() const { if (!ForwardType) return 0; return getForwardedTypeInternal(); } /// getVAArgsPromotedType - Return the type an argument of this type /// will be promoted to if passed through a variable argument /// function. const Type *getVAArgsPromotedType() const { if (ID == BoolTyID || ID == UByteTyID || ID == UShortTyID) return Type::UIntTy; else if (ID == SByteTyID || ID == ShortTyID) return Type::IntTy; else if (ID == FloatTyID) return Type::DoubleTy; else return this; } //===--------------------------------------------------------------------===// // Type Iteration support // typedef std::vector::const_iterator subtype_iterator; subtype_iterator subtype_begin() const { return ContainedTys.begin(); } subtype_iterator subtype_end() const { return ContainedTys.end(); } /// getContainedType - This method is used to implement the type iterator /// (defined a the end of the file). For derived types, this returns the /// types 'contained' in the derived type. /// const Type *getContainedType(unsigned i) const { assert(i < ContainedTys.size() && "Index out of range!"); return ContainedTys[i]; } /// getNumContainedTypes - Return the number of types in the derived type. /// typedef std::vector::size_type size_type; size_type getNumContainedTypes() const { return ContainedTys.size(); } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting // instances of Type. // /// getPrimitiveType - Return a type based on an identifier. static const Type *getPrimitiveType(TypeID IDNumber); //===--------------------------------------------------------------------===// // These are the builtin types that are always available... // static Type *VoidTy , *BoolTy; static Type *SByteTy, *UByteTy, *ShortTy, *UShortTy, *IntTy , *UIntTy, *LongTy , *ULongTy; static Type *FloatTy, *DoubleTy; static Type* LabelTy; /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Type *T) { return true; } void addRef() const { assert(isAbstract() && "Cannot add a reference to a non-abstract type!"); ++RefCount; } void dropRef() const { assert(isAbstract() && "Cannot drop a reference to a non-abstract type!"); assert(RefCount && "No objects are currently referencing this object!"); // If this is the last PATypeHolder using this object, and there are no // PATypeHandles using it, the type is dead, delete it now. if (--RefCount == 0 && AbstractTypeUsers.empty()) delete this; } /// addAbstractTypeUser - Notify an abstract type that there is a new user of /// it. This function is called primarily by the PATypeHandle class. /// void addAbstractTypeUser(AbstractTypeUser *U) const { assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!"); AbstractTypeUsers.push_back(U); } /// removeAbstractTypeUser - Notify an abstract type that a user of the class /// no longer has a handle to the type. This function is called primarily by /// the PATypeHandle class. When there are no users of the abstract type, it /// is annihilated, because there is no way to get a reference to it ever /// again. /// void removeAbstractTypeUser(AbstractTypeUser *U) const; /// clearAllTypeMaps - This method frees all internal memory used by the /// type subsystem, which can be used in environments where this memory is /// otherwise reported as a leak. static void clearAllTypeMaps(); private: /// isSizedDerivedType - Derived types like structures and arrays are sized /// iff all of the members of the type are sized as well. Since asking for /// their size is relatively uncommon, move this operation out of line. bool isSizedDerivedType() const; virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy); virtual void typeBecameConcrete(const DerivedType *AbsTy); protected: // PromoteAbstractToConcrete - This is an internal method used to calculate // change "Abstract" from true to false when types are refined. void PromoteAbstractToConcrete(); friend class TypeMapBase; }; //===----------------------------------------------------------------------===// // Define some inline methods for the AbstractTypeUser.h:PATypeHandle class. // These are defined here because they MUST be inlined, yet are dependent on // the definition of the Type class. // inline void PATypeHandle::addUser() { assert(Ty && "Type Handle has a null type!"); if (Ty->isAbstract()) Ty->addAbstractTypeUser(User); } inline void PATypeHandle::removeUser() { if (Ty->isAbstract()) Ty->removeAbstractTypeUser(User); } // Define inline methods for PATypeHolder... inline void PATypeHolder::addRef() { if (Ty->isAbstract()) Ty->addRef(); } inline void PATypeHolder::dropRef() { if (Ty->isAbstract()) Ty->dropRef(); } //===----------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types... template <> struct GraphTraits { typedef Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(Type *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; template <> struct GraphTraits { typedef const Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(const Type *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; template <> inline bool isa_impl(const Type &Ty) { return Ty.getTypeID() == Type::PointerTyID; } std::ostream &operator<<(std::ostream &OS, const Type &T); } // End llvm namespace #endif