//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is emits an assembly printer for the current target. // Note that this is currently fairly skeletal, but will grow over time. // //===----------------------------------------------------------------------===// #include "AsmWriterEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include using namespace llvm; static bool isIdentChar(char C) { return (C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') || (C >= '0' && C <= '9') || C == '_'; } // This should be an anon namespace, this works around a GCC warning. namespace llvm { struct AsmWriterOperand { enum { isLiteralTextOperand, isMachineInstrOperand } OperandType; /// Str - For isLiteralTextOperand, this IS the literal text. For /// isMachineInstrOperand, this is the PrinterMethodName for the operand. std::string Str; /// MiOpNo - For isMachineInstrOperand, this is the operand number of the /// machine instruction. unsigned MIOpNo; /// MiModifier - For isMachineInstrOperand, this is the modifier string for /// an operand, specified with syntax like ${opname:modifier}. std::string MiModifier; // To make VS STL happy AsmWriterOperand():OperandType(isLiteralTextOperand) {} explicit AsmWriterOperand(const std::string &LitStr) : OperandType(isLiteralTextOperand), Str(LitStr) {} AsmWriterOperand(const std::string &Printer, unsigned OpNo, const std::string &Modifier) : OperandType(isMachineInstrOperand), Str(Printer), MIOpNo(OpNo), MiModifier(Modifier) {} bool operator!=(const AsmWriterOperand &Other) const { if (OperandType != Other.OperandType || Str != Other.Str) return true; if (OperandType == isMachineInstrOperand) return MIOpNo != Other.MIOpNo || MiModifier != Other.MiModifier; return false; } bool operator==(const AsmWriterOperand &Other) const { return !operator!=(Other); } /// getCode - Return the code that prints this operand. std::string getCode() const; }; } namespace llvm { class AsmWriterInst { public: std::vector Operands; const CodeGenInstruction *CGI; AsmWriterInst(const CodeGenInstruction &CGI, unsigned Variant); /// MatchesAllButOneOp - If this instruction is exactly identical to the /// specified instruction except for one differing operand, return the /// differing operand number. Otherwise return ~0. unsigned MatchesAllButOneOp(const AsmWriterInst &Other) const; private: void AddLiteralString(const std::string &Str) { // If the last operand was already a literal text string, append this to // it, otherwise add a new operand. if (!Operands.empty() && Operands.back().OperandType == AsmWriterOperand::isLiteralTextOperand) Operands.back().Str.append(Str); else Operands.push_back(AsmWriterOperand(Str)); } }; } std::string AsmWriterOperand::getCode() const { if (OperandType == isLiteralTextOperand) return "O << \"" + Str + "\"; "; std::string Result = Str + "(MI"; if (MIOpNo != ~0U) Result += ", " + utostr(MIOpNo); if (!MiModifier.empty()) Result += ", \"" + MiModifier + '"'; return Result + "); "; } /// ParseAsmString - Parse the specified Instruction's AsmString into this /// AsmWriterInst. /// AsmWriterInst::AsmWriterInst(const CodeGenInstruction &CGI, unsigned Variant) { this->CGI = &CGI; unsigned CurVariant = ~0U; // ~0 if we are outside a {.|.|.} region, other #. // NOTE: Any extensions to this code need to be mirrored in the // AsmPrinter::printInlineAsm code that executes as compile time (assuming // that inline asm strings should also get the new feature)! const std::string &AsmString = CGI.AsmString; std::string::size_type LastEmitted = 0; while (LastEmitted != AsmString.size()) { std::string::size_type DollarPos = AsmString.find_first_of("${|}\\", LastEmitted); if (DollarPos == std::string::npos) DollarPos = AsmString.size(); // Emit a constant string fragment. if (DollarPos != LastEmitted) { if (CurVariant == Variant || CurVariant == ~0U) { for (; LastEmitted != DollarPos; ++LastEmitted) switch (AsmString[LastEmitted]) { case '\n': AddLiteralString("\\n"); break; case '\t': AddLiteralString("\\t"); break; case '"': AddLiteralString("\\\""); break; case '\\': AddLiteralString("\\\\"); break; default: AddLiteralString(std::string(1, AsmString[LastEmitted])); break; } } else { LastEmitted = DollarPos; } } else if (AsmString[DollarPos] == '\\') { if (DollarPos+1 != AsmString.size() && (CurVariant == Variant || CurVariant == ~0U)) { if (AsmString[DollarPos+1] == 'n') { AddLiteralString("\\n"); } else if (AsmString[DollarPos+1] == 't') { AddLiteralString("\\t"); } else if (std::string("${|}\\").find(AsmString[DollarPos+1]) != std::string::npos) { AddLiteralString(std::string(1, AsmString[DollarPos+1])); } else { throw "Non-supported escaped character found in instruction '" + CGI.TheDef->getName() + "'!"; } LastEmitted = DollarPos+2; continue; } } else if (AsmString[DollarPos] == '{') { if (CurVariant != ~0U) throw "Nested variants found for instruction '" + CGI.TheDef->getName() + "'!"; LastEmitted = DollarPos+1; CurVariant = 0; // We are now inside of the variant! } else if (AsmString[DollarPos] == '|') { if (CurVariant == ~0U) throw "'|' character found outside of a variant in instruction '" + CGI.TheDef->getName() + "'!"; ++CurVariant; ++LastEmitted; } else if (AsmString[DollarPos] == '}') { if (CurVariant == ~0U) throw "'}' character found outside of a variant in instruction '" + CGI.TheDef->getName() + "'!"; ++LastEmitted; CurVariant = ~0U; } else if (DollarPos+1 != AsmString.size() && AsmString[DollarPos+1] == '$') { if (CurVariant == Variant || CurVariant == ~0U) AddLiteralString("$"); // "$$" -> $ LastEmitted = DollarPos+2; } else { // Get the name of the variable. std::string::size_type VarEnd = DollarPos+1; // handle ${foo}bar as $foo by detecting whether the character following // the dollar sign is a curly brace. If so, advance VarEnd and DollarPos // so the variable name does not contain the leading curly brace. bool hasCurlyBraces = false; if (VarEnd < AsmString.size() && '{' == AsmString[VarEnd]) { hasCurlyBraces = true; ++DollarPos; ++VarEnd; } while (VarEnd < AsmString.size() && isIdentChar(AsmString[VarEnd])) ++VarEnd; std::string VarName(AsmString.begin()+DollarPos+1, AsmString.begin()+VarEnd); // Modifier - Support ${foo:modifier} syntax, where "modifier" is passed // into printOperand. Also support ${:feature}, which is passed into // PrintSpecial. std::string Modifier; // In order to avoid starting the next string at the terminating curly // brace, advance the end position past it if we found an opening curly // brace. if (hasCurlyBraces) { if (VarEnd >= AsmString.size()) throw "Reached end of string before terminating curly brace in '" + CGI.TheDef->getName() + "'"; // Look for a modifier string. if (AsmString[VarEnd] == ':') { ++VarEnd; if (VarEnd >= AsmString.size()) throw "Reached end of string before terminating curly brace in '" + CGI.TheDef->getName() + "'"; unsigned ModifierStart = VarEnd; while (VarEnd < AsmString.size() && isIdentChar(AsmString[VarEnd])) ++VarEnd; Modifier = std::string(AsmString.begin()+ModifierStart, AsmString.begin()+VarEnd); if (Modifier.empty()) throw "Bad operand modifier name in '"+ CGI.TheDef->getName() + "'"; } if (AsmString[VarEnd] != '}') throw "Variable name beginning with '{' did not end with '}' in '" + CGI.TheDef->getName() + "'"; ++VarEnd; } if (VarName.empty() && Modifier.empty()) throw "Stray '$' in '" + CGI.TheDef->getName() + "' asm string, maybe you want $$?"; if (VarName.empty()) { // Just a modifier, pass this into PrintSpecial. Operands.push_back(AsmWriterOperand("PrintSpecial", ~0U, Modifier)); } else { // Otherwise, normal operand. unsigned OpNo = CGI.getOperandNamed(VarName); CodeGenInstruction::OperandInfo OpInfo = CGI.OperandList[OpNo]; if (CurVariant == Variant || CurVariant == ~0U) { unsigned MIOp = OpInfo.MIOperandNo; Operands.push_back(AsmWriterOperand(OpInfo.PrinterMethodName, MIOp, Modifier)); } } LastEmitted = VarEnd; } } AddLiteralString("\\n"); } /// MatchesAllButOneOp - If this instruction is exactly identical to the /// specified instruction except for one differing operand, return the differing /// operand number. If more than one operand mismatches, return ~1, otherwise /// if the instructions are identical return ~0. unsigned AsmWriterInst::MatchesAllButOneOp(const AsmWriterInst &Other)const{ if (Operands.size() != Other.Operands.size()) return ~1; unsigned MismatchOperand = ~0U; for (unsigned i = 0, e = Operands.size(); i != e; ++i) { if (Operands[i] != Other.Operands[i]) { if (MismatchOperand != ~0U) // Already have one mismatch? return ~1U; else MismatchOperand = i; } } return MismatchOperand; } static void PrintCases(std::vector > &OpsToPrint, std::ostream &O) { O << " case " << OpsToPrint.back().first << ": "; AsmWriterOperand TheOp = OpsToPrint.back().second; OpsToPrint.pop_back(); // Check to see if any other operands are identical in this list, and if so, // emit a case label for them. for (unsigned i = OpsToPrint.size(); i != 0; --i) if (OpsToPrint[i-1].second == TheOp) { O << "\n case " << OpsToPrint[i-1].first << ": "; OpsToPrint.erase(OpsToPrint.begin()+i-1); } // Finally, emit the code. O << TheOp.getCode(); O << "break;\n"; } /// EmitInstructions - Emit the last instruction in the vector and any other /// instructions that are suitably similar to it. static void EmitInstructions(std::vector &Insts, std::ostream &O) { AsmWriterInst FirstInst = Insts.back(); Insts.pop_back(); std::vector SimilarInsts; unsigned DifferingOperand = ~0; for (unsigned i = Insts.size(); i != 0; --i) { unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst); if (DiffOp != ~1U) { if (DifferingOperand == ~0U) // First match! DifferingOperand = DiffOp; // If this differs in the same operand as the rest of the instructions in // this class, move it to the SimilarInsts list. if (DifferingOperand == DiffOp || DiffOp == ~0U) { SimilarInsts.push_back(Insts[i-1]); Insts.erase(Insts.begin()+i-1); } } } O << " case " << FirstInst.CGI->Namespace << "::" << FirstInst.CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i) O << " case " << SimilarInsts[i].CGI->Namespace << "::" << SimilarInsts[i].CGI->TheDef->getName() << ":\n"; for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) { if (i != DifferingOperand) { // If the operand is the same for all instructions, just print it. O << " " << FirstInst.Operands[i].getCode(); } else { // If this is the operand that varies between all of the instructions, // emit a switch for just this operand now. O << " switch (MI->getOpcode()) {\n"; std::vector > OpsToPrint; OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" + FirstInst.CGI->TheDef->getName(), FirstInst.Operands[i])); for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) { AsmWriterInst &AWI = SimilarInsts[si]; OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+ AWI.CGI->TheDef->getName(), AWI.Operands[i])); } std::reverse(OpsToPrint.begin(), OpsToPrint.end()); while (!OpsToPrint.empty()) PrintCases(OpsToPrint, O); O << " }"; } O << "\n"; } O << " break;\n"; } void AsmWriterEmitter:: FindUniqueOperandCommands(std::vector &UniqueOperandCommands, std::vector &InstIdxs, std::vector &InstOpsUsed) const { InstIdxs.assign(NumberedInstructions.size(), ~0U); // This vector parallels UniqueOperandCommands, keeping track of which // instructions each case are used for. It is a comma separated string of // enums. std::vector InstrsForCase; InstrsForCase.resize(UniqueOperandCommands.size()); InstOpsUsed.assign(UniqueOperandCommands.size(), 0); for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { const AsmWriterInst *Inst = getAsmWriterInstByID(i); if (Inst == 0) continue; // PHI, INLINEASM, DBG_LABEL, etc. std::string Command; if (Inst->Operands.empty()) continue; // Instruction already done. Command = " " + Inst->Operands[0].getCode() + "\n"; // If this is the last operand, emit a return. if (Inst->Operands.size() == 1) Command += " return true;\n"; // Check to see if we already have 'Command' in UniqueOperandCommands. // If not, add it. bool FoundIt = false; for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx) if (UniqueOperandCommands[idx] == Command) { InstIdxs[i] = idx; InstrsForCase[idx] += ", "; InstrsForCase[idx] += Inst->CGI->TheDef->getName(); FoundIt = true; break; } if (!FoundIt) { InstIdxs[i] = UniqueOperandCommands.size(); UniqueOperandCommands.push_back(Command); InstrsForCase.push_back(Inst->CGI->TheDef->getName()); // This command matches one operand so far. InstOpsUsed.push_back(1); } } // For each entry of UniqueOperandCommands, there is a set of instructions // that uses it. If the next command of all instructions in the set are // identical, fold it into the command. for (unsigned CommandIdx = 0, e = UniqueOperandCommands.size(); CommandIdx != e; ++CommandIdx) { for (unsigned Op = 1; ; ++Op) { // Scan for the first instruction in the set. std::vector::iterator NIT = std::find(InstIdxs.begin(), InstIdxs.end(), CommandIdx); if (NIT == InstIdxs.end()) break; // No commonality. // If this instruction has no more operands, we isn't anything to merge // into this command. const AsmWriterInst *FirstInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (!FirstInst || FirstInst->Operands.size() == Op) break; // Otherwise, scan to see if all of the other instructions in this command // set share the operand. bool AllSame = true; for (NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx); NIT != InstIdxs.end(); NIT = std::find(NIT+1, InstIdxs.end(), CommandIdx)) { // Okay, found another instruction in this command set. If the operand // matches, we're ok, otherwise bail out. const AsmWriterInst *OtherInst = getAsmWriterInstByID(NIT-InstIdxs.begin()); if (!OtherInst || OtherInst->Operands.size() == Op || OtherInst->Operands[Op] != FirstInst->Operands[Op]) { AllSame = false; break; } } if (!AllSame) break; // Okay, everything in this command set has the same next operand. Add it // to UniqueOperandCommands and remember that it was consumed. std::string Command = " " + FirstInst->Operands[Op].getCode() + "\n"; // If this is the last operand, emit a return after the code. if (FirstInst->Operands.size() == Op+1) Command += " return true;\n"; UniqueOperandCommands[CommandIdx] += Command; InstOpsUsed[CommandIdx]++; } } // Prepend some of the instructions each case is used for onto the case val. for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) { std::string Instrs = InstrsForCase[i]; if (Instrs.size() > 70) { Instrs.erase(Instrs.begin()+70, Instrs.end()); Instrs += "..."; } if (!Instrs.empty()) UniqueOperandCommands[i] = " // " + Instrs + "\n" + UniqueOperandCommands[i]; } } void AsmWriterEmitter::run(std::ostream &O) { EmitSourceFileHeader("Assembly Writer Source Fragment", O); CodeGenTarget Target; Record *AsmWriter = Target.getAsmWriter(); std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName"); unsigned Variant = AsmWriter->getValueAsInt("Variant"); O << "/// printInstruction - This method is automatically generated by tablegen\n" "/// from the instruction set description. This method returns true if the\n" "/// machine instruction was sufficiently described to print it, otherwise\n" "/// it returns false.\n" "bool " << Target.getName() << ClassName << "::printInstruction(const MachineInstr *MI) {\n"; std::vector Instructions; for (CodeGenTarget::inst_iterator I = Target.inst_begin(), E = Target.inst_end(); I != E; ++I) if (!I->second.AsmString.empty()) Instructions.push_back(AsmWriterInst(I->second, Variant)); // Get the instruction numbering. Target.getInstructionsByEnumValue(NumberedInstructions); // Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not // all machine instructions are necessarily being printed, so there may be // target instructions not in this map. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i])); // Build an aggregate string, and build a table of offsets into it. std::map StringOffset; std::string AggregateString; AggregateString.push_back(0); // "\0" AggregateString.push_back(0); // "\0" /// OpcodeInfo - This encodes the index of the string to use for the first /// chunk of the output as well as indices used for operand printing. std::vector OpcodeInfo; unsigned MaxStringIdx = 0; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]]; unsigned Idx; if (AWI == 0) { // Something not handled by the asmwriter printer. Idx = 0; } else if (AWI->Operands[0].OperandType != AsmWriterOperand::isLiteralTextOperand || AWI->Operands[0].Str.empty()) { // Something handled by the asmwriter printer, but with no leading string. Idx = 1; } else { unsigned &Entry = StringOffset[AWI->Operands[0].Str]; if (Entry == 0) { // Add the string to the aggregate if this is the first time found. MaxStringIdx = Entry = AggregateString.size(); std::string Str = AWI->Operands[0].Str; UnescapeString(Str); AggregateString += Str; AggregateString += '\0'; } Idx = Entry; // Nuke the string from the operand list. It is now handled! AWI->Operands.erase(AWI->Operands.begin()); } OpcodeInfo.push_back(Idx); } // Figure out how many bits we used for the string index. unsigned AsmStrBits = Log2_32_Ceil(MaxStringIdx+1); // To reduce code size, we compactify common instructions into a few bits // in the opcode-indexed table. unsigned BitsLeft = 32-AsmStrBits; std::vector > TableDrivenOperandPrinters; bool isFirst = true; while (1) { std::vector UniqueOperandCommands; // For the first operand check, add a default value for instructions with // just opcode strings to use. if (isFirst) { UniqueOperandCommands.push_back(" return true;\n"); isFirst = false; } std::vector InstIdxs; std::vector NumInstOpsHandled; FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs, NumInstOpsHandled); // If we ran out of operands to print, we're done. if (UniqueOperandCommands.empty()) break; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size()); // If we don't have enough bits for this operand, don't include it. if (NumBits > BitsLeft) { DOUT << "Not enough bits to densely encode " << NumBits << " more bits\n"; break; } // Otherwise, we can include this in the initial lookup table. Add it in. BitsLeft -= NumBits; for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i) if (InstIdxs[i] != ~0U) OpcodeInfo[i] |= InstIdxs[i] << (BitsLeft+AsmStrBits); // Remove the info about this operand. for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { if (AsmWriterInst *Inst = getAsmWriterInstByID(i)) if (!Inst->Operands.empty()) { unsigned NumOps = NumInstOpsHandled[InstIdxs[i]]; assert(NumOps <= Inst->Operands.size() && "Can't remove this many ops!"); Inst->Operands.erase(Inst->Operands.begin(), Inst->Operands.begin()+NumOps); } } // Remember the handlers for this set of operands. TableDrivenOperandPrinters.push_back(UniqueOperandCommands); } O<<" static const unsigned OpInfo[] = {\n"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { O << " " << OpcodeInfo[i] << "U,\t// " << NumberedInstructions[i]->TheDef->getName() << "\n"; } // Add a dummy entry so the array init doesn't end with a comma. O << " 0U\n"; O << " };\n\n"; // Emit the string itself. O << " const char *AsmStrs = \n \""; unsigned CharsPrinted = 0; EscapeString(AggregateString); for (unsigned i = 0, e = AggregateString.size(); i != e; ++i) { if (CharsPrinted > 70) { O << "\"\n \""; CharsPrinted = 0; } O << AggregateString[i]; ++CharsPrinted; // Print escape sequences all together. if (AggregateString[i] == '\\') { assert(i+1 < AggregateString.size() && "Incomplete escape sequence!"); if (isdigit(AggregateString[i+1])) { assert(isdigit(AggregateString[i+2]) && isdigit(AggregateString[i+3]) && "Expected 3 digit octal escape!"); O << AggregateString[++i]; O << AggregateString[++i]; O << AggregateString[++i]; CharsPrinted += 3; } else { O << AggregateString[++i]; ++CharsPrinted; } } } O << "\";\n\n"; O << " if (TAI->doesSupportDebugInformation() &&\n" << " DW->ShouldEmitDwarfDebug() && OptLevel != CodeGenOpt::None) {\n" << " DebugLoc CurDL = MI->getDebugLoc();\n\n" << " if (!CurDL.isUnknown()) {\n" << " static DebugLocTuple PrevDLT(0, ~0U, ~0U);\n" << " DebugLocTuple CurDLT = MF->getDebugLocTuple(CurDL);\n\n" << " if (PrevDLT.CompileUnit != 0 && PrevDLT != CurDLT)\n" << " printLabel(DW->RecordSourceLine(CurDLT.Line, CurDLT.Col,\n" << " DICompileUnit(CurDLT.CompileUnit)));\n\n" << " PrevDLT = CurDLT;\n" << " }\n" << " }\n\n"; O << " if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {\n" << " O << \"\\t\";\n" << " printInlineAsm(MI);\n" << " return true;\n" << " } else if (MI->isLabel()) {\n" << " printLabel(MI);\n" << " return true;\n" << " } else if (MI->getOpcode() == TargetInstrInfo::DECLARE) {\n" << " printDeclare(MI);\n" << " return true;\n" << " } else if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {\n" << " printImplicitDef(MI);\n" << " return true;\n" << " }\n\n"; O << " O << \"\\t\";\n\n"; O << " // Emit the opcode for the instruction.\n" << " unsigned Bits = OpInfo[MI->getOpcode()];\n" << " if (Bits == 0) return false;\n" << " O << AsmStrs+(Bits & " << (1 << AsmStrBits)-1 << ");\n\n"; // Output the table driven operand information. BitsLeft = 32-AsmStrBits; for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) { std::vector &Commands = TableDrivenOperandPrinters[i]; // Compute the number of bits we need to represent these cases, this is // ceil(log2(numentries)). unsigned NumBits = Log2_32_Ceil(Commands.size()); assert(NumBits <= BitsLeft && "consistency error"); // Emit code to extract this field from Bits. BitsLeft -= NumBits; O << "\n // Fragment " << i << " encoded into " << NumBits << " bits for " << Commands.size() << " unique commands.\n"; if (Commands.size() == 2) { // Emit two possibilitys with if/else. O << " if ((Bits >> " << (BitsLeft+AsmStrBits) << ") & " << ((1 << NumBits)-1) << ") {\n" << Commands[1] << " } else {\n" << Commands[0] << " }\n\n"; } else { O << " switch ((Bits >> " << (BitsLeft+AsmStrBits) << ") & " << ((1 << NumBits)-1) << ") {\n" << " default: // unreachable.\n"; // Print out all the cases. for (unsigned i = 0, e = Commands.size(); i != e; ++i) { O << " case " << i << ":\n"; O << Commands[i]; O << " break;\n"; } O << " }\n\n"; } } // Okay, delete instructions with no operand info left. for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { // Entire instruction has been emitted? AsmWriterInst &Inst = Instructions[i]; if (Inst.Operands.empty()) { Instructions.erase(Instructions.begin()+i); --i; --e; } } // Because this is a vector, we want to emit from the end. Reverse all of the // elements in the vector. std::reverse(Instructions.begin(), Instructions.end()); if (!Instructions.empty()) { // Find the opcode # of inline asm. O << " switch (MI->getOpcode()) {\n"; while (!Instructions.empty()) EmitInstructions(Instructions, O); O << " }\n"; O << " return true;\n"; } O << "}\n"; }