//===- X86InstructionInfo.h - X86 Instruction Information ---------*-C++-*-===// // // This file contains the X86 implementation of the MachineInstrInfo class. // //===----------------------------------------------------------------------===// #ifndef X86INSTRUCTIONINFO_H #define X86INSTRUCTIONINFO_H #include "llvm/Target/MachineInstrInfo.h" #include "X86RegisterInfo.h" /// X86II - This namespace holds all of the target specific flags that /// instruction info tracks. /// namespace X86II { enum { //===------------------------------------------------------------------===// // Instruction types. These are the standard/most common forms for X86 // instructions. // /// Raw - This form is for instructions that don't have any operands, so /// they are just a fixed opcode value, like 'leave'. RawFrm = 0, /// AddRegFrm - This form is used for instructions like 'push r32' that have /// their one register operand added to their opcode. AddRegFrm = 1, /// MRMDestReg - This form is used for instructions that use the Mod/RM byte /// to specify a destination, which in this case is a register. /// MRMDestReg = 2, /// MRMDestMem - This form is used for instructions that use the Mod/RM byte /// to specify a destination, which in this case is memory. /// MRMDestMem = 3, /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte /// to specify a source, which in this case is a register. /// MRMSrcReg = 4, /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte /// to specify a source, which in this case is memory. /// MRMSrcMem = 5, /// MRMS[0-7][rm] - These forms are used to represent instructions that use /// a Mod/RM byte, and use the middle field to hold extended opcode /// information. In the intel manual these are represented as /0, /1, ... /// // First, instructions that operate on a register r/m operand... MRMS0r = 16, MRMS1r = 17, MRMS2r = 18, MRMS3r = 19, // Format /0 /1 /2 /3 MRMS4r = 20, MRMS5r = 21, MRMS6r = 22, MRMS7r = 23, // Format /4 /5 /6 /7 // Next, instructions that operate on a memory r/m operand... MRMS0m = 24, MRMS1m = 25, MRMS2m = 26, MRMS3m = 27, // Format /0 /1 /2 /3 MRMS4m = 28, MRMS5m = 29, MRMS6m = 30, MRMS7m = 31, // Format /4 /5 /6 /7 FormMask = 31, //===------------------------------------------------------------------===// // Actual flags... /// Void - Set if this instruction produces no value Void = 1 << 5, // TB - TwoByte - Set if this instruction has a two byte opcode, which // starts with a 0x0F byte before the real opcode. TB = 1 << 6, // FIXME: There are several more two byte opcode escapes: D8-DF // Handle this. // OpSize - Set if this instruction requires an operand size prefix (0x66), // which most often indicates that the instruction operates on 16 bit data // instead of 32 bit data. OpSize = 1 << 7, // This three-bit field describes the size of a memory operand. // I'm just being paranoid not using the zero value; there's // probably no reason you couldn't use it. Arg8 = 0x1 << 8, Arg16 = 0x2 << 8, Arg32 = 0x3 << 8, Arg64 = 0x4 << 8, Arg80 = 0x5 << 8, Arg128 = 0x6 << 8, ArgMask = 0x7 << 8, }; } class X86InstrInfo : public MachineInstrInfo { const X86RegisterInfo RI; public: X86InstrInfo(); /// getRegisterInfo - MachineInstrInfo is a superset of MRegister info. As /// such, whenever a client has an instance of instruction info, it should /// always be able to get register info as well (through this method). /// virtual const MRegisterInfo &getRegisterInfo() const { return RI; } /// print - Print out an x86 instruction in intel syntax /// virtual void print(const MachineInstr *MI, std::ostream &O, const TargetMachine &TM) const; // getBaseOpcodeFor - This function returns the "base" X86 opcode for the // specified opcode number. // unsigned char getBaseOpcodeFor(unsigned Opcode) const; //===--------------------------------------------------------------------===// // // These are stubs for pure virtual methods that should be factored out of // MachineInstrInfo. We never call them, we don't want them, but we need // stubs so that we can instatiate our class. // MachineOpCode getNOPOpCode() const { abort(); } void CreateCodeToLoadConst(const TargetMachine& target, Function* F, Value *V, Instruction *I, std::vector& mvec, MachineCodeForInstruction& mcfi) const { abort(); } void CreateCodeToCopyIntToFloat(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const { abort(); } void CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi)const { abort(); } void CreateCopyInstructionsByType(const TargetMachine& target, Function* F, Value* src, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi)const { abort(); } void CreateSignExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) const { abort(); } void CreateZeroExtensionInstructions(const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned srcSizeInBits, std::vector& mvec, MachineCodeForInstruction& mcfi) const { abort(); } }; #endif